冷却面の溝加工による極超音速機用熱交換器の着霜低減

○山田悠太(静大工・院), 吹場活佳, 園部誕紀(静大工), 大久保英敏(玉川大)

1. はじめに

JAXAおよび国内複数の大学の連携により極超 音速機の開発が進められている.この極超音速機 に使用されているターボジェットエンジンには, 極超音速飛行時に発生する空力加熱問題を解決す るため,燃料である液体水素を利用して吸入空気 を冷却する空気予冷却器(プリクーラ)が搭載され ている.図1にこのエンジンに搭載されている空気 予冷却器を示す.空気予冷却器は空気流が流れる シェルと,内部に液体水素が流れ熱交換を行うチ ューブからなるシェルアンドチューブ型熱交換器 である.表1は空気予冷却器の諸元表である.

空気予冷却器を使用すると,吸入空気中に含ま れる水蒸気が空気予冷却器で冷却され冷却面(チ ューブ表面)に着霜が生じることが問題となって いる.図2に着霜の様子を示す.冷却面に生じた着 霜は,圧力損失や熱交換の阻害などエンジン性能 に大きな影響を与える.そこで本研究では平板上 に溝加工を行うことで着霜の低減を図りその効果 を評価する.同時に過去の研究^[1]で明らかにされ ている溝加工面に生じる霜の付着力が弱いことを 利用し,圧縮空気を冷却面に噴射して霜を除去す るジェット除霜の効果についても評価する.

図1 空気予冷却器

図2 着霜の様子

表1	空気予冷却器の諸元表
11	

寸法	W400×H130×D200
チューブ本数	1296
チューブ外径	2mm
冷媒	液体水素

実験装置と条件

2.1 実験装置

本研究における流れ場は強制対流下における平 板間の流れとなっている.使用する実験装置の概 略図を図3に示す.大きく恒温恒湿度空気供給装置 (A),整流筒(B),オリフィス(C),テストセクショ ン(D)で構成されている.恒温恒湿度空気供給装置 とは、実験中に一定の温度,湿度の空気を安定供 給する装置である.整流筒は恒温恒湿度空気供給 装置から供給される空気を整流してテストセクシ ョンへ送る装置である.また,途中のオリフィス で流量計測を行っている.

図3中のテストセクションについて図4にテスト セクションの拡大図を示し、図5にテストセクショ ンの寸法を示す.図4に示されたジェット噴射口は ジェット除霜を行うためのものであり、実験終了 と同時に冷却面へジェット噴射を行って除霜する. 図5に示された冷却面には無酸素銅を使用してい る.また冷却面を挟むように設置された圧力損失 計測口は、実験中に着霜により発生する圧力損失 を計測するためのものである.

図4 テストセクションの拡大図

2.2 実験条件

本研究の実験条件を表2に示す.また,本研究で は溝加工の効果が流速に依存する可能性を考慮し, 実験の初期流速を3種類設定する.表3に本研究の 実験ケースを示す.流速2.5m/sについては本研究 の再現性を確認するため3回の実験を行った.

表	2 実験条件
空気温度	20[°C]
空気湿度	50[%]
冷却面温度	-196[°C](液体窒素)
実験時間	600[s]

	衣3 美駅クースオ	ζ.
Case No	初期流速[m/s]	溝加工
1	1.3	無
2	1.3	有
3	2.5	無
4	2.5	有

5.0

5.0

3. 冷却面性状

5

6

本研究では溝加工の効果を評価するために,溝 加工を行わない平板と溝加工を行う平板の2種類 の平板で実験を行う.平板には無酸素銅を使用す る.図6に溝加工を行わない平板を,図7に溝加工 を行った平板の冷却面性状を示す.溝加工を行わ ない平板の表面は,フライス加工を行った後に研 磨剤により研磨する.溝加工を行う平板の表面は 放電加工面であり図8に溝の拡大図を示す.また図 9に溝加工の断面図を示し,図10に溝の寸法を示す.

無

有

図6 溝加工なし

図7 溝加工あり

図8 溝の拡大図

4. 霜層の計測方法

本研究では図11のように2個のカメラを使用し てテストセクションを撮影する.カメラ1は冷却面 を真上から撮影し,実験中の冷却面への着霜の様 子を観察する.カメラ2は流路出口から冷却面を撮 影し,実験中に冷却面上に発生する霜層の高さを 計測する.本研究では図12に示すように,テスト セクション中の冷却面の後端に針金を通し,その 針金の長さを基準として倍率計算により霜層高さ を求める.

図11 撮影方法

図12 霜層の測定方法

5. 結果

5.1 霜層高さ計測の再現性

本研究の再現性を流速2.5m/sの場合の3回分の 霜層高さを比較することで確認する.溝加工の有 無で再現性が変化することを考慮して両ケースと も霜層高さを比較する.図13に溝加工無しの場合 の霜層高さを示し,図14に溝加工有りの場合の霜 層高さを示す.両図において,I~IIIはそれぞれ実 験回数を示し,aveの折れ線は3回の実験結果の平 均を示している.図13より溝なしの場合の標準偏 差は0.21,図14より溝ありの場合の標準偏差は0.24 である.したがって,再現性は良好であると考え られる.

図13 霜層高さの再現性(溝無し)

図14 霜層高さの再現性(溝有り)

5.2 溝加工の効果の流速依存性

本研究では溝加工の効果の流速依存性を考慮し て初期流速を3種類設定して実験を行っている(表 3). ここでは3種類の初期流速それぞれについて考 察する.

5.2.1 初期流速1.3m/s

図15と図16に初期流速1.3m/sの場合の圧力損失 係数と霜層高さのグラフを示す.図15から圧力損 失係数は両ケースで一致していることが分かる. したがって,圧力損失係数に対して溝加工の効果 は無いと考えられる.図16から霜層高さも両ケー スでほぼ一致していることが分かる.したがって, 霜層高さに対しても溝加工の効果は無いと考えら れる.

図15 圧力損失係数Cp

5.2.2 初期流速2.5m/s

図17と図18に初期流速2.5m/sの場合の圧力損失 係数と霜層高さのグラフを示す.図17から圧力損 失係数は溝無しの結果が溝有りの結果よりも大き な値を取っていることが分かる.またこの値の差 は最大で1.71倍である.したがって,圧力損失係 数に対して溝加工の効果は有ると考えられる.実 験時間600秒で溝有りと溝無しの霜層高さの差が 0.17であり若干の差異が見られるが,標準偏差が 0.2程度であることを考えると有意な差であると は言えない.したがって,圧力損失係数のみに溝 加工の効果があると考えられる.

図17 圧力損失係数Cp

図18 霜層高さ

5.2.3 初期流速5.0m/s

図19と図20に初期流速5.0m/sの場合の圧力損失 係数と霜層高さのグラフを示す.図19から圧力損 失係数は溝無しの結果が溝有りの結果よりも大き な値を取っていることが分かる.また,この値の 差は初期流速2.5m/sの場合よりも大きく最大1.98 倍となっている.したがって,圧力損失係数に対 して溝加工の効果は有ると考えられる.図20から 霜層高さは実験時間500秒付近で溝なしと溝有り の結果の差が0.24となっている事が分かる.しか しながら,この差は初期流速2.5m/sの場合と同様 に標準偏差と比べ大きく変わらない.

図20 霜層高さ

5.2.4 霜層高さの計測について

本研究で使用しているテストセクションは、冷 却面と流路下部のアクリル板が接しているため、 熱伝導によりアクリル板が冷却され、アクリル上 にも霜が形成されている(図21).本研究の霜層高さ の測り方は流路出口から撮影した写真を使用し倍 率計算で求めるものであるため、カメラ奥行き方 向のどの位置から成長した霜か判断することがで きない.したがって、初期流速2.5m/sと初期流速 5.0m/sの霜層高さの差に大きな変化が無かった原 因は、本研究で測定している霜層高さはアクリル 板から成長したものであることが考えられる.

5.2.5 霜の飛散

溝加工を行った冷却面上に生じた霜は、テスト セクションに供給される空気流により冷却面上か ら飛ばされる現象が目視で確認された.これは、 溝加工により霜の付着力が低下していることを示 している.またこの効果は、初期流速1.3m/sの場 合よりも初期流速5.0m/sの場合の方がより顕著に 確認できるため、流速に依存し流速が速いほどこ の効果は大きいと考えられる.

5.3 ジェット除霜効果

5.3.1 ジェット除霜

本研究では圧縮空気を着霜が生じた冷却面へ噴 射して除霜を行う方法をジェット除霜としている. ジェット除霜の条件として,実験終了時(600秒)に コンプレッサで0.3[MPa]に圧縮した空気を約1秒 間噴射する.ジェット噴射口はジェット噴射口中 心と流路中心が同一直線状となる高さでジェット 噴射口を固定している(図4参照).

5.3.2 ジェット除霜効果

本研究では溝の有無がジェット除霜に与える影響を評価するため、両ケース共にジェット除霜を 行い、その結果を比較する.図22はジェット除霜 の効果を示している.図22を見ると、ジェット噴 射直前の600秒では両ケースとも着霜が生じてい ることが分かる.ジェット除霜を行うと両ケース とも冷却面がはっきり見える程度まで除霜されて おり、本研究におけるジェット除霜の効果は溝加 工あり、無しの場合とも良好であると考えられる.

6. おわりに

本研究では冷却面へ溝加工を行うことで,着霜 への影響を評価するとともに,霜の付着力低下を 利用しジェット除霜により機械的に除霜を行う方 法についても評価した.本研究で得られた結果は 以下の通りである.

- (1) 流速が速い場合, 圧力損失係数は溝加工が有 る場合の方が小さくなる.
- (2) 初期流速に関係なく,溝加工が霜層高さに与 える影響は小さい.
- (3) ジェット除霜に関しては、すべての条件で良 好に除霜できている.

参考文献

[1] 井上他:強制対流下における着霜の低減化, 平成23年度冷凍空調学会