# 観測ロケットを利用した極超音速飛行試験 3 ヘエアインテーク・エンジン検討~ 〇葛貫泰弘\*1,宮岡諒\*1,佐藤哲也\*1,田口秀之\*2,小島孝之\*2 Hypersonic Flight Experiment using a Sounding Rocket -Conceptual Study of the Engine and Air Intake-

Yasuhiro Kuzunuki<sup>\*1</sup>, Ryo Miyaoka<sup>\*1</sup>, Tetsuya Sato<sup>\*1</sup>, Hideyuki Taguchi<sup>\*2</sup>, Takayuki Kojima<sup>\*2</sup> <sup>\*1</sup> 早稲田大学大学院基幹理工学研究科機械科学専攻 <sup>2</sup>宇宙航空研究開発機構(JAXA)

### 1. はじめに

観測ロケットを利用した極超音速飛行試験は 1m級の実験機を使うため、エンジンも小型のもの になる.具体的なエンジンの大きさは全長約 540mm,幅49mm,高さ20mmほどである.現 在JAXAで研究されている極超音速予冷ターボジ ェットエンジンは全長2mで、サイズが異なるこ とから同じ機器を搭載することが出来ないため新 たにエンジンの設計が必要となっている.本稿で は、新規設計する事となったエンジンのエアイン テーク部に関する検討項目を紹介する.

本実験の目的は、極超音速飛行時のエンジン制 御実証と要素性能の取得であり、インテークに関 しては、極超音速飛行時のインテークの始動確認、 インテーク始動後に性能指標である全圧回復率と 流量捕獲率を測定することを目的として、各種検 討を実施していく.なお、設計に際して注意を払 う点としては、サイズの制約が非常に厳しいこと、 実証飛行時に横滑りや境界層剥離などによる性能 の低下を防ぐようにすることが挙げられる.



エンジンは図 1 に示すように前方からインテー ク,燃焼器,後部ノズルという構成になっている ラムジェットエンジンである.実験機には同形状 のエンジンが 2 つ並べて配置され,機体下部に埋 め込まれるような形で搭載される.



インテークは図 2 に示すような混合圧縮型で, 基本的には S エンジンをそのまま縮小した形をし ている.インテーク上部に設置されたボールねじ 付きモーターを動かすことで第 2 ランプと第 3 ラ ンプを連動させ,スロート面積を変えることが出 来る.インテーク入口高さ(下部カウルから第 2 ラ ンプまでの垂線の長さ)におけるスロート高さ(第 3 ランプ先端から下ろした垂線の長さ)の比を取って ランプ開度を求めると,ランプをあげた状態では 比率 0.7 となりマッハ 5 において自己始動可能. ランプを下げた状態では比率 0.4 となり自己始動 は不可能であるが,始動状態の維持は可能な設計 となっている.よってインテークの実験シーケン スとしては、ランプを上げた状態でインテークを 始動させ、その後ランプを下げて全圧回復率が高 い状態を維持して燃焼器に気流を送る事になる.

この可変ランプ機構を駆動するにはモーター本 体の他に、コントローラードライバーとシーケン サ、電源が必要となる.電源については機体シス テム側から配線するとしてもコントローラードラ イバーとシーケンサを機体内部に搭載する必要が ある.現在の調査では24mm四方と48mm四方の 非常に小型のモーター製品は存在するが、これに 付属するドライバー等は100mm近い大きさがあ り、搭載は難しい.そのため、モーターの駆動制 御に必要な回路だけを取り出して、シーケンサと ともに空いたスペースに配置できないかを検討し ている.なお、モーター出力とランプ駆動荷重の 関係は、24mm四方のモーターでは一部の計算方 法について安全に駆動できない可能性があるが、

# 2.2 ダイバータと抽気

エンジンは機体先端から 500mm ほど後方の機 体下部に埋め込まれており,機体前方から発生す る境界層の発達により,インテークスロートを閉 塞する恐れがある.





$$\delta(x) = 4.918 \sqrt{\frac{\nu x}{U_{\infty}}} \tag{1}$$

上の式 1 の層流境界層方程式のブラジウス解か ら境界層の厚さを求めると 1.65mm となり, ラン プを下げた状態ではスロートの半分以上が境界層

=1.65

で埋まってしまう. さらに斜め衝撃波と干渉する ことで境界層剥離を起こすと,インテークにおけ る流量捕獲率が極端に下がると懸念される. その ため,エンジン前方にダイバータを設置して境界 層排除を試みる検討を行った.

ダイバータの設置方法は図4に示す2パターン を考えた.図4(a)の方法では機体下部を削ってお り,図4(b)のようにエンジンの取り付け位置が下 がる事により抵抗が増える心配がない.



図4(a) ダイバータ設置方法(第1ランプ拡大図)



図4(b) ダイバータ設置方法(第1ランプ拡大図)



図 5(b) ダイバータ形状(抽気プレナム)

ダイバータの種類についても図 5 に示すような

2パターンを考えた.ここでダイバータ高さは機体 高さの1~2%に収まるよう1mmを想定している. 層流境界層の場合は、この場合でも半分以上の境 界層は排除できる.図 5(a)は抽気後の気体を真横 に排除することから,機体内部には入らず構造が 簡単になる.一方で図 5(b)は,機体内部に抽気用 のプレナムを設けているので、機体外部までの抽 気用流路を別に設ける必要が生じてくる.しかし ながら(a)のパターンでは、ダイバータ高さは 1mm のみであり、流路が狭いことで抽気した気体が流 れて行かない事が考えられる.いずれの場合にお いても精密な加工が必要になってしまう上に、そ こまでの成果が確約されないことからダイバータ の設置は見送る方向で検討を進めている. その代 案としては、Sエンジン同様にランプ間から抽気を 行う方法を検討している.この場合はプレナム室 側面に抽気後の気体を排出する穴を設けてエンジ ン外部に自然抽気する.

## 2.3 データ計測

本実験の目的である要素性能を取得するため, インテーク各部にもデータ計測機器を配置する. 今回想定している測定項目は,インテーク性能で ある全圧回復率と流量捕獲率を測定する静圧,全 圧とランプ動作確認のためのランプ位置の3つで ある.いずれの測定点もテレメータでデータを送 信するため,最大でも数ヘルツのサンプリング間 隔となる.また,実験で使うような大きな計測装 置は搭載できないため,小型の計測機器の用意が 必要であり,これらについては現在検討中である. 想定している計測点は,エンジン入口と燃焼器前 に2段のピトー管を2レーク程度と静圧孔である (図 6,7参照).この他にも,抽気量を調査するた め,プレナム室内に静圧測定点を設ける,ランプ の動作確認のためポテンショメーターのような測 定機器を設置するなどの方法を検討している.



図 6 圧力測定点



```
図7 ピトーレークと静圧孔
```



図8 エンジン搭載機器配置図

# 2.4 タンク容量と燃焼時間

図 8 にエンジン上部にいくつか代表的な機器を 搭載した図を示す.モーターを配置した段階で空 いたスペースに燃料タンクを配置した.この時の 状態で燃料タンクの容積は約 0.5 リットルである. 実際は配管や燃焼器関連部品,計測装置等が搭載 されるため,さらに容積は小さくなると考えられ る.今回この暫定的なタンク容積で,どの程度の 燃焼時間が得られるか計算を行った.実験計画書 より想定されている内容は,以下の通りである.

- ・燃料はガス水素
- ・2 基のエンジンを装備
- ・マッハ 5(動圧 50kPa)で飛行中に燃焼

・燃焼温度上限は 1900K

理論断熱燃焼温度を 1900K と設定し、当量比を 求めると 0.29 となった. なお、この時のインテー ク通過後の流体諸量はランプを下げた状態で表 1 に示す通りである.

表1 燃焼器前の流体諸量

| 流量 kg/s  | 0.0483 |  |
|----------|--------|--|
| 速度(マッハ数) | 0.110  |  |
| 静圧 kPa   | 488    |  |

次に、燃焼時間がどの程度得られるかを考える. ここでは当量比と燃料タンク内圧をパラメータに して計算したものを表 2 に示す.燃料を少しでも 多く搭載するため、圧力を上げ、燃料を低温に保 つ.今回の計算では燃料温度は 0℃であり、-50℃ の結果については表示していないが、表 2 の数値 より1割程度燃焼時間が増える結果となっている.

| 燃焼時間       |      | タンク内圧 MPa |     |      |  |
|------------|------|-----------|-----|------|--|
| s          |      | 3.0       | 6.0 | 10.0 |  |
| 当量比 $\Phi$ | 0.29 | 1.8       | 3.5 | 5.7  |  |
|            | 0.25 | 2.1       | 4.1 | 6.6  |  |
|            | 0.20 | 2.6       | 5.1 | 8.3  |  |

この表から、5秒程度の燃焼時間を確保するため

には当量比を下げて燃焼温度を下げるか,燃料タ ンク圧力を上げる必要があることがわかる.また, 実際は着火するまでの時間もかかるので,これよ り燃焼時間は少なくなる.

### **3.** おわりに

今回検討している項目は概念設計の段階であり、 細部まで決まっているものは少ない.これから優 先的に検討していく項目を以下に挙げる.可変ラ ンプについてはランプ駆動荷重とモーターの出力 の関係を調べる.流路形状は、ディストーション などの影響調査.境界層と抽気に関しては,抽気 方法と抽気流路の決定.データ計測に関しては計 測装置の選定などを検討していく.設計概要が決 まり次第,組み立てた模型による動作試験を実施 するので,図面の作成もあわせて進行する.



図 9 インテーク CAD 図案

### 4. 参考文献

Hideyuki TAGUCHI et al.: "Hypersonic
Flight Experiment Plan of Pre –Cooled Turbojet
Engine", AIAA 2012-5840, (2012).