# 超小型衛星搭載用推進系の研究開発と宇宙実証 Development of Mono-Propellant Propulsion System and Planning of Space

Demonstration

錦沢秀太郎,大平健弘,佐原宏典(首都大学東京)

## 1. 研究背景と目的

近年、超小型衛星の開発が著しく活発化し、新 しい利用法も数多く検討されるようになってきた. 現状では、将来の超小型衛星におけるミッション としてコンステレーションの成立が強く求められ ているが、それには推進系の搭載が必要不可欠で ある. コンステレーションの成立には低電力で推 力密度の大きな化学推進が適している.しかし, 現在の化学推進系の多くはヒドラジンを推進剤と しており, 電力や価格, 取扱い性の面で超小型衛 星への搭載が極めて困難であるため、超小型衛星 に見合った推進系が存在していないという問題が ある. そこで我々は、安全性と低価格を優先させ た 60 wt%過酸化水素水を用いた超小型衛星用推 進系の開発を行ってきた.本研究では実際に衛星 への搭載が決定した3種の推進系について、ミッ ション要求を満たすための真空中推力、比推力を 目標とした一液式推進系のスラスタの製作と、実 際に噴射試験を行いその結果から性能を評価する.

## 2. ミッション

搭載が決定している衛星の 1 つに超小型衛星 Hodoyoshi-1 (図. 1) がある.本衛星は将来的に 複数機によるコンステレーションの成立を目指し ており,その前の段階として推進系の実証を行う ため,軌道投入後に位相を 60 度ずらすというミ ッションを行う.本衛星の緒元,想定軌道および, 推進系の緒元を表 1 に示す.



図.1 Hodoyoshi-1<sup>1)</sup> 図.2 ミッション軌道概念図

| 表 1 超小型衛星諸元 |                 |      |                             |  |
|-------------|-----------------|------|-----------------------------|--|
| 項目          | 記号              | 単位   | 数値                          |  |
| サイズ         |                 | [mm] | $500 \times 500 \times 500$ |  |
| 質量          | т               | [kg] | 60                          |  |
| 軌道高度        | Н               | [km] | 500                         |  |
| 推進系推力       | F               | [N]  | 0.5                         |  |
| 比推力         | I <sub>sp</sub> | [s]  | 80                          |  |

次に,軌道概念図を図.2, ミッションを検討す る上で必要となる定数とその値を表 2 に示す.本 ミッションでは円軌道であるA軌道上にいる衛星 を①点にて推進系により速度増分を与え,楕円軌 道のB軌道に投入する.その後,もともとのA軌 道の場合と位相差が 60 度になったところで,最初 の軌道変更点にて速度を減速させA軌道に再投入 を行う.

表 2 各定数と数値

| 項目       | 記号             | 単位                                 | 数值                |
|----------|----------------|------------------------------------|-------------------|
| 地球半径     | $R_{e}$        | [km]                               | 6378.14           |
| 地心重力定数   | $\mu_{_{e}}$   | [km <sup>3</sup> /s <sup>2</sup> ] | $3.99{	imes}10^5$ |
| 重力加速度    | g              | $[m/s^2]$                          | 9.81              |
| A軌道半径    | $r_p$          | [km]                               | 6878.14           |
| A軌道速度    | v <sub>c</sub> | [m/s]                              | 算出                |
| A軌道周期    | $T_A$          | [sec]                              | 算出                |
| B軌道長半径   | $a_B$          | [km]                               | 算出                |
| B軌道周期    | $T_B$          | [s]                                | 算出                |
| B近地点軌道速度 | $v_p$          | [m/s]                              | 算出                |

衛星が地球の周りを半径r<sub>p</sub>[km]の A 軌道で周回し ているとすると,重力と遠心力が釣り合っている ことから軌道速度v<sub>c</sub>は

$$\frac{\mu_e \cdot m}{r_p^2} = \frac{mv_c}{r_p} \tag{1}$$

より

$$v_C = \frac{\mu_e}{r_p} = 7612 \quad [m/s]$$
 (2)

となる. また, その時の軌道周期T<sub>A</sub>は 次のように 求まる.

$$T_A = 2\pi \sqrt{\frac{r_p^3}{\mu_e}} = 5676 \quad [s]$$
 (3)

ここで、A 軌道から B 軌道に入るために速度増分  $\Delta v = 2[m/s]$ を与える. すると、B 軌道の長半径 $a_B$ は次の式で求められる.

$$a_B = \frac{1}{\frac{2}{r_p} - \frac{(v_c + \Delta v)^2}{\mu_e}} = 6881 \quad \text{[km]} \quad (4)$$

周期T<sub>B</sub>は

$$T_B = 2\pi \sqrt{\frac{a_B^3}{\mu_e}} = 5681 \quad [s]$$
 (5)

となる.

よって, B 軌道の近地点軌道速度v<sub>p</sub>は次の式で求 まる.

$$v_p = \sqrt{\mu_e \left(\frac{2}{r_p} - \frac{1}{a_B}\right)} = 7614$$
 [s] (6)

ここで, B 軌道を一周した場合の A 軌道との位相 差0は

$$\theta = 2\pi \frac{T_B - T_A}{T_A} = 0.00496$$
 [rad] (7)

となるので, 位相差が 60°になるまでの所要時間 T は

$$T = \frac{60}{\theta \times \frac{180}{\pi}} \times T_B = 1200437$$
 [s] (8)

=13.9

[days]

となる.

また,他の衛星では搭載される目的として,運 用終了後のデオービットでの使用が計画されてい る.そこで高度 500 km からのデオービットミッ ションを提案し,推進系を使用した場合と使用し なかった場合における必要日数を求めた.ここで は 50 kg 級超小型衛星を想定して計算を行った. 推進系の噴射条件として,推進剤には本研究で使 用する 60wt%過酸化水素水を 1500 ml (質量換算 で 1.86 kg) 搭載し,その全量を真近点離角 170 ~190 deg の範囲で噴射を行うこととし,近地点 高度を引き下げることとした.図3の結果より推 進系を使用することで高度を約 100 km 下げるこ とができた. さらに軌道高度 500 km から大気圏 に超小型衛星を突入させるのに必要な日数を約 63 日間短縮でき,推進系の利用によりデオービッ トに要する期間の劇的な短縮化が可能である.





# 3. 推進剤・過酸化水素(H<sub>2</sub>O<sub>2</sub>)

過酸化水素は古くから一液式推進系の推進剤や 二液式推進系の酸化剤としての研究開発が行われ ていた.分解反応によって発生する物質が酸素と 水のみであり,毒性も低いため,近年グリーンプ ロペラントの一つとして注目されている<sup>6</sup>.推進 剤としては殆どが 90 wt%以上の高濃度が使用さ れているが,本研究では 60 wt%の過酸化水素を 使用する.これは過酸化水素水が濃度 65 wt%以下 であるならば分解熱よりも蒸発潜熱の方が大きく

(図.4),安定剤も多く添加されていることから 加速的な自己分解は抑えられるので貯蔵性に優れ ているためである.また,濃度 65 wt%以下の過酸 化水素水は民生品として入手も非常に容易で低価 格である.



図.4 過酸化水素の濃度による分解熱と蒸発潜熱5)

# 4. 供給系

従来の人工衛星用推進系の供給系では調圧式を 採用しているものが多い.調圧式とは,ガスタン ク(GTNK)から加圧用ガスを供給し,酸化剤と 燃料を下流に押し流す方式のことである.しかし, 要素数が増えて体積や重量が大きくなることから, 本推進系では推進剤タンクの空隙に液化ガス

(HFC134a)を充填し,その蒸気圧を用いるブロ ーダウン方式を採用している(図.5).こうする ことによって押しガス用タンクが不要になる.ま た,流量の制御は電磁弁に PWM 制御信号を送る ことによって, Duty 比を調節することが出来る.



図.4 本推進系供給系

**PWM**(Pulse Width Modulation)制御とは,ある 一定の周期に対して,パルス幅の Duty比(パルス 幅と High の時間の比)を変えてアクチュエータを 制御することである. (図.6)



PWM 制御を行うことにより, 噴射時の Duty 比 を設定して推力を可変とすることが可能となるた め, 必要に応じて Duty 比を変化させるなど, 汎用 的な利用も可能となっている.本推進系で使用す る電磁弁を図.7に示す.



図.7 Lee 社製電磁弁

#### 5. 触媒層,ノズルの設計

スラスタの目標値である推力 500 mN,比推力 80 s を実現させるため,触媒層の設計を行った. 本推進系では 60 wt%過酸化水素を白金のメタル ハニカム触媒によって分解させ,そのときの分解 生成物が加熱されることによって推力を得る.過 酸化水素の分解は以下の熱化学方程式となる.

$$2H_2O_2 = 2H_2O + O_2 + 192280[J] \quad (9)$$

触媒層を設計する際には,質量流量を算出して, 必要とされる触媒層体積を求めた. 過酸化水素が 分解されて生成される酸素と水,また分解されず に残った過酸化水素の存在質量割合を算出し,混 合流のボイド率 $\alpha$ を用いて,その時の音速値  $C_{s}$ [m/s]を求めることが出来る.ここで,混合流密 度を $\rho_{s}$ [g/m<sup>3</sup>],気相音速を $C_{G}$ [m/s],液相音速を  $C_{L}$ [m/s],気相比熱比を $\kappa$ ,水の沸点をT[K],液相 混合分子量をM[g/mol],液相の体積弾性率をkと した.

$$\alpha = \frac{V_{gas}}{V_{gas} + V_{liq}} \tag{10}$$

$$C_{S} = \sqrt{\frac{1}{\rho_{S} \left[\frac{1-\alpha}{\rho_{liq} C_{L}^{2}} + \frac{\alpha}{\rho_{gas} C_{G}^{2}}\right]}}$$
(11)

$$\rho_S = (1 - \alpha)\rho_{liq} + \alpha\rho_{gas} \tag{12}$$

$$C_G = \sqrt{\frac{\kappa R_{gas}T}{M}} \tag{13}$$

$$C_L = \sqrt{\frac{k}{\rho_{liq}}} \tag{14}$$

上式より算出される音速から得られる比推力, 推力を算出し,その時の質量流量から触媒層体積 が求まる.使用する触媒の外形が決まっているた め,それを満たす触媒層内径から,触媒層長さが 決まる.

また,触媒層の体積 $V_c$ [mm<sup>3</sup>]と特性長さ $L^*$ [mm] からノズルのスロート面積 $A_t$ [mm<sup>2</sup>] とスロート 直径 $d_t$ が決まるため,開口比 $\varepsilon$ を 100 としてノズ ル出口面積 $A_e$ [mm<sup>2</sup>] と出口直径 $d_e$ [mm]を求めた.

$$A_t = \frac{V_c}{L^*} \tag{15}$$

$$A_e = \varepsilon A_t \tag{16}$$

ノズル長さ $L_n$ は半頂角を 15[deg]とすると,

$$L_n = \frac{\frac{d_e}{2} - \frac{d_t}{2}}{\tan(15^\circ)}$$
(17)

となる.以上の計算に基づいて製作したスラスタ を図.8に示す.



図.8 スラスタ

#### 6. 自然分解率測定放置試験

本推進系で使用する推進剤である 60 wt%過酸 化水素水はタンク内のブラダに充填されるため, 推進剤とブラダは常に接触しており,両者の相性 に関わる自然分解により,ガスが発生することで 徐々にタンク内圧は上昇していく.そこで本試験 では 60 wt%過酸化水素水の自然分解率測定のた めの放置試験を行った.その結果より,製作した 推進剤タンクが内圧上昇した場合においても耐え 得ることを検証した.



表 3 に示した結果より内圧上昇率は 1.3 kPa/ 日~3.6kPa/日であった.内圧上昇率は,内圧が高 くなるにつれ鈍化する傾向も見られている.しか し,ここでは線形に外挿することで 5.5 年後のタ ンク内圧は,およそ 4.6 MPa と求まる.よって, 内圧上昇率を下げ,鈍化傾向を得た上で,内圧に 耐え得る推進剤タンクを製作する.または,ある 一定圧を超えた場合に推進剤を排出する機構が必 要である.

表 3 タンク内圧上昇率

| 友山            | 期 | 1分あたりの       | 1日あたりの    |
|---------------|---|--------------|-----------|
| 余件            | 間 | 内圧上昇率        | 内圧上昇率     |
| タンク#1         | 1 | 0.0025 kPa/分 | 3.6 kPa/日 |
| (室温,大気圧)      | 2 | 0.0015 kPa/分 | 2.2 kPa/日 |
| タンク#2         | 1 | 0.0020 kPa/分 | 2.9 kPa/日 |
| (室温, 0.2MPaG) | 2 | 0.0009 kPa/分 | 1.3 kPa/日 |

#### 7. 噴射試験

製作したスラスタの推進性能を,目標とした値 と比較するために噴射試験を行った.供給系には 昨年度製作した二液式用供給系<sup>2)</sup>の一系統を使用 した.また,押しガスはHFC134aの蒸気圧を模 擬するよう設定した窒素ガスを用いた.試験条件 として,過酸化水素水の充填量を50ml,押しガ ス圧力を5atm,PWM 制御の周期を200ms,触 媒には白金のメタルハニカムを使用する.また試 験時に測定するものは、タンク内圧力、触媒層圧 力,触媒層温度,流量である.また Duty 比は20%, 40%,60%,80%,100%の5つの場合で試 験を行った.各 Duty 比での平均質量流量を図.9 に示す.



図.10 各 Duty 比での流量測定結果

噴射試験の結果を用いて、本推進系の性能評価 を行う.測定値と設計値から、推進性能を算出す る.計算過程で必要な数値とその記号を表 4 に示 す.比熱比k は過酸化水素が三原子分子以上なの で平均をとり 1.30 とした.雰囲気圧は、真空中で 噴射することを仮定して 0 atm とした.

| 記号              | 単位                                                                                                                                                                        | 数值                                                                                                                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| k               | [-]                                                                                                                                                                       | 1.30                                                                                                                                                                                                                               |
| $T_{c}$         | [K]                                                                                                                                                                       | 測定値                                                                                                                                                                                                                                |
| $P_{C}$         | [Pa]                                                                                                                                                                      | 測定値                                                                                                                                                                                                                                |
| $P_a$           | [Pa]                                                                                                                                                                      | 0                                                                                                                                                                                                                                  |
| $P_{e}$         | [Pa]                                                                                                                                                                      | 算出値                                                                                                                                                                                                                                |
| ε               | [-]                                                                                                                                                                       | 100                                                                                                                                                                                                                                |
| $C_{F}$         | [-]                                                                                                                                                                       | 算出値                                                                                                                                                                                                                                |
| $\eta_{c^*}$    | [-]                                                                                                                                                                       | 0.95                                                                                                                                                                                                                               |
| $c^{*}$         | [m/s]                                                                                                                                                                     | 算出値                                                                                                                                                                                                                                |
| $\eta_{C_f}$    | [-]                                                                                                                                                                       | 0.84                                                                                                                                                                                                                               |
| $A_t$           | $[mm^2]$                                                                                                                                                                  | 0.79                                                                                                                                                                                                                               |
| ṁ               | [kg/s]                                                                                                                                                                    | 測定値                                                                                                                                                                                                                                |
| F               | [N]                                                                                                                                                                       | 算出値                                                                                                                                                                                                                                |
| I <sub>sp</sub> | [s]                                                                                                                                                                       | 算出値                                                                                                                                                                                                                                |
|                 | 記号<br>k<br>$T_c$<br>$P_C$<br>$P_a$<br>$P_e$<br>$\mathcal{E}$<br>$\mathcal{C}_F$<br>$\eta_{c^*}$<br>$\mathcal{C}_f$<br>$\eta_{c_f}$<br>$A_t$<br>$\dot{m}$<br>F<br>$I_{sp}$ | 記号 単位<br>k [-]<br>$T_c$ [K]<br>$P_C$ [Pa]<br>$P_a$ [Pa]<br>$P_e$ [Pa]<br>$\mathcal{E}$ [-]<br>$\mathcal{C}_F$ [-]<br>$\eta_{c^*}$ [-]<br>$\eta_{c_f}$ [-]<br>$A_t$ [mm <sup>2</sup> ]<br>$\dot{m}$ [kg/s]<br>F [N]<br>$I_{sp}$ [s] |

表 4 推進性能計算緒元

以下,推進性能を求める.まず,ノズル開口比 と燃焼室圧力からノズル出口圧力を求める.ノズ ル開口比 $\epsilon$ と触媒層圧力 $P_c$ , ノズル出口圧力 $P_e$ は以下の式で表わされる.

$$\frac{1}{\varepsilon} = \left(\frac{k+1}{2}\right)^{1/(k-1)} \left(\frac{P_e}{P_c}\right)^{1/k} \sqrt{\frac{k+1}{k-1} \left[1 - \left(\frac{P_e}{P_c}\right)^{(k-1)/k}\right]}$$
(18)

(18)式をノズル出口圧力Peについて解くと、

$$P_e^2 - P_c^{1-k} P_e^{k+1} - \frac{\left(\frac{1}{\varepsilon}\right)^{2k} \left(\frac{2}{k+1}\right)^{2k/(k-1)}}{\left(\frac{k+1}{k-1}\right)^k} P_c^2 = 0 \qquad (19)$$

となり、この式をニュートン法より収束させてノ ズル出口圧力 $P_e$ を求めた.また、 $P_e$ の誤差は、噴 射時間における値の平均をとり、その標準偏差に より求める.この出口圧 $P_e$ と触媒層圧 $P_c$ を用いて 推力係数 $C_F$ を求める.

$$C_F = \sqrt{\frac{2k^2}{k-1} \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}} \left[1 - \left(\frac{P_e}{P_c}\right)^{\frac{k-1}{k}}\right]} + \frac{P_e - P_a}{P_c} \varepsilon \quad (20)$$

この推力係数 $C_F$ の誤差については、測定値による 誤差が伝播するので以下の式により求められる.  $(\partial C_F / \partial P_C)_0$ とは、測定値の平均値における微分係 数を表す.

$$\sigma_{C_F}^2 = \left(\frac{\partial C_F}{\partial P_c}\right)_0^2 \sigma_{P_c}^2 \tag{21}$$

触媒層圧 $P_c$ ,スロート面積 $A_t$ ,質量流量m,  $c^*$ 効率 $\eta_{c^*}$ を用いて特性排気速度 $c^*$ を求める.  $c^*$ 効率 $\eta_{c^*}$ の一般的な値は 92[%]~99.5[%]とあり、昨年度の試験結果から 95[%]と定めた.

$$c^* = \frac{P_c A_t}{\dot{m}} \eta_{c^*} \tag{22}$$

特性排気速度*c*\*の誤差は,触媒層圧*P*<sub>c</sub>と質量流量 *m*の2つ測定値があるので,以下の式で求める.

$$\sigma_{c^*}^2 = \left(\frac{\partial c^*}{\partial P_c}\right)_0^2 \sigma_{P_c}^2 + \left(\frac{\partial c^*}{\partial \dot{m}}\right)_0^2 \sigma_{\dot{m}}^2 \qquad (23)$$

質量流量*m*,特性排気速度*c*\*,推力係数*C<sub>F</sub>*,ノズ ル効率η*c<sub>F</sub>*を用いて推力*F*を求める.ノズル効率 は、半頂角 15[deg]による効率が 98.29[%]であり、 出口圧と大気圧との差圧による損失が最大 15[%] あることから、その2つの積で 84[%]とした.

$$F = \dot{m}c^* C_F \eta_{C_f} \tag{24}$$

推力 F についての誤差は、測定値が質量流量のみ なので以下の式で求める.

$$\sigma_F^2 = \left(\frac{\partial F}{\partial \dot{m}}\right)_0^2 \sigma_{\dot{m}}^2 \tag{25}$$

推力 F, 質量流量m, 重力加速度を用いて, 比推 力*I<sub>sp</sub>*は

$$I_{sp} = \frac{F}{\dot{m}g} \tag{26}$$

と得られる.比推力*I<sub>sp</sub>の*誤差は,測定値が質量流 量のみなので以下の式で求められる.

$$\sigma_{I_{SP}}^2 = \left(\frac{\partial I_{SP}}{\partial \dot{m}}\right)_0^2 \sigma_{\dot{m}}^2 \tag{27}$$

以上より, 各 Duty 比での求めた性能を表 5 に示 す.

表 5 噴射試験における推進性能算出結果

| Duty比[%] | 推力 F[mN]         | 比推力I <sub>sp</sub> [s] |
|----------|------------------|------------------------|
| 20       | $346 {\pm} 0.01$ | $82.3 \pm 3.4$         |
| 40       | $410 {\pm} 0.02$ | $88.8 \pm 3.3$         |
| 60       | $410 \pm 0.02$   | $92.8 \pm 3.6$         |
| 80       | $467 {\pm} 0.02$ | $89.3 \pm 3.0$         |
| 100      | $491 \pm 0.02$   | $88.2 \pm 2.8$         |

## 8. 考察

図. 10の計測結果より平均流量は 60 %の場合 を除いて, Duty 比が大きくなるにつれて上昇し ていることがわかる.しかし, Duty 比 60 %のと きに関しては 40 %の時と比較して減少している. このことに関しては, 噴射中の様子から明らかに 他の場合と異なり,一定の周期ごとに噴射速度の 増減が見られた.また, Duty 比 60 %での噴射は, 本試験の最後に実施したため, 触媒の分解効率の 劣化や試験装置の動作ミスなどの要因も考えられ る. 今後は, 同じ Duty 比での噴射試験を繰り返 し行い, 流量の変化を調べる必要がある.誤差が

大きいことも、噴射試験回数を増やすことによっ て減少していくものと考えられる. また, Duty 比100%での平均流量は、触媒層を設計した際に 用いた質量流量の理想値におおよそ近い値を得る ことが出来た.このことから,流量に関してはほ ぼ設計値通りの結果を得られたと言える. また推 進性能の算出結果を示した表 5より,比推力に関 しては、もともとの目標であった 80 s をどの Duty 比でも達成することが出来た. また推力に 関しても, Duty 比が増加するにつれて推力も上 昇していく結果が得られた. 目標の 500 mN には 届いていないものの, Duty 比 100 %の時にほぼ 目標に近い結果が得られたと言える. 設計時は Duty 比 100 %の場合を想定していたので、その 時に流量、触媒層圧力、触媒層温度の三つとも他 の Duty 比の場合と比較して最も高い値を示し, 設計値通りに製作を行えたことが確認できた.

#### 9. 結論

本研究では推力 500 mN, 比推力 80 s を目標と した一液式スラスタの設計および製作を行い, 噴 射試験によりほぼ設計値通りの性能を得られるこ とを確認した. 今後は, 宇宙実証を予定しており, 更なる推進系の研究に有効利用できるデータが得 られることを期待している.

#### 参考文献

- 超小型宇宙センター
   <u>http://park.itc.u-tokyo.ac.jp/nsat/project\_e.html</u>[cited on
   January 3, 2012]
- 鈴木信義,低毒性推進剤による超小型衛星搭載用一液二液共 用推進機の研究開発,平成21年度 卒業論文
- 3) 木村逸郎, 1993年, ロケット工学, 養賢堂
- George P. Sutton, Rocket Propulsion Elements (7<sup>Th</sup>), WILEY-INTERSCIENCE
- 5) US Peroxide <u>http://h2o2.com/</u> [cited on February 19, 2012]
- 6) Jungkun Jin,Sejin Kwon, THERMOELECTRIC POWER GENERATION USING H2O2 DECOMPOSITION FOR POR 表 POWER SOURCE, Proceedings of PowerMEMS 2008+ microEMS 2008, Sendai, Japan, November 9-12, (2008)

# 謝辞

本研究は、総合科学技術会議により制度設計さ れた最先端研究開発支援プログラムにより、日本 学術振興会を通して助成されたものである。