

Peculiarity of Optical Emission Spectroscopic Characteristics of Expanding Nitrogen Arc-Jet Plasma Masahiko Hatcho, Sou Watanabe, Haruaki Matsuura, Hiroshi Akatsuka^{*} (Tokyo Institute of Technology)

We generate recombining nitrogen plasma plume by expansion of nitrogen arc into lower pressure vessel with a weak longitudinal magnetic field in a steady state. Spectroscopic observation reveals that the plasma has almost no component of molecular band spectra but emits strong intensity of nitrogen atoms.

1. はじめに

膨張アークジェットは、ヒドラジンやアンモニアを媒体 として人工衛星の南北位置制御用あるいは姿勢制御用とし て、実用レベルで用いられている。これら反応性ガスを母 体としたプラズマでは、化学的毒性が強いこともあって、 希ガスや窒素など、無毒の一般的な気体放電プラズマを媒 体とした模擬実験研究も様々に行なわれる価値があり、ま た実際様々に研究がなされている⁽¹⁾。

我々の研究室でも、弱い磁場を印加した希薄気体風洞中 にアークジェットを定常膨張させる装置を開発して、開放 端磁場におけるマッハ数変化や空間電位の変化、電子温 度・密度の変化等をプローブ計測により検討し、電磁流体 としての低電離度希薄アークジェット流の物理的特性につ いて様々に考察を加えてきた⁽²⁾⁻⁽⁵⁾。さらに、流れを弱電離 プラズマの希薄流と捉え粒子法による数値シミュレーショ ンを行ない、理論的な理解にも努めてきた⁽⁶⁾。

本研究では、希ガスではなく、従来と同一の装置を用い て窒素膨張アークジェットを発生し、その特性を前報同様 に測定し考察を行う事とする。その際、最も重要な特徴は、 窒素が2原子分子であることであるから、まずは膨張窒素 プラズマの発光分光特性を詳細に実験的に検討し、分子気 体放電プラズマとしての特性を把握することを本研究の第 一の目的とする。窒素分子としての解離特性について考察 し、発光分光特性がプロセス用の窒素プラズマと異なるか 否か、異なるとすればどのような特徴が有るのかについて 議論する事とする。また、発光分光特性の検討から求めら れるプラズマパラメータと、従来通りのプローブ計測によ り求めたプラズマパラメータと、従来通りのプローブ計測によ り求めたプラズマパラメータを比較検討し、両者の一致を 確認し、もし異なるようであればその原因の考察も行い、 弱電離の希薄電磁流体としての本プラズマのパラメータ変 化を理解することも目的とする。

2. 実験装置概略

使用装置は、基本的には前報(2)-(5)と同一である。実験装 置は希薄気体風洞、真空排気装置、プラズマジェット発生 部、電磁石、プローブ計測システム、光ファイバヘッド、 分光計測システム、トラバース装置、から構成されている。 プラズマ膨張チェインバとして使用する希薄気体風洞の概 略図を図1に示す。これは内径1.2m、長さが2mであり、 風洞内は真空排気装置により約 10-4 Torr まで排気できる が、今回は予備実験との位置づけから、油拡散ポンプは使 用せず、最終段の真空ポンプはメカニカルブースターポン プとして到達真空度は 10-3 Torr 程度であった。到達真空度 はこの程度であるが、この寸法から理解される様にコンダ クタンスが大きく、大排気速度であることが長所である。 プラズマジェット発生部を図2に模式的に示す。ここでは 陽極と陰極の間でアーク放電を定常発生させる。放電条件 は直流アーク電流120A、直流アーク電圧25V、作動ガス は窒素 100 %でのアーク放電の安定発生が困難であったた

図1 プラズマ膨張チェインバとしての希薄気体風洞。 Fig. 1. Rarefied gas wind tunnel as a plasma expansion chamber.

図2 プラズマジェット発生用の電極構成と生成された プラズマの模式図。

Fig. 2. Schematic diagram of electrode assembly and plasma jet.

め、窒素:アルゴンの圧力比を 10:1 とするようアルゴンガ スをバッファとして加えた。ただ、本研究では、窒素が主 成分となっていると言う意味で、この割合の混合気体を共 有して生成したプラズマの事を、膨張窒素プラズマ、ある いは窒素アークジェットと呼ぶ事とする。全ガス供給流量 はおよそ 2.0 l/min である。放電室圧力は 50 – 760 Torr, 放 電時のプラズマ計測空間の気圧は 2.0 × 10⁻² Torr 程度であ る。磁場は 6 個の電磁石を用いて作られる。それぞれの電 磁石は内径が 80 mm、厚さが 60 mm である^{(2)-(5),(7)}。

プラズマの発光部は主にマグネット内部に有り、今回は 膨張空間の背圧が前報(2)-(5)ほどは低くない事から、今回は 開放端ではなく、電磁石内部のプラズマパラメータにも着 目して計測を行う。すなわち、電磁石の間隙からプラズマ 流方向(z 方向)に直交する方向(以下 r 方向と言う)を見込む ように凹面集光ミラーを配置し、光ファイバーでチェンバ ー外部へ取り出し、その後焦点距離 50 cm のツェルニータ ーナー型可視紫外域分光器(日本分光 SS50, 解説格子は 1200 lines/mm, ブレーズ波長 390 nm, 高次回折光カット 用フィルタ付)で発光分光計測を行う。270 Hz でチョッピ ングの後、測定対象光を分光器に導き、回折分光後光電子 増倍管で受光、光電信号変換後プリアンプに導きさらにロ ックインアンプでチョッピング信号とともに増幅後、A/D 変換して計測用パーソナルコンピュータで分光信号を記録 する。なお、分光計測系全体は、集光部のヘッドを対象と して幾何学的条件まで含めて、標準光源により絶対較正を 施している。分光計測系の詳細は文献⁽⁸⁾⁻⁽⁹⁾に譲る。

3. 実験結果及び考察

(3・1) 発光分光計測結果 発光分光計測結果を示し 考察する。図3(a) – (b)に、窒素プラズマジェットを側面方 向から side-on にて観察した場合の発光分光スペクトルを 波長 390 – 680 nm, 680 – 800 nm の範囲にわたってそれぞ れ示す。 放電条件等は図のキャプションに示した。図3か ら解る事として、通常、窒化物生成や表面処理プロセス用 として用いられる窒素プラズマのスペクトルとは大きく異

図3 窒素アークジェットの発光分光スペクトル。(a) 390 - 680 nm, (b) 680 - 800 nm. 放電条件:アーク電流 120 A, アーク電圧 15 V, 放電室圧力 76 Torr, 膨張空間 (プラズ マの存在する空間)の圧力 2.6 × 10⁻² Torr, 電磁石電流 300 A. 陽極ノズルからの距離 z = 110 mm.

Fig. 3. Optical emission spectra of the expanding nitrogen arc-jet plasma. (a) 390 - 680 nm, (b) 680 - 800 nm. Discharge condition: arc current 120 A, arc voltage 15 V, discharge pressure 76 Torr, pressure in the plasma region 2.6×10^{-2} Torr, magnet current 300 A, corresponding magnetic field 0.16 T, distance from the anode nozzle z = 110 mm.

なり、540-800 nm 程度の広い可視波長域でプロセスプラ ズマでは明瞭に観察される窒素分子励起状態である B³Πg 状態から A³Σu⁺状態への遷移に対応する第1正帯(First Positive System; 1PS)のスペクトルが全く見られず、さら に370-500 nm 付近に現れるはずの窒素分子イオン励起状 態である B²Πu⁺ → X²Σg⁺の遷移である第1負帯(First Negative System; 1NS)も見られない点が、今回測定したア ークジェット窒素プラズマの特筆すべき特徴である(10)。さ らに、図4には紫外~可視波長域にあたる365-385 nmの 波長領域の発光分光スペクトルを示す。この波長領域でも 同様に、プロセス用やエレクトロニクス用に用いられる窒 素プラズマではその回転温度の測定からガス温度の推定に 頻繁に使用されることで有名な、 $C^{3}\Pi_{u} \rightarrow B^{3}\Pi_{g}$ の遷移に伴 う第2正帯(Second Positive System; 2PS)のスペクトルが 卓越するはずであるにも関わらず、殆ど見る事はできない (11)。さらに、図3(b)の740-750 nmの波長範囲の拡大図 を図5に示す。図5には、窒素原子の励起状態として NI の 3p 4Sº3/2 → 3s 4P1/2, 3/2, 5/2 の遷移に対応する 742.36, 744.23,746.83 nmの3本の遷移線が明瞭に観察される。こ れらは同一の上準位に由来し、強度比としても適切な値が

図4 窒素アークジェットの発光分光スペクトル、365 -385 nm。放電条件は図3のキャプションと同様。

Fig. 4. Optical emission spectra of the expanding nitrogen arc-jet plasma. The discharge conditions are the same as those in Fig. 3.

観察されている。これらの発光線スペクトルはプロセス用 の低気圧窒素放電プラズマの発光分光計測においても、窒 素原子密度のアクチノメトリー測定用に利用されている信 号であり(10),(12)、その意味でも原子励起状態が存在している 事を示している。即ち、既に我々が先行研究(10),(13)で示した 通りであるが、これら3本の窒素原子線は、プロセス用と して通常用いられる窒素プラズマでは、窒素分子1PSのバ ンドスペクトルに強く覆い隠されてしまい、1PSと分離し て計測する事は一般に困難な事で知られている。プロセス プラズマで窒素原子線を明瞭に抽出するには、複雑な形状 の 1PS スペクトルを、振動・回転温度を入力として理論計 算し実測スペクトルから減算する事が必要で、減算の結果 ようやく図5のような窒素原子スペクトルが得られるのが 常である(10),(13)。しかるに、本プラズマのアークジェットの 場合、窒素分子 1PS は 740 - 750 nm の波長範囲には全く 見出すことはできず、その一方、窒素原子線は明瞭に検出 されている。このような事情からも、本研究で調べた膨張 窒素アークジェットプラズマでは、窒素分子励起状態の存 在は、窒素原子に比べて無視できる程度と考えられる。

図 5 図 3 (b)に示した窒素アークジェット発光分光スペクトルの 740 – 750 nm の拡大図。

Fig. 5. Close-up view of Fig. 3(b), an optical emission spectrum of nitrogen arc-jet plasma, in the wavelength range from 740 to 750 nm.

(3.2) 電子温度と電子密度 分光計測で求め た励起状態数密度について種々議論を行なう際には、 Boltzmann プロット、すなわち、励起状態のエネルギー準 位に対して、統計的重率で除した数密度を片対数表示する と便利である。今回計測した窒素原子線すなわち N I のシ ステムについて、Boltzmann プロットの1例を図6に示す。 再結合プラズマの場合、十分に励起された準位については LTE が成立する事が既に確立しているので、それらの準位 の Boltzmann プロットの傾きから電子温度 T_{e} を直ちに求 めることができる^{(8), (9), (12)}。この図の場合は $T_{\rm e} = 0.42 \ {\rm eV}$ と なり、かなり低電子温度の窒素プラズマが得られている事 が理解できる。このような低電子温度の再結合プラズマで は、Bvron 境界よりも上準位では LTE にあり、それ以下の 準位では反転分布が生じる事が理論的に示され、また実験 的にも様々なプラズマで検証されているが^{(8), (9), (14)}、本研究 の窒素アークジェットプラズマにおいても、同様に、低励 起準位間での反転分布も確認された。

電子温度について、プローブ測定結果と分光計測結果を 比較する。本研究の発光分光計測では、アーベルインバー ジョンは施さず、視線方向線積分値として平均値としての 励起状態密度を用いて Boltzmann プロットを作成し、それ を用いて径方向にわたっての平均的な電子温度を求め分光 による電子温度測定結果とした。図7に電子温度測定結果 をまとめて示す。図には、NIの励起状態数密度から求めた 電子温度と、放電安定のために加えた Ar による Ar Iの励 起状態数密度から求めた電子温度を併記している。プロー ブ計測は、一般にファクター2程度の誤差は通常避けがた いもので、従ってプローブ計測と発光分光計測による電子 温度の測定結果は、おおよそ一致したと考えられる。以上 の事からも、窒素原子の発光について、一般の原子励起状

図6 本実験の窒素プラズマにおいて求められた N I 準位 の Boltzmann プロットの1例。計測条件: $I_{arc} = 120$ A, $V_{arc} = 15$ V, Ar: N₂ = 1:10, $P_{arc} = 76$ Torr, $P = 2.6 \times 10^{-2}$ Torr, 電磁石電流 300 A。

Fig. 6. An example of Boltzmann plots of N I measured in the present nitrogen arc jet plasma. Discharge conditions: $I_{\rm arc} = 120$ A, $V_{\rm arc} = 15$ V, Ar : N₂ = 1 : 10, $P_{\rm arc} = 76$ Torr, $P = 2.6 \times 10^{-2}$ Torr, magnet current 300 A.

Axial Distance from the Anode Nozzle Z (mm)

図7 ラングミュアシングルプローブにより測定した電子 温度、および窒素原子 NIならびにアルゴン原子 ArIの高 励起準位の発光分光計測により求めた電子温度の比較。磁 束密度変化も併せて示した。放電条件: Discharge condition Ar: N₂ = 1:10, P_{arc} = 114 Torr, P = 2.0 × 10⁻² Torr, 電磁 石電流 300 A。

Fig. 7. Electron temperature $T_{\rm e}$ measured by a Langmuir single probe and by OES measurement of highly-excited states where the LTE condition is validated. N I lines and Ar I lines are applied to determine $T_{\rm e}$. Variation in the magnetic flux density is also shown. Discharge conditions: N₂ = 1 : 10, $P_{\rm arc}$ = 114 Torr, P = 2.0 × 10⁻² Torr, magnet current 300 A.

態数密度に関する再結合プラズマの理論が適用でき、結果 として求められる電子温度も、プローブ計測と矛盾の無い もので有った事からも、本研究で対象とした窒素アークジ ェットプラズマが、中性窒素原子、窒素原子イオンを主た る構成要素とするプラズマである事を示していると結論で きよう。

4. まとめ

大気圧下で生成した窒素アークプラズマを、弱磁場下の 低圧風洞中に定常的に噴出して再結合プラズマジェットプ ルームを生成し、発光分光計測を行なった。その結果、低 圧放電で顕著な窒素分子励起状態のバンドスペクトルは全 く観察されず、窒素原子励起状態の発光が卓越する結果と なった。考察の結果、窒素アークジェットプラズマは低温 再結合状態となっており、初期温度が熱平衡のアーク放電 プラズである事から、熱的な解離過程のため膨張の前段階 から原子を主成分とするプラズマ状態となっていると結論 された。

計測した窒素原子の励起状態数密度から Boltzmann プロ ットを作成した所、典型的な再結合プラズマの数密度分布 を示す事が確認された。LTE 状態に有ると考えられる窒素 原子およびアルゴン原子の高励起準位から電子温度を求め た所、プローブ計測とおよそ矛盾の無い値が得られ、この 事からも本研究の窒素プラズマが再結合プラズマで有る事、 また励起状態が窒素原子イオンの再結合によるものである 事が確認され、窒素分子が殆ど存在せず、窒素原子イオン の再結合により窒素原子の励起状態の発光が卓越するプラ ズマである事が確認された。

今後、窒素原子の高密度なプラズマ源としての応用を期 待すべく、一層の計測・および数値モデリング研究を進め てゆきたいと考えている。

献
111/1

文

- (1) 栗木恭一、荒川義博、「アークジェットスラスタ」, 電気推進ロケット入門 第4章、東京大学出版会、東京 (2003).
- (2) K. Yoshida, T. Kanuma, H. Ichii, A. Nezu, H. Matsuura and H. Akatsuka: "Flow Characteristics of a Cold Helium Arc-Jet Plasma along Open Field Lines", IEEJ Trans. Elec. and Electron. Eng., Vol. 4, No. 3, pp. 416-421 (2009).
- K. Yoshida, T. Shibata, A. Nezu, H. Matsuura and H. Akatsuka:
 "Ion Acceleration in Arc Jet Plasma along Open Field Lines", IEEE Trans. Plasma Sci., Vol. 37, No. 8, pp. 1414-1418 (2009).
- (4) K. Yoshida, T. Shibata, A. Nezu, H. Matsuura and H. Akatsuka: "Flowing Characteristics of Cold Arc Jet Plasma along Open Field Lines", J. Plasma Fusion Res. SERIES, Vol. 8, pp. 923-927 (2009).
- (5) 長原洋、市井宏輝、吉田和行、根津篤、赤塚洋:「超音速プラズマ流の失速に及ぼす中性粒子衝突の影響」,電気学会プラズマ研究会資料,PST-10-45, pp. 23-27 (2010).
- (6) 中萩健志、根津篤、松浦治明、赤塚洋:「開放端磁場で膨張加速する 弱電離アークジェットの粒子シミュレーション~希薄流体として」、 電気学会プラズマ・パルスパワー合同研究会資料, PST-12-45/ PPT-12-51, pp. 77-81 (2012).
- (7) H. Akatsuka and M. Suzuki: "Arc-heated Magnetically-trapped Expanding Plasma Jet Generator", Rev. Sci. Instrum., Vol. 64, No. 7, pp. 1734-1739 (1993).
- (8) H. Akatsuka and M. Suzuki: "Stationary Population Inversion of Hydrogen in an Arc-heated Magnetically Trapped Expanding Hydrogen-Helium Plasma Jet", Phys. Rev. E, Vol. 49, No. 2, pp. 1534-1544 (1994).
- (9) H. Akatsuka and M. Suzuki: "An Experimental Study of Stationary Population Inversion in a Cold Recombining Expanding Helium Plasma Jet", Plasma Sources Sci. Technol., Vol. 4, pp. 125-136 (1995).
- (10) Y. Ichikawa, T. Sakamoto, A. Nezu, H. Matsuura and H. Akatsuka: "Actinometry Measurement of Dissociation Degree of Nitrogen and Oxygen in N₂-O₂ Microwave Discharge Plasmas", Jpn. J. Appl. Phys., Vol. 49, No. 10, 106101 (2010)
- (11) T. Sakamoto, H. Matsuura and H. Akatsuka: "Spectroscopic Study on the Vibrational Populations of N₂ C $^{3}\Pi$ and B $^{3}\Pi$ States in a Microwave Nitrogen Discharge", J. Appl. Phys., Vol. 101, No. 2, 023307 (2007).
- (12) 赤塚 洋;「発光分光計測を用いたプロセスプラズマの診断」、電学論 A, Vol. 130, No. 10, pp. 892-898 (2010).
- (13) H. Akatsuka: "Progresses in Experimental Study of N₂ Plasma Diagnostics by Optical Emission Spectroscopy", Ch. 13 in "Chemical Kinetics", Vivek Patel (Ed.), (2012).
- (14) H. Akatsuka and M. Suzuki: "Numerical Study on Population Inversion and Lasing Conditions in an Optically Thick Recombining Helium Plasma", Contrib. Plasma Phys., Vol. 34, No. 4, pp.539-561 (1994).