各段に異なる燃料を用いる 3段式ハイブリッドロケットの設計探査

•金森文男,北川洋介(首都大学東京大学院),金崎雅博(首都大学東京),
 中宮賢樹(京都大学),北川幸樹,嶋田徹(ISAS/JAXA)

Key Words: Hybrid Rocket, Multidisciplinary Design Optimization, Genetic Algorithm

1. はじめに

現在、宇宙輸送に用いられている主要なロケット は液体ロケットと固体ロケットであるが、観光業や 大学等の研究室による宇宙空間の利用に関心が集 まっており、より安価で安全に運用できるロケット の需要が高まると考えられ、そのようなロケットと してハイブリッドロケット注目されている。ハイブ リッドロケットは固体ロケットと比べると、燃料と 酸化剤が混合されていないので爆発の危険性が無 いため安全であり、同時に管理に必要なコストを削 減することができる。また、燃料と酸化剤の組み合 わせを工夫することで、塩化水素や微小な金属酸化 物のような滝汚染物質を排出しないようにするこ とができる。スロットリングによる消炎・再着火を 行うことができるので安全性も高い。一方で液体ロ ケットと比べると、燃料と酸化剤が急速に混合して しまうような危険性はなく、燃料の供給系が必要な いことからコストの削減が期待できる。アメリカの Virgin Galactic 社ではハイブリッドロケットを用い た Space Ship Two による宇宙旅行が計画されており、 世界的にも実用化への期待が高まっている。

一方でハイブリッドロケットには燃料後退速度 が遅いという欠点があるため、固体ロケットと比べ ると大きな推力を得ることが難しく、これがハイブ リッドロケットによる宇宙輸送ミッションの実現 を困難にしている。この欠点を克服するために、燃 料後退速度の大きなパラフィン燃料を用いる研究 や、酸化剤流旋回型や衝突噴流型などの燃焼方式の 研究が行われ、これらの研究からハイブリッドロケ ットの概念検討に利用できる実験式^{[1][2]}が提案され ている。また、ハイブリッドロケットでは燃料流量 を独立に制御することができず、燃料流量は酸化剤 流量や燃料グレインの形状などにより決定され、こ れらは構造や空力、飛行等にも影響を及ぼすために 設計が難しい。そのためハイブリッドロケットの設 計には多分野融合最適設計法が有効であり、経験式 や実験式を用いた性能評価基づく最適設計探査^[3]が 行われた。

本研究ではハイブリッドロケットを宇宙輸送ミ ッションに積極的に活用するために、各燃焼方式と 燃料に対して最適な形状と燃焼過程を発見するこ とを目的として、超小型衛星を 250km×800km の楕 円軌道に投入するための3段式ハイブリッドロケッ トに対して、各段に異なる燃料を用いて最適化問題 を多目的遺伝的アルゴリズム (Multi-Objective Genetic Algorithm: MOGA)を用いて解き、大域的な 非劣解集合を修得し、データマイニングのよる設計 知識の獲得を行い、それぞれの燃料組み合わせのロ ケットを比較した。

2. 性能評価

本研究では酸化剤を圧送式サイクルで供給され る図 1 に示すようなハイブリッドロケットを考え る。ロケットは加圧ガスタンク、酸化剤タンク、燃 焼室、ノズル、外壁から構成され、ロケット各段に 対する 8 個の設計変数と、第 2 段燃焼終了後のコー スティング時間の計 25 個の設計変数で設計した。 表 1 には今回計算で使用した燃料に対して、文献 [1],[2]に示される燃料諸元を載せる。また、図 2 に 性能評価のフローチャートを示す。

2.1 グレイン形状

燃料グレインはシングルポート型とする。燃焼開始時刻をt = 0とすると、燃焼開始時のグレインポート半径 r_p は、設計変数である酸化剤質量流量 \dot{m}_o と燃焼開始時の酸化剤質量流束 G_o から次式で計算する。

$$r_p(0) = \sqrt{\frac{\dot{m}_o}{\pi G_o(0)}} \tag{1}$$

また燃焼開始時の燃料質量流量 $\dot{m}_f(0)$ は設計変数 である混合比O/F(0)を用いて次式から計算する。

$$\dot{m}_f(0) = \frac{\dot{m}_o}{O/F(0)} \tag{2}$$

時刻tの燃料後退速度rは一般的なハイブリッド ロケットの燃料後退速度式である(3)式から計算す る。このaとnは燃料と酸化剤の組み合わせによっ て決まる定数である。本研究ではaを設計変数とし て実際よりも1倍から10倍程度大きく設定し、酸 化剤流旋回型ハイブリッドロケットの高い燃料後 退速度を模擬している。表1に計算に使用した燃料 の諸元を示す。

$$\dot{r}(t) = aG_o(t)^n \tag{3}$$

この燃料後退速度から時間 Δt 後のグレインポート 半径は(4)式から計算でき、グレインポート半径の変 化に伴う酸化剤質量流束の変化は(5)式から計算す る。

$$r_p(t + \Delta t) = r_p(t) + \dot{r}(t) \tag{4}$$

$$G_o(t) = \frac{m_o}{\pi \left(r_p(t)\right)^2} \tag{5}$$

燃料グレイン長さ L_f は、燃料密度 ρ_f から(6)式のように計算する。

$$L_f = \frac{\dot{m}_f(0)}{2\pi\rho_f \cdot r_p(0) \cdot \dot{r}(0)} \tag{6}$$

燃料グレインは軸方向一定に消費されると仮定し、 燃焼終了時に燃え尽きるとして、設計変数である燃 焼時間 t_b を使い、(7)式からグレイン外半径 r_f を計 算する。

$$r_f = r_p(0) + \int_0^{t_b} \dot{r}(t) dt \tag{7}$$

2.2 エンジンの性能計算

ある時刻 *t*の燃料質量流量は(8)式で計算し、この とき混合比は(9)式から計算できる。

$$\dot{m}_f(t) = 2\pi \rho_f \cdot L_f \cdot \dot{r}(t) \tag{8}$$

$$O/F(t) = \frac{\dot{m}_o}{\dot{m}_f(t)} \tag{9}$$

燃焼開始時の燃焼室圧は設計変数として与える。時 刻tの燃焼室圧は、特性排気速度 C^* と(10)式から計 算される推進剤質量流量 \dot{m}_p と(11)式から計算され るノズルスロート断面積 A_t を用いて(12)式から計 算される。このとき特性排気速度は一つ前の時間の ものを使う。

$$\dot{m}_p(t) = \dot{m}_o + \dot{m}_f(t) \tag{10}$$

$$A_{t} = \frac{\dot{m}_{p}(0) \cdot C^{*}(0)}{Pc(0)}$$
(11)

$$P_{c}(t) = \frac{\dot{m}_{p}(t) \cdot C^{*}(t - \Delta t)}{A_{t}}$$
(12)

一方で時刻 t の推力 T は、ノズル出口速度 u_e 、ノ ズル出口圧力 P_e とノズル出口断面積 A_e から(13)式 で計算する。ここで C^* 効率と C_F 効率はそれぞれ、 $\eta_{C^*} = 0.95, \eta_{C_F} = 0.98$ であるとして計算した。 $T(t) = \eta_{C^*}\eta_{C_F} \{ m_p(t) \cdot u_e(t) + (P_e(t) - P_a(t))A_e \}$ (13)

時刻 t の特性排気速度は、設計変数であるノズル開 ロ比 ε と、混合比、燃焼室圧から化学平衡計算プロ グラム NASA Chemical Equilibrium with Applications (NASA-CEA)^[4]を用いて計算した。

2.3 構造と質量

ロケットの燃焼によって消費される燃料と酸化 剤の質量はそれぞれ(14),(15)式で計算される。本研 究では酸化剤の質量流量は一定であるとした。

$$M_o = \dot{m}_o t_b \tag{14}$$

$$M_f = \int_0^{t_b} \dot{m}_f(t) dt \tag{15}$$

加圧ガスにはヘリウムを使用するとし、(16),(17) 式の燃焼前と燃焼後の状態方程式から加圧ガスタ ンク容積と加圧ガスの質量を求める。燃焼終了時の 加圧ガスタンクの圧力は酸化剤タンクの圧力と等 しくなるとして計算した。

$$P_{pt}V_{pt} = M_{\rm He}RT_i \tag{16}$$

$$P_{ot} \left(V_{ot} + V_{pt} \right) = M_{\text{He}} R T_f$$
(17)

このとき、等エントロピー変化を仮定し、燃焼開始 時と燃焼終了時の加圧ガス温度を(18)の関係式か ら計算する。比熱比 Y = 1.66 とし、初期温度 $T_i = 273$ [K]として計算する。

$$T_{f} = T_{i} \left(\frac{P_{ot}}{P_{pt}}\right)^{\frac{\gamma-1}{\gamma}}$$
(18)

燃焼室と加圧ガスタンクの質量は、M-V ロケットに使われている CFRP 製のM-25 モータケースの性能指標^[5]である(19)式から、酸化剤タンクは極低温環境であることを考慮してアルミライナ付き CFRP 製タンクの性能指標である(20)式にそれぞれの圧力と体積を代入して計算する。ここで*M, P, V*はそれぞれ質量、圧力、体積を表している。

$$M = \frac{PV}{17.3 \times 10^4}$$
(19)

$$M = \frac{PV}{4.4 \times 10^4} \tag{20}$$

ノズル質量は経験式⁶⁰である(21)式から、酸化剤と 燃料と質量を足し合わせた推進剤質量 *Mpro*と設計 変数であるノズル開口比 *E* から計算する。ノズルは 半頂角 15 度の単純円錐ノズルとした。

$$M_{noz} = 125 \left(\frac{M_{pro}}{5400}\right)^{\frac{2}{3}} \left(\frac{\varepsilon}{10}\right)^{\frac{1}{4}}$$
(22)

ロケット外壁構造は、ロケットとの自重 Wと射点 設置時の打上げ角 θ によって発生する曲げモーメ ント M から、外壁の構造を決定しその質量計算す る。

$$W = M_{tot}g \tag{23}$$

$$M = WL\cos\theta \tag{24}$$

ここでロケットを中空円筒はり構造として、等価軸 圧縮力 $P_{eq,c}$ を次式から計算する。ここでAはロケット外壁構造の断面積である。

$$P_{eq,c} = \frac{W}{A} + \frac{4M}{D} \tag{25}$$

これを単位周長当たりの軸圧縮力 N_{xC} は次式で求められる。ここでrはロケット外壁構造の半径である。

$$N_{xC} = \frac{P_{eq,c}}{2\pi r} \tag{26}$$

一方で、この中空円筒はりの全体座屈の理論強度は 板厚 t、ヤング率 E、ポアソン比 vを使って次式 で表される。

$$F_{ccr} = \frac{1}{\sqrt{3(1-\nu^2)}} E\left(\frac{t}{r}\right) \tag{27}$$

この理論値に対し、実験値に近づけるための補正係 数を掛けた値が安全率を掛けた単位周長当たりの 軸圧縮力よりも大きくなるように構造を決定する。

$$k_f F_{ccr} t \ge sf \cdot N_{xC} \tag{28}$$

本研究では $k_f \ge 0.65$ とした。また、燃焼室、酸化 剤タンク、加圧ガスタンクについても同様に計算し、 構造を決定した。

2.4 運動方程式

ロケットを質点と仮定し、以下の運動方程式から 軌道解析を行った。

$$\frac{dr}{dt} = V \sin \gamma \tag{29}$$

$$\frac{d\theta}{dt} = \frac{V\cos\gamma\cos\psi}{r\cos\phi} \tag{30}$$

$$\frac{d\phi}{dt} = \frac{V\cos\gamma\sin\psi}{r} \tag{31}$$

$$\frac{dV}{dt} = \frac{T - D}{M_{tot}} - g\sin\gamma \tag{32}$$

$$\frac{d\gamma}{dt} = \left(\frac{V}{r} - \frac{g}{V}\right)\sin\gamma \tag{33}$$

$$\frac{d\psi}{dt} = -\frac{\cos\gamma\tan\phi\cos\psi}{r} \tag{34}$$

ここで、rは地心距離、 θ は経度、 ϕ は緯度、Vは 速度、 γ は経路角、 ψ は方位角、Tは推力、Dは抗 力、gは重力加速度である。

2.5 空気抵抗

ロケットの空気抵抗は、S520 ロケットの飛翔デ ータ⁽⁷⁾の圧力抵抗と摩擦抵抗を参考にして計算す る。ロケット表面に乱流境界層が形成されていると して、摩擦抵抗をレイノルズ数 Re とマッハ数 M を 使って、(31)式から計算する。

$$C_{Df} = \frac{0.455}{\left(\log_{10} R_e\right)^{2.58} \left(1 + 0.144M^2\right)^{0.65}} \quad (35)$$

圧力抵抗係数 C_{Dp} は(32)式のように、S-520の抵抗 係数 $C_{D,S-520}$ から摩擦抵抗係数を引くことで計算 した。

$$C_{Dp} = C_{D,S-520} - C_{Df,S-520} \frac{S_{wet}}{S_{ref}}$$
(36)

このとき、抵抗係数は機体断面積を基準にしている ので、摩擦抵抗係数 $C_{Df,S-520}$ をロケット断面積基 準に変換して計算して計算に用いる。ここで S_{wet} , S_{ref} はそれぞれ S-520 の機体表面積と機体断面積 である。(31), (32)式から空気抵抗を次式で計算する。

表1. 計算に使用した燃料諸元

名称	FT0070	Polypropylene(PP)
種類	Paraffin	Plastics
化学式	$C_{35}H_{72}$	-[C ₃ H ₆]-
密度[kg/m ³]	926.6	910.0
係数 a	0.1561 (無旋回)	0.0826(旋回流)
指数 n	0.3905(無旋回)	0.55(旋回流)

3. 設計探査手法

3.1 多目的遺伝的アルゴリズム

本研究では設計探査に実数型の多目的遺伝的ア ルゴリズムを用いた。多目的遺伝的アルゴリズム (MOGA)は生物の環境適応進化にヒントを得て開発 されたアルゴリズムで、多目的問題に対して最適解 を与える大域的な解の探査が可能な最適化手法で あり、そのフローチャートを図3に示す。

3.1.1 選択

次の世代を構成する個体を生成するために親と なる個体を選択する。MOGA では図 4 に示すよう なパレートランキング法によって選択が行われる。 この方法では、全個体に対して個体 x_i を支配してい る個体数が n_i の時、その個体のランクを $1+n_i$ とし、 このランクに基づいて各世代で保存される個体を 決定する。

3.1.2 交叉

選択された集団の中から2つを取りだし、その個体間で遺伝子情報の一部を交換し、次世代の個体を 生成する。本研究では実数型遺伝子表現に対応した BLX-αを用いた。その概念を図5に示す。この方法 は親個体の各変数間距離*d_i*を両側に*αd_i*だけ拡張 した区間から一様乱数にしたがってランダムに子 個体を生成する。

3.1.3 突然変異

遺伝子を強制的に操作することにより、交叉だけ では生成されないような個体を生成し、集団の多様 性を保つ。設計変数ごとに一様乱数によって実数値 を発生させている。図6にその概念を示す。

3.2 平行座標表示

平行座標表示(Parallel Coordinate Plot: PCP)は多変 数データを可視化するグラフ手法で、横軸に設計変 数や目的関数、縦軸に正規化したそれぞれの値をと って同一個体を線で結ぶ。全ての設計変数を表示で きることから、全体の傾向を観察することができる。

図 5. BLX-a の概念

	x ₁	x ₂	X ₃	x ₄	x ₅
親	2.3	7.3	1.6	5.2	8.9
	† †				
				•	
子	2.3	1.2	1.6	9.4	8.9

4. 問題設定

本研究では、超小型衛星を所定の軌道に投入する ことを目標とした3段式ハイブリッドロケットを 設計する。目的関数はペイロード質量比の最大化、 全備質量の最小化とした。計算を行う燃料の組み合 わせとその呼称を表2に示す。FT0070は燃料後退 速度が高く大推力を得られるために初段に、PPは 燃料後退速度が小さいため長秒時の燃焼すること で空気抵抗の小さい領域で効率的に速度増加を得 られると考えられる。投入する軌道の制約条件は、 第3段燃焼終了後の高度が250[km]以上300[km]以 下、角運動量が52413.5[km²/s]以上、その時の経路 角が±0.5[deg]以内である。形状の制限として、ロケ ット縦横比が20以下、ノズル出口径がロケット直径以下、グレインポート断面積がノズルスロート断面積の2倍以上である事とした。

呼称	1段目	2段目	3段目
type0	FT0070	FT0070	FT0070
type1	FT0070	FT0070	PP
type2	FT0070	PP	PP
type3	FT0070	PP	FT0070

5. 結果

5.1 解空間の探索結果

探索により得られた type0 から type3 の燃料組み 合わせの非劣解集合についての目的関数解空間を 図7に示す。図7を見ると、これまでの研究で計算 が行われてきた type0 の燃料組み合わせと比べて、 全備質量が 3ton 以上の領域で、同じ全備質量の時 のペイロード質量比が高くなり、打ち上げ性能が向 上した。ペイロード質量比の最大値は type1,2 の 0.60%であり、type1 のほうがより全備質量が小さい 解となった。このときの全備質量は 14.0[ton]で、ペ イロード質量は 84[kg]である。表3 にそれぞれの燃 料組み合わせで最大ペイロード質量比を示したロ ケットについて、ペイロード質量比、全備質量、ペ イロード質量を示す。

図8から図11に各燃料組み合わせのペイロード 質量比上位5個体の平行座標表示を示す。PCPを見 ると同じ段で同じ燃料を用いるロケットでも上段 の燃料組み合わせの影響を受けて、異なる傾向を示 していることが分かる。第1段ではtype2,3で燃料 後退速度係数が大きくなっており、第2段にPPを 用いる燃料組み合わせでは第1段で高い燃料後退 速度が必要となることが分かった。type2では第2 段の燃料後退速度係数や酸化剤質量流量も他より 高くなっているため、大きな推力を必要としている ことが分かる。type2,3の第3段ではtype0,1よりも 上段での燃焼時間を長くする必要があることがわ かった。

5.2 燃料組み合わせによる設計の違い

すべての燃料組み合わせで解を得ることができ た全備質量10ton付近について設計を比較するため に、図12にそれぞれの燃料組み合わせロケットの 概略図を示す。これらを type0 から順に Des0, Des1, Des2, Des3 と呼称する。また表4に Des0 から Des3 までのロケットについて、ペイロード質量比、全備 質量、ペイロード質量を示す。また、表5に各段の 到達高度と得られた速度増加を示す。

Des0 と Des1 を比較すると、燃料の異なる第3段 の設計が最も異なり、Des1 では燃料グレインが細 長形状になっている。これは Des0 では燃料後退速 度が高いために、最適な O/F 範囲内に抑えるためグ レインの表面積を小さくしなければならないため であり、逆に Des1 は燃料後退速度が小さいため、 表面積を大きくしても適切な O/F の範囲となり、大 きな推力を出せるために速度増加が Des0 と比べて 大きくなった。一方で燃料種類が同じ第1段の設計 でも、Des1ではグレインポート径が拡大しており、 これは上段での燃料質量が増えたために、大きな推 力を出すためグレイン内の表面積を大きくしてい るためと考えられる。Des1の第2段燃料を PP に変 更した Des2 と Des1 を比較すると、表 5 から Des2 の第1段の到達高度が小さいことが分かる。これは Des2 では 2,3 段で燃料に燃料後退速度の小さい PP を用いるため、2,3 段の燃料搭載量が大きくなり、 上段が重くなるために第 1 段での到達高度と速度 増加が小さくなることがわかった。Des3をDes1と 比較すると、表4からペイロード質量比が同じこと が分かる。また、表5から各段の到達高度や速度増 加同程度であることが分かった。一方で図9から各 段の設計には違いがあり、第2段では Des3 の燃料 後退速度が小さいものの、平均推力は Desl で 65.4[kN]、Des3 で 67.9[kN]と同程度であったことか ら、低い燃料後退速度でも燃料流量を確保するため にグレインポートの表面積を大きくしていること がわかった。第3段では、Des3の燃料後退速度が 高く上段でDes1より20秒程度長く燃焼を行ってい るため、燃料グレインは厚くなり、O/Fを適切な範 囲内に収めるために燃料長さは短くなったことが わかった。

図 7. type0 から type3 の目的関数解空間 表 3. 各燃料組み合わせの最大ペイロード質量比

	M_p/M_{tot} [%]	M _{tot} [ton]	M_p [kg]
type0	0.52	11.9	62.0
type1	0.60	14.0	84.0
type2	0.60	14.9	89.0
type3	0.56	10.3	58.0

表 4. 全備質量 10ton 付近のロケット

	M _p /M _{tot} [%]	M _{tot} [ton]	M _p [kg]
Des0	0.50	10.2	51.0
Des1	0.57	10.3	58.0
Des2	0.53	10.3	55.0
Des3	0.57	10.3	58.0

表 5. 到達高度と速度増加

	stage	Des0	Des1	Des2	Des3
1st	到達高度[km]	19.1	17.8	14.0	17.6
	速度増加[km/s]	1.40	1.30	1.12	1.27
2nd	到達高度[km]	119.4	116.5	92.1	110.3
	速度増加[km/s]	2.94	2.96	3.05	3.02
coasting	到達高度[km]	235.9	237.8	222.0	230.2
	速度増加[km/s]	-0.25	-0.28	-0.30	-0.27
3rd	到達高度[km]	260.0	272.2	260.3	250.2
	速度増加[km/s]	3.82	3.91	4.04	3.89

図 8. type0 の上位 5 個体 PCP

図 10. type2 の上位 5 個体 PCP

図 11. type3 の上位 5 個体 PCP

Des0 (type0)

Des1 (type1)

Des2 (type2)

Des3 (type3)

図 12. ロケット概略図

6. まとめ

本研究では各段に異なる燃料を用いる 3 段式ハ イブリッドロケットの設計問題に対し、ペイロード 質量比の最大化と全備質量の最小化を図り、設計を 比較した。ロケットの上段に燃料後退速度の小さい 燃料を用いることで打ち上げ性能が向上すること がわかり、type1 の燃料組み合わせで全備質量 14.0[ton]でペイロード質量比 0.60[%]となった。また 上段の燃料を変えた場合でも、同じ燃料を用いる下 段の設計が変化することが分かった。

謝辞

本研究を行うに当たり、ハイブリッドロケット研究 ワーキンググループの皆さまから多数のご助言を いただきました。ここに感謝の意を表します。

参考文献

- Nakagawa I. ,et al : Regression Rate Characteristics and Combustion Mechanism of Some Hybrid Rocket fuels, Asian Joint Conference of Propulsion and Power 2010
- [2] Yuasa S. ,et al :Development of a Small

Sounding Hybrid Rocket with a Swirling-Oxidizer-Type Engine, the 37th AIAA/ASEM/SEA/ASEE Joint Propulsion Conference and Exhibit

- [3] Kitagawa Y. :Multi-Stage Hybrid Rocket Design for Micro-Satellites Launch Using Genetic Algorithm, the 28th International Symposium on Spade Technology and Science, 2011
- [4] Gordon. S., et al, : Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, NASA RP1311, 1994.
- [5] M-V 型ロケット(5 号機から 8 号機まで), JAXA-SP-07-023, 2008.
- [6] Humble, R., et al, : Space Propulsion Analysis and Design, Learning Solutions, New York, 1995.
- [7] 平成 8 年度第 2 次観測ロケット飛翔実験計画, ISAS/JAXA, 1996.