超小型人工衛星搭載用シリンドリカル型ホールスラスタの作動特性 STEP-2012-027

○池田知行¹, 戸川和也¹, 杉本成¹, 加藤優貴², 山本怜², 田原弘一², 渡辺陽介³

1大阪工業大学大学院工学研究科機械工学専攻

2大阪工業大学工学部機械工学科

³大阪大学大学院基礎工学研究科機能創成専攻

1. はじめに

今世紀に入り、電気・電子工学の急速な発展 と低価格な相乗り衛星打上げビジネスの展開に より、世界各地の大学機関・企業において短期 間かつ低コストで開発可能な超小型人工衛星の 研究開発が活発に行われている.日本国内にお いても同様であり、2002 年 12 月に千葉工業大 学が超小型衛星を開発した事を皮切りに、その 後 10 機以上の大学衛星が打上げられるなど、活 発な動きを見せている.今後は衛星コンステレ ーションの構築や軌道維持、軌道変更、運用終 了後の大気圏再突入など、より高度なミッショ ンが可能となる推進機を搭載した超小型衛星の 開発が望まれている¹⁾²⁾.

2007年に大阪工業大学は世界に先駆けて,電 気推進機の一種である電熱加速型パルスプラズ マスラスタを搭載した質量14.5kgの超小型技術 試験衛星「プロイテレス」の開発プロジェクト を立ち上げ,2012年9月に打上げと初期運用に 成功した.今後は軌道上でのパルスプラズマス ラスタの作動試験を行う予定である.また,プ ロイテレス衛星の開発と並行して50kg級の超 小型月探査衛星への搭載を目標としたシリンド リカル型ホールスラスタ(Cylindrical Hall Thruster:CHT)の開発を行っている.CHTは2000 年にプリンストン大学プラズマ物理研究所

(PPPL)の Raitses 氏らのチームによって開発されたホールスラスタで,放電室中心部に磁気回

路が無い円径断面の放電室を有しており,同一 口径のホールスラスタと比較して放電室容積に 対する放電室表面積が小さく,プラズマの壁面 損失を抑制することが可能である.大阪工業大 学では CHT の更なる低電力化を行うべく磁場 形成に永久磁石を用いた TCHT-4 を開発し作動 試験を行ってきた.その結果,推進剤流量 0.1mg/sにおいて印加電圧 300V のとき,推進力 0.9mN,比推力 1864sec,消費電力 55.5W,推進 効率 30.1%となったものの,作動後 150 秒足ら ずで永久磁石の過熱によって熱減磁し著しい性 能低下とアノードの焼損が見られた³⁾⁴⁾.

本研究では永久磁石をスラスタ外周部に配置 して熱減磁を抑えつつ,最適な放電室長と磁極 位置を決定するため,放電室長と磁極位置を無 段階に変更可能で,50-60Wの低電力でも作動す る新型CHT,TCHT-5の作動実験を行った.

2. 実験について

2.1 概要

本稿で述べるTCHT-5の作動実験では,作動時 の最適な磁極位置と放電室長さを求めるため, 磁極位置を4mm,7mm,17mmと変化させた場合 と,磁場形状を維持しつつ放電室長さを7mmか ら12mmへと変化させた場合の放電電流,推進力, 比推力,消費電力,推進効率といった基本的な 推進性能の測定と各条件ごとの比較を行った. 作動条件をまとめた表を表1に示す.ホローカソ ードの作動ガスおよび推進剤には比較的電離し やすく分子量が大きいキセノンを使用した.推 進剤流量は0.6mg/sよりも少ない条件では作動 出来なかったため,実験では0.6mg/s,0.7mg/s, 0.8mg/sの条件下で行った.印加電圧は150Vか ら250Vまで10Vずつ昇圧して実験を行った.

表1 TCHT-5の作動条件

放電電圧	150~250V	
推進剤	キセノン	
質量流量	TCHT-5	0.6~0.8mg/s
	ホローカソード	0.1mg/s
背圧	1.0×10 ⁻² Pa	

2.2 TCHT-5

図1と図2に本研究で開発したTCHT-5の外観 とその断面図を示す.使用した永久磁石は株式 会社二六製作所製のSm-Co磁石を5つ内蔵した ジュラルミン製パイプをスラスタ外周部に8本 取り付け,放電室の熱影響を極力受けないよう に設計した^{5) 6)}.放電室は外径22mm,内径14mm のボロンナイトライド製の円筒であり,上流部 より陽極と磁極が差し込まれている.

図3に放電室周りの構造を示す.推進剤は電源 線を兼ねた直径3mmの純銅製パイプを通して放 電室内に供給される.電極・磁極保持部を前後 に移動させることによって磁極間の距離を 4-12mmの範囲で変更が可能である.また,放電 室支持部を移動させることにより磁場形状を維 持しつつ放電室長さを7-17mm変化させること ができる.

図1 TCHT-5の外観図

図4に磁場解析結果によるTCHT-5の磁場形状 を、図5に径方向磁東密度の軸方向分布を示す. TCHT-4と同じ放電室長さ7mmの場合,放電室出 口から2mmの領域において径方向の磁東密度が 184 mTとTCHT-4の2.38倍であることから,熱減 磁で磁東密度がある程度減少した場合において も効率的に電離が行われると期待できる.

図5 径方向磁束密度の軸方向分布

2.3 真空容器

図6に実験で使用した真空容器の外観を,図7 に実験機器の位置関係を示す.この真空容器は 大阪真空機器製作所製の直径1.2m,奥行き2.25m のステンレス製真空容器で、ターボ分子ポンプ とロータリーポンプがそれぞれ2台ずつ搭載さ れており、排気速度は10000 l/s、到達圧力は5.3 ×10⁴ Paである.真空度の測定にはピラニ真空 計と電離真空計を使用した.実験時の背圧はい ずれの推進剤流量の場合においても1.0×10⁻²Pa であった.

図6 真空容器

図7 実験装置の位置関係

2.4 推進力の測定

CHTの推進力は数mNオーダーであるため, 推進力の測定には振り子式スラスタスタンドと 渦電流式非接触変位センサを用いる方法を採用 した.推進力の測定はあらかじめ既知の水平方 向荷重とそれによって得られる変位量から関係 式を導き出しておき,実験時に測定された変位 をこの関係式に代入することによって算出した.

3. 実験結果

3.1 磁極位置別にみた推進性能の変化

本実験では磁極位置4mm, 7mm, 12mmの場合 における各推進性能を測定した.図8に噴射時の プリューム形状を示す.磁極位置7mmと12mm のプリューム形状に大きな差は見られないもの の,4mmの場合において円錐状のプリュームが 放電室外で大きく発散していることがわかる.

(a) 4mm
(b) 7mm
(c) 12mm
図8 プリューム形状

噴射により得られた放電電圧,放電電流,推

進力から各種条件下での推進性能を導出した.

図9にそれぞれの磁極位置,推進剤流量ごとの 放電電圧に対する放電電流の変化を示す.いず れの磁極位置においても放電電圧の上昇に対し て放電電流はほぼ一定であり高電圧モードであ ることがわかる.磁極位置4mmと12mmの場合で は近い値を示すが,7mmの場合,他の条件より も10%程低い値を示した.

図10に放電電圧と比推力・推進力の関係を条 件ごとに示す.

比推力の定義は式(1)で表わされる.

$$I_{sp} = \frac{F}{\dot{m}g} \tag{1}$$

Fは推進力を表し*m*は推進剤流量,*g*は標準重 力加速度である.磁極位置4mmと7mmはお互い に近い性能を示しているが,磁極位置12mmの場 合,比推力と推進力は他の条件よりも30%ほど 高い数値を示した.

次に放電電圧と推進効率の関係を図11に示す. 推進効率は式(2)のように定義される.

$$\eta = \frac{F^2}{2\dot{m}V_d I_d} \tag{2}$$

ここで V_d は放電電圧, I_d は放電電流である.

比推力-推進力の場合と同様に、磁極位置が 4mmと7mmの場合は近い値を示し、12mmの場合 は他の条件よりも30%近く推進効率に優れてい ることがわかる.

図12に消費電力と比推力の関係を示す.本実 験での消費電力は推進機のみの値であり,ホロ ーカソードの消費電力は含まない.グラフから いずれの磁極位置においても,推進剤流量が少 ないほど低い消費電力で高い比推力を得られる ことがわかる.特に磁極位置12mmの場合,消費 電力は他のものとほぼ変わらないものの,比推 力は20%程向上していることがわかる.

消費電力と推進効率との関係を図13に示す. 比推力の場合と同様に,推進剤流量が小さいほ ど低消費電力で作動していることがわかる.磁 極位置12mmの場合,他の条件下よりも推進効率 7-10%近くが向上した.

図13 消費電力-推進効率の関係

図14に比推力と推進効率の関係を示す.磁極 位置7mmの場合,比推力に対する消費電力の上 昇傾向は4mmの場合と大差はないが,低い比推 力で2%ほど高い推進効率を出している.また磁 極位置12mmの場合,他のものよりも高比推力・ 高推進効率であることがわかる.

以上のように、磁気位置12mmの条件下では、 他の条件とほぼ同等の消費電力でありながら、 比推力や推進力、推進効率といった推進性能が 30%近く向上した.これは磁極間距離が延びた ことにより、ノズル下流域と上流域の磁束密度 の差によるミラー効果が効果的に働き、電子の 捕捉が効率的に行われたためと思われる.作動 中、TCHT-4に見られた磁石の熱減磁に伴うプリ ュームの発散角の拡大や推進性能の低下といっ た現象も見受けられず、磁石位置変更による熱 減磁対策は功を奏したと考えられる.

しかしながら50-60Wといった低電力での最 良の推進性能は、放電電圧190V、磁極位置12mm, 推進剤流量0.6mg/sの条件下で、消費電力57.3W, 比推力648.3s,推進効率22.1%と、TCHT-4の推進 性能よりも低い値であった.これはTCHT-4とほ ぼ同じ放電室条件で有るのにもかかわらず、以 前の6倍以上の推進剤流量でなければ作動しな い点を考えると、設定した放電室内の径方向磁 束密度が適正値を上回る強磁場であったため、E ×Bドリフトを行う電子の周方向速度が大きく 低下し、プラズマの電離衝突が効率的に行われ なくなったと推測される.その結果、平均自由 行程が長くなり、少ない推進剤流量で作動しな くなったと考えられる.推進効率と比推力の改 善を図るためには、磁束密度を下げることによ って電子の週方向速度を上げるなどの対策が必 要となる.

3.2 放電室長さごとの各種性能変化

本実験では磁極位置を7mmで固定し,放電室 長さ7mmと17mmの場合の各推進性能を比較し た.図15に噴射時のプリューム形状を示す.放 電室長さ17mmの場合,発散角はそれほど変わら ないものの,プリュームの大きさは7mmの時よ りも小さくなった.また,推進剤流量が0.6mg/s の時,放電電圧200V以下では間欠的に噴射され るようになり,連続的な作動が出来ない不安定 な状態となった.

図15 プリューム形状

図16に放電電圧と放電電流の関係を示す.放 電室長さ7mmの場合,放電電流は放電電圧の変 化に対してほぼ一定であるのに対し,17mmの場 合は放電電流の上昇がみられた.また全ての電 圧域において,放電電流値が放電室長さ7mmの 場合よりも15-23%高い結果となった.

図17に放電電圧と比推力・推進力の関係を示 す. 放電室長さ7mmの場合と同様に, 放電電圧 の上昇とともに比推力も上昇しているが, 放電 室長さ17mmの場合, 全ての電圧域において常に 16%低い値を示した.

図18に放電電圧と推進効率の関係を示す.放 電室長さ17mmの場合,推進効率が2-3%しか出 ないことがわかった.また放電室長さ7mmの時 は電圧の上昇に応じて推進効率も上昇している が、17mmの時はすべての放電電圧域において、 推進効率は2-3%と低い値を示した.

図19に消費電力と比推力の関係を示す. 放電 室長さ7mmの場合, 30-100Wの電力域において 比推力が350-650sであるのに対し, 17mmの場合 は70-190Wの電力域において250-400s程の比推 力であった.

図20に消費電力と推進効率の関係を示す. 放 電室長さが7mmの場合,消費電力60W付近に集 中し,推進効率も15%程である. しかし17mmの 場合,消費電力が70-190Wの領域に大きく広が っており,推進効率は2-3%で常に一定であった.

図21に比推力と推進効率の関係を示す. 放電 室長さ7mmの場合と比較して,17mmでは低比推

力かつ低推進効率である事がわかる.

以上のように、放電室長さ17mmの場合,推進 性能は大幅に低下することがわかった.加速チ ャネルを延長することにより電離が促進される 事を期待したものの、図15からもわかるように プリュームの大部分が放電室内にあるため、イ オンの壁面損失が増大し、各種推進性能が悪化 したものと推定される.消費電力と推進効率と の関係から、投入した電力の大半が電離と加速 に使われず、熱エネルギーとしてスラスタから 放出されたものと考えられる. 今後は放電室長 さ17mm以下の範囲で作動試験を行い、最適な条 件を探る必要がある.

4. 結論

本研究では50-60W級のCHTであるTCHT-5を 新たに開発し,各条件のもと推進性能を測定・ 比較を行った.

(1) 磁極位置別にみた推進性能の変化

磁気位置12mmの条件下では,他の条件とほぼ 同等の消費電力でありながら,比推力や推進力, 推進効率,推進性能が30%近く向上した.

放電電圧190V,磁極位置12mm,推進剤流量

0.6mg/sの条件において,消費電力57.3W,比推 力648.3s,推進効率22.1%の推進性能を取得した. しかしながらTCHT-4の推進性能よりも低い推 進性能であり,これは設定した放電室内の径方 向磁東密度が適正値を上回る強磁場であったた め, E×Bドリフトを行う電子の周方向速度が大 きく低下し,プラズマの電離衝突が効率的に行 われなくなったことが原因と考えられる. 今後 は磁東密度を下げることによって電子の週方向 速度を上げて効率的に電離するよう,対策が必 要となる.

(2) 放電室長さ7mmと17mmの場合の推進性能

放電室長さ17mmの場合,全電力域において推 進性能は大きく低下した.これは発生したプリ ュームの大部分が放電室内に収まっているため, イオンの壁面損失が増大し,各種推進性能が悪 化したものと考えられる. 今後は放電室長さ 17mm以下の範囲で試験を行い,最適な条件を探 る必要がある.

5. 参考文献

- Y. Raitses, N. J. Fisch, K. Ermer and C. B. Burlingame: A Study of Cylindrical Hall Thruster for Low Power Space Application, Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA, Paper PPPL-3479, 2000.
- 2) 白崎篤司「円形断面放電室をもつホール型推 進機の放電電流振動」JAXA, 宇宙輸送シンポ ジウム, 2007.
- 3) T. Ikeda, K. Togawa, T. Nishida, H. Tahara, and Y. Watanabe: Research and Development of Very Low Power Cylindrical Hall Thrusters for Nano-Satellites, The 32nd International Electric Propulsion Conference (IEPC), Paper No. IEPC-2011-039, Wiesbaden, Germany (2011).
- Tomoyuki Ikeda, Kazuya Togawa, Yohei Mito, Hirokazu Tahara and Yosuke

Watanabe: Performance Characteristics of Very Low Power Cylindrical Hall Thrusters for Nano-Satellites, Asian Joint Conference on Propulsion and Power (AJSPP) 2012, AJCPP2012-006, Grand New World Hotel (Xi'an, China).

- 5)池田知行,戸川和也,杉本 成,三藤陽平,林 泰志,田原弘一 「超小型月探査機搭載用シリ ンドリカル型ホールスラスタ"TCHT-5"の研究 開発」 JAXA,宇宙輸送シンポジウム, STEP-2011-016, 2012.
- 6) Tomoyuki Ikeda, Naru Sugimoto, Kazuya Togawa, Yohei Mito and Hirokazu Tahara: Research and Development of High-Efficiency Hall-Type Ion Engines for Small Spacecrafts, Int. Conf. on Renewable Energy Research and Applications (ICRERA) 2012, Best Western Premier Hotel Nagasaki (Nagasaki-City, Nagasaki).