直交外部磁場型二次元 MPD スラスタに関する研究

○田窪 将也(横浜国立大学),小泉 宏之(東京大学),百武 徹(横浜国立大学),國中 均(ISAS/JAXA)

Key words: MagnetoPlasmaDynamics, Electric propulsion

1. 導入

電気推進ロケットは、その高い比推力を活かして 静止衛星の長寿命化を実現し、また小惑星探査機は やぶさのサンプルリターン等の深宇宙探査ミッショ ンに適用されてきた.これらに引き続いて新たな電 気推進機の応用先として、将来の有人月惑星探査な どのミッションの達成を見据えた大型 In-space Propulsion が検討されている. このような推進機とし ては大電力型の電気推進ロケットが適しているため, 大電力の投入によって高効率を達成する MPD スラ スタがその有力な候補となる. MPD スラスタの中で も自己誘起磁場型のものについてはこれまでに多く の研究がなされてきている¹⁾が,効率の良い作動をさ せる為には数 MW 級の電力を必要とし、このような 大電力を宇宙機上で推進機に供給することは近い将 来には難しい.一方で、外部磁場の印加により、電 磁加速が強調され性能向上が示唆された研究例²⁾が 存在し,外部磁場型の MPD を用いればより低電力に おいても高効率の作動を達成できる可能性がある.

また MPD スラスタを電極形状によって同軸形状と2 次元形状のふたつに分けると,同軸形の MPD では放 電電流に直交するように磁場を印加することができ ない為,外部磁場によるローレンツ力を直接排気方 向に向けるような設計が難しい.同軸形状の放電室 内は電磁加速のメカニズムも複雑になっており,最 適化を困難にしている要因にもなっている.その一 方で2次元形状の電極を持つ MPD スラスタは放電電 流と外部印加磁場が直交しており電磁加速のj×Bの 向きが直接排気方向を向くという単純な加速のメカ ニズムを持っている.また機械設計上も,放電室の 両側はコイル配置の自由度が高い事などもあり,最 適化が比較的容易である.このような背景に着目し 当研究室では外部磁場型の2次元 MPD スラスタの実 用化を目指した研究が始まった³.

2. これまでの経緯と課題

これまでの研究では特に基礎的な作動特性の取得 や放電室の形状に着目して電極間の形状を最適化す るための指針を得ることを目的とした研究が行われ ていた⁴⁾.これらの結果では推力が推進剤流量に依存 せず電磁加速が支配的となっていることが分かって いる.したがってより効率の良い作動点を探ってい くには推進剤流量を絞った領域での実験が必要とな る.しかし,これまでのスラスタ設計では高圧破壊 によって放電を開始しているため,推進剤流量を絞 ると点火しない,もしくは放電室以外の箇所で異常 放電を起こすなど,正常に作動させることができな かった.

本発表ではこれらの問題点に対する対策を施し, 低流量領域での作動特性を取得した.また今後の発 展課題として現在準定常作動のために使用している パルス電源の改良による作動時間の長時間化の検討 を開始したので併せて報告する.

3. 実験設備

3.1. スラスタ概要

直交外部磁場型二次元 MPD スラスタの概要を Fig.1 に示す.

Fig.1 スラスタヘッド概要図と写真

中央の放電室上下には燐青銅製の陽極と 2%トリ ウム入りタングステン製の陰極がそれぞれ 3 本設 置されており,加工の容易性などから直径 10mm の単純丸棒形状となっている.また電極間距離は 10mmで,放電室幅は 34mmとなっている.放電 室両側にはソーダ石灰ガラス板を設置してプラズ マを閉じ込めている.また各電極間の根本側には, 放電室へ推進剤を供給する導入口が開けられてい る.スラスタヘッドはポリアセタール樹脂と PEEK を用いており,放電室両側にコイルを配置し,放 電電流に対して直交する外部磁場を印加できるよ うになっている.

電極間形状はFig.2に示すように放電室長さと電極 間距離がそれぞれ独立に変化させられる機構となっ ている.電極間距離は電極間に挟むセラミック製の シムの枚数を調整することで 8 mm~20 mm まで 2 mm 刻みで変更できる.また放電室長さはセラミッ ク製の絶縁部全体が排気方向前後にスライドするこ とで 10 mm~40 mm まで 10 mm 刻みで構成を変えら れるようになっている.

Fig.2 放電室形状の変更

またこれまでの課題であった不点火や異常放電に 対しては以下の方法により対処をした.

まず放電室側面には Fig.3 に示すイグナイタを設置し,放電電流の供給に合わせてイグナイタ放電を 起こし主放電を誘起している.イグナイタの陽極お よび陰極は SUS316 で製作しセラミック(マコール) によって絶縁をしている.これにより推進剤流量を 絞っても主放電が起こらないことはなくなった.

Fig.3 放電室排気側からみた断面図

また放電室外での異常放電については、電極へ電流 供給を行う接続部にて起こるためこの接続部全体を シリコンゴムで埋めることにより対処を行った (Fig.4).

Fig.4 電流供給部のシリコンゴムによる絶縁

以上の改良によりこれまで課題となっていた問題 点は解消された.

3.2. 実験装置概要

実験装置の概要を Fig.5 に示している. 各装置についての詳細を以下で説明する.

Fig.5 実験装置概要図

3.3. 電源装置

電源供給は2つの Pulse Forming Network(PFN)を用 いており,放電用の電極と外部磁場用のコイルそれ ぞれに矩形波の電流を供給している(Fig.6).これら 2 つの電源は完全に独立しており,放電電流と外 部磁場強度は任意に設定することができる.

Fig.6 電源装置概要

3.4. 推力測定

推力測定は Fig.7 に示した重力振り子式のスラ ストスタンドを用いて行う.スラスタの発生した インパルスによって振動するスラストスタンドの 振幅を変位計によって計測することで推力を測定 する.スタンドに与えられたインパルスの大きさ とその時の振動振幅の関係は,あらかじめキャリ ブレーションしておくことで推力に変換する.ス ラストスタンド下部には擾乱となる振動を抑える 為に渦電流式の磁気ダンパを設置している.

Fig.7 プログラムによるフィッティングの一例

実際の推力測定では LED 変位計を用いて Fig.7 に示す減衰振動の波形が得られる.この波形を Fig.7 中の式(1)に示す減衰振動の関数にフィッテ ィングし,係数 A をその振動の振幅と定めている.

4. 実験結果

4.1. 実験条件

推進剤に Ar を用いて, その流量を 300 mg/s, 200 mg/s, 100 mg/s, 50 mg/s と変化させて実験を行った. 放電電流は 1.1 kA で一定にしている. 電極間形状に ついては, 今回は電極間距離は変えずに 10 mm に固 定とし, 放電室長さ L も 10 mm に固定している. こ れらの実験条件については Table 1 にまとめている.

Table 1 実験条件一覧表

パラメータ	実験条件
放電室長さ L	10 [mm]
電極間距離 d	10 [mm]
推進剤	Ar
推進剤流量	300, 200, 100, 50 [mg/s]
放電電流	1.1 ±0.1 [kA]

なお,これまでの Ar を推進剤に用いた実験では 200 mg/s の推進剤流量から不点火や異常放電が起 き,それ以下の推進剤流量では正常に作動してい なかったが,今回はすべての流量において異常作 動をしていない事を確認している.

4.2. 放電電圧と投入電力

Fig.8, Fig.9 はそれぞれ, 横軸に推進剤流量をとり 縦軸に放電電圧と投入電力を示している. 凡例は外 部磁場強度によって分けており, 外部磁場をかけて おらず, 自己誘起磁場のみの作動となっているもの を 0 T と表記している.

Fig.9 推進剤流量による投入電力の違い

放電電圧は流量の減少に伴って上昇し,50 mg/sの流 量時に最大で280 V となった.この時の投入電力は およそ300 kW である.

4.3. 推力と比推力

各推進剤流量における推力の測定値を Fig.10 に示 す.推力は低流量の領域においても推進剤流量に依 存せず一定の値となっており電磁加速が支配的とな っていることが確認された.

Fig.10 推進剤流量による推力の違い

このとき、比推力は最大で2500s程となり、より低流量の領域で顕著に上昇する.

4.4. 推進効率

測定された推力と放電電圧,推進剤流量から算出 される推進効率は Fig.12 に示されている.推進効率 は推進剤流量 50 mg/s のとき,最大の 6%となった.

Fig.12 推進効率の変化

5. 今後の課題と予定

現在の作動においては 0.5 ms の準定常作動による 実験を行っているが、将来の定常作動を見据えて、 より長い作動時間の電源を用いた実験を行う必要が ある.これまで使用しているパルス電源はオイルコ ンデンサを用いたキャパシタとコイルを用いたイン ダクタの梯子回路で構成されている.このパルス電 源の放電時間を延長するにはキャパシタの静電容量 を増やすかコイルのインダクタンスを増やすか、ま たは梯子回路の段数を増やす方法がある.しかし、 いずれの方法によっても放電時間を極端に一例えば 現在の放電時間の 10 倍や 20 倍といった時間電流を 供給するためには一電源装置自体が巨大になり過ぎ、 かける費用や手間などのコストの割に効果が少ない と見積もられた.

そこで、電気2重層キャパシタと呼ばれるキャパ シタを用いた電源装置の検討および開発を開始した. 電気2重層キャパシタは従来のオイルコンデンサと 比べて10⁶倍程度のキャパシタンスを持つキャパシ タであり、プラズマ抵抗程度の抵抗を持つ回路に直 流放電させると100sオーダの時間で放電する

(Fig.13) ことができる. したがってこのキャパシタの放電を用いて 10 ms や 100 ms 程度のみの電流を切り取って使う事が出来れば,この間の電圧降下は小さく,ほぼ一定の電圧で電流の供給を行うことができると期待される (Fig.14).

Fig.13 電気2重層キャパシタの放電波形例

Fig.14 放電の一部を切り取って使うイメージ波形

Fig.15 電気2重層キャパシタ写真

本研究室ではFig.15に示す Maxwell Technologies 社製 の電気2重層キャパシタを導入し、電源の製作を検 討している.このキャパシタの導入によって10ms ~100ms 級まで任意の放電時間で実験を行える環境 を構築していく予定である.

6. 参考文献

- E. Choueiri, "On the Thrust of Self-Field MPD Thrusters," 25th International Electric Propulsion Conference, Cleveland, USA, IEPC-97-121, 1997
- 2) D. Haag, M. Fertig, G. Herdrich, H. Kurtz, M. Winter, and M. Auweter-Kurtz, "Experimental Investigations of Magnetoplasmadynamic Thrusters with Coaxial Applied Magnetic Field," 30th International Electric Propulsion Conference, 2007
- A. Iwakawa, D. Nakata, H. Kuninaka, "Performance of Two-Dimensional Applied-Filed Magneto-Plasma-Dynamic Thruster," 31st International Electric Propulsion Conference, Ann Arbor, USA, IEPC-2009-226, 2009
- M. Takubo, H. Koizumi, T. Hyakutake, H. Kuninaka, "Effect of Inter-electrode Geometry on the Performance of an Applied-field 2D MPD Thruster," AIAA 2012-4013, 2012