エジェクタノズル形状が空気吸い込み性能へ

及ぼす影響についての数値解析

田 代 達 也・那 賀 川 一 郎 (東海大学大学院・東海大学)

記号

m_i:エジェクタノズル吸い込み質量流量 [kg/s]
 m_r:コアロケット排出ガス質量流量 [kg/s]
 v_i:エジェクタノズル吸い込み流れ速度 [m/s]
 v_r:コアロケット排出ガス速度 [m/s]
 v_e:エジェクタノズル出口流れ速度 [m/s]
 η_e:混合効率

1.はじめに

1.1 研究背景

次世代の宇宙往還機として二段式の宇宙往還機で あるTSTOシステム(Two-Stage-to-Orbit)が検 討されている.

本研究室では一段目に有翼飛翔体を用いることを 想定し,推進器として一段目にエジェクタロケット とラムジェットの複合推進システム、二段目にハイ ブリッドロケットを利用することを考えこれら推進 器に関しての研究を行っている.

一段目に用いる複合推進器は、M=0~2 程度まで の加速をエジェクタロケットが行い、M=2~6 程度 までの加速をラムジェットで行うことを想定する。

本研究はエジェクタロケットを研究対象とし,特に 空気吸い込みに影響を及ぼすエジェクタノズルに関 しての研究を行った.

1.2 エジェクタロケット

1.2.1 エジェクタ効果

エジェクタロケット⁽¹⁾とはエジェクタ効果を用い た推進器であり,エジェクタ効果は高圧流体を加速 することによって低圧の空間を生成し,外部の流体 を吸引するものである。(図1)

図1 エジェクタ効果

1.2.2 エジェクタロケット

本研究室で想定するエジェクタロケットは(図 2), 高圧流体に未燃焼ガスを含ませたハイブリッドロケ ット(コアロケット)の排出ガスを用い,吸引流と して大気を吸い込む.その後エジェクタロケット内 で未燃焼ガスと空気を用いて燃焼を行って推力を得 る.

大気の吸い込みは、コアロケットガスと大気との 混合が行われるエジェクタノズル部(図 3)に大き く影響されると考えられる.

エジェクタノズルでの運動量の関係は(1)式と表 せる.η_eは初期の運動量がエジェクタノズル出口で 保持できている割合を表す.

$$\eta_{e}(\dot{m}_{i}v_{i} + \dot{m}_{r}v_{r}) = (\dot{m}_{i} + \dot{m}_{r})v_{e}$$
(1)

エジェクタノズル性能は,

- ・コアロケット,大気が同一条件のもとで より多くの空気を吸い込める
- ・吸い込みで行う混合での運動量の損失が 小さい

がより達成されるものがより良いエジェクタノズル である.

1.2.4 研究概要及び目的

本研究は数値解析を用いてエジェクタノズルの形 状(エジェクタノズル内部の形状・エジェクタノズ ルのコアロケットからの距離)を検討する.研究目 的として,

1.過去に行った実験に基づいた数値解析を行うこ

とによって実験時に発生していた事象を解明する 2.エジェクタノズル形状の変化が性能へ及ぼす影

響を明らかにする

また、本研究はコアロケットにハイブリッドロケ ット排出ガスを用いた研究の前段階としての実験で あるコアロケットに酸素ガスを用いるコールドフロ ー実験に基づいて行う.

2.供試体及び解析条件

2.1 供試体

本研究で行った数値解析は,実験に基づいた解析 (目的1),及び「実験に基づいた解析」を基準とし てエジェクタノズルの形状を変更して行った解析 (目的2)である.

過去に行ったエジェクタノズルに関しての実験で 用いた実験装置図を図4に示す.この実験装置を用 いた実験ではエジェクタノズルのみを研究対象とし ていたので,エジェクタノズル後方の構造は省略さ れている.本研究で行う数値解析は実験に基づいて 行うので,同様にエジェクタノズル後方を省略して 実験条件になるべく近付ける.

図 4 エジェクタノズル実験
 ※他の装置図とは左右が逆転している
 図 5 に数値解析を行った計算範囲,及び各部名称
 を示す.

図5 計算範囲(断面図)

実験装置のコアロケットのノズル付近形状は,図4 で見えていない部分も含めて凹凸があり,この形状 を今回用いた解析プログラムで再現するのは難しい. これよりコアロケットのノズル付近は凹凸のない壁 面と仮定し,図5に示した計算範囲を定めた.また, エジェクタノズルの全長は150mm、及び入り口・出 口の径は68mmである.

次に,解析を行ったエジェクタノズルの各部寸法 をまとめる.行った解析は実験を基にした基準形状, およびエジェクタノズル形状を変更した3パターン である.形状の変更に用いたパラメータを図6に示 し,各形状において変更した値を表1に示す.また, コアロケット,大気のパラメータはどの解析におい ても同じ値を用いた.詳細については次の項で示す.

エジェクタノズルスロート径

図6 変更パラメータ

どの形状においても,エジェクタノズルの長さ, エジェクタノズル入口からスロートまでの長さ,及 びスロートの長さを等しくした.

形状	エジェクタノズ	エジェクタ距離	
	ルスロート径		
形状1(基準)	40mm	55mm	
形状 2	30mm	55mm	
形状 3	40mm	30mm	
形状 4	30mm	30mm	

表 1	エジェ	クタ	1	ズル形状
1X I	- • •	/ /	/	

2.2 解析条件

まず,数値解析に用いた解析プログラムについて まとめる.

支配方程式:軸対称ナビエ・ストークス方程式 離散化手法:有限体積法

時間積分 :オイラー陽解法

数值流束 :SLAU

今回の解析で用いたプログラムは層流のみを再現 できるプログラムである.また,軸対称方程式を用 いるので,計算格子は二次元で軸で分けた断面を用 いる.また,コアロケット側の固体壁及びエジェク タノズル内側表面は固体壁とした.

次にコアロケット及び大気のパラメータについて まとめる.実験は静止状態・1 気圧のもとの通常の 屋内で行われたので,空気の吸い込み口及び流れが 流出する出口側では大気圧を内挿する.また,実験 でのコアロケットは酸素ガスを質量流量0.01998 kg/s, 速度 326m/s,不足膨張で噴射していた.しかし,本 研究では解析プログラムの都合より流出ガスを空 気・適正膨張とする.(実験でのコアロケット流れは、 コアロケット内でチョークさせてから先細ノズルよ りM=1 として流出させていたが,種々の原因によ り速度が音速より低い値として求まった.実験時に 正確な気温を測定していなかったことも踏まえて, 本研究では音速より低く求まった速度を用いる)

本研究ではコアロケットガス及び吸い込み流れの 両方で空気を用い,比熱比:1.4,気体定数:287.4 (J/K・kg),プラントル数:0.717,粘性係数は 0℃ での粘性係数を基にしてサザーランドの式より求め た(サザーランドの式で用いた定数は110.4である).

3.解析結果

3.1 実験を基にした解析(目的1)

本研究で行った数値解析での計算条件と実験条件 では多くの違いがあるので、ここでは数値解析及び 実験それぞれで見られた現象を比較した後、数値解 析結果を用いて内部の状態を把握していく.

実験では図7に示すエジェクタノズルスロート内 側表面の静圧を測定しており、ここでは大気圧より も低い圧力が測定された.

図7 エジェクタノズルスロート内側表面静圧 数値解析でも同様に、大気圧よりも低い圧力が測 定された.図8に圧力分布を示す.(図8では,大気 圧以上及び大気圧-5Pa以下は省略して同一の色で示 している)

今後示す解析結果の図では、コアロケットの噴射 は軸対象プログラムを用いているので図の左下より 行われている.

図8 形状1スロート圧力分布(大気圧~-5Pa) 次に,数値解析結果を用いて内部の状態について 検討する.

図9に速度分布図,図10に圧力分布図,図11に 圧力分布に速度ベクトルを重ねた圧力一速度ベクト ル図を示す.

10-a 全体図

101801

100751

10-b (大気圧~-5Pa)図 10 圧力分布図

図 11 圧力一流線図

図 9-a での流線は、外部からノズル内へと向かう 方向の流れを示している.また,9-b での流線は、出 口から流れが逆流してノズル内に流れ込み、コアロ ケット流れに乗ってまた出口へと向かう流れを示し ている. 図 9-a,b より前方からの吸い込みのほかに後 方からの吸い込みも発生していることが分かる.ま た,図10よりエジェクタノズル入口で圧力が最も低 くなっていることが分かる (図 10-b も図 8 と同様な 示し方である). 図 11 からは、エジェクタノズル後 方で後方からの逆流流れとコアロケット流れとが接 する付近で圧力が高くなっていることが分かる.こ れは、反対向きの流れが衝突して圧力が高まってい るからだと考えられる.また、スロート付近では圧 力の上昇は起こっておらず、これは解析プログラム が層流のみしか再現できない為に 180°逆向きの流 れになってしまうと流れの衝突が発生しないからで あると考えられる.

想定しているエジェクタロケットでは後方からの 吸い込みは無いので,エジェクタノズルのみを対象 とする実験ではエジェクタロケットのプランに則し た結果を得ることができないことが分かった.

3.2 形状変化の影響(目的2)3.2.1 解析結果

まず速度・圧力分布図について、3.1 で示さなかった基準形状以外での形状について示す.

101290

101300

14-2 形状4 圧力分布図(大気圧~-10Pa)
 図 14 形状4(寸法の特徴を示す)速度分布図及び
 圧力分布図

形状2~4のどれにおいても形状1と同様にエジ エクタノズル入口で最も圧力が低くなった.また, どの形状においても前方からの吸い込みのほかに後 方から逆流し,方向転換して出口から出ていく流れ が形状1と同様に表れた.

逆流の発生に伴ってエジェクタノズル後方でのコ アロケット流れと逆流が衝突して起こる圧力上昇も 見られた.

次に、解析を行った4パターンすべてでの吸い込 み流量等の値をまとめる。また,値をまとめるにあ たって次に示す量を定めた(図 15)。表 2 に結果を まとめる。

図16 値の取り方(流線も示す

- ・前方吸い込み流量:逆流も含めた出口流量を求め, これよりコアロケットの流量を差し引いた値
- ・後方吸い込み流量:出口での逆流流量
- ・吸い込み流量:前方吸い込み流量と後方吸い込み 流量を足し合わせた値
- 初期運動量:コアロケットからの排出ガスの運動
 量
- ・流出流れ運動量:出口で流出する流れの運動量
 表2 各流量・流出流れ運動量

形状	前方吸い込み流量	後方吸い込み流量	吸い込み流量	流出流れ運動量
	(kg/s)	(kg/s)	(kg/s)	(kg•m/s²)
形状1	0.002215	0.007267	0.009482	6.4805
形状2	0.004110	0.007003	0.011113	6.4698
形状3	0.000758	0.008001	0.008760	6.4474
形状4	0.006042	0.009695	0.015737	6.4826

吸い込み流量は,エジェクタノズル内で作られる 低圧部の大きさが同じならば後方からの吸い込みが なくても前方からのみで同じ流量を吸い込めると仮 定したものとして今後用いていく.これは後方から の吸い込みが無いエジェクタロケットの為の評価を 行うためである.

3.2.2 解析結果比較

解析を行った4パターンの結果を比較する。

図 17 に混合効率η_e一吸い込み流量グラフを示す. 混合効率はコアロケットの運動量がエジェクタノズ ル出口で保持できている割合を示し,(2)式でも表 せる.

$\eta_e = \frac{流出流れ運動量}{初期運動量}$ (2)

図 17 に示す混合効率一吸い込みグラフでは, 混合 効率が高く吸い込み流量が多い形状が性能の高いエ ジェクタノズルである.以下に図 17 及び各形状での 圧力分布図等の解析結果より, エジェクタノズル形 状が性能へ及ぼす影響及び原因の考察をまとめる.

・スロート径が小さい形状2及び4では吸い込み流 量が増加している.これは、スロート径が小さいと 壁面がコアロケット流れに近く、より低い低圧を作 れ、また、低圧が作られているとコアロケット流れ が低圧側に引き寄せられ混合が促進し、更なる低圧 を作る助けをするからであると考えられる.

図 17 推力損失一吸い込み流量グラフ

・形状2では基準形状と比較して後方吸い込み流量 は変化していないが前方吸い込み流量は増加してお り(表2),これはスロート径が小さいことによって 作られたより低い低圧部がエジェクタノズル前方に あり,これに近い前方で吸い込み流量が増加したと 考えられる.

・形状3では、エジェクタノズル入口の壁面に大き い渦が発生しており、この渦の形成によって運動量 の減少が最も大きくなってしまったと考えられる.

・エジェクタ距離の短い形状3は基準状態と比較し てさほど吸い込み流量は変化していないが,前方吸 い込み流量は減少して後方吸い込み流量は増加した. これは,渦の発生によって前方からの吸い込みが抑 制され,作られた低圧の分だけ吸い込むために後方 より多く吸い込んだためと考えられる.また,この ことと基準形状及び形状3圧力分布図より,この2 パターンでは形成される低圧部は同程度であると考 えられる.

 ・スロート径小・エジェクタ距離短の形状4とエジ エクタ距離短の形状3と比較すると圧倒的に形状4 の性能が高い.エジェクタ距離短は性能を悪化させ る働きをするならば,形状4が最も高い性能とはな らないはずである.よって渦の形成をさせなければ エジェクタ距離短によっての性能向上はあり得ると 考えられ,これはコアロケットとエジェクタノズル でできる空間が狭まり、より低い低圧が作られて混 合が促進し、更に低い低圧部が形成されるからであ ると考えられる.

4.まとめ

・数値解析結果より過去に行った実験でエジェクタ ノズル出口から吸い込む逆流が発生していた可能性 を見つけた.また,これより実験手法の変更が必要 であることが分かった.

・エジェクタノズルスロート径が小さくなるとより 低い低圧部が形成され、吸い込み流量を増加させる。
・エジェクタ距離が短くなることはより低い低圧部 の形成を助け、吸い込み流量を増加させる。

・エジェクタノズル入り口での渦の形成は,吸い込 みを抑制して運動量の損失を大きくする

・今回の解析で用いたプログラムは層流のみを模擬 するものであり、実際の流れを模擬できていない

5.参考文献

 (1)河内 俊憲・富岡 定毅・苅田 丈士: 複合 エンジンの静止大気中における吸い込み性能
 第1報:数値計算による吸い込み性能予測:
 日本航空宇宙学会論 文集 Vol56:20
 08年