誘導結合型プラズマを用いた超小型イオン推進機における 容量結合の影響

○鷹尾 祥典(京大工), 阪本 将隆(京大工・院), 江利口 浩二, 斧 高一(京大工)

1. はじめに

近年,超小型衛星の軌道・姿勢制御や重力波観測衛 星の大気抵抗・太陽輻射圧補正を用途とした超小型推 進機(マイクロスラスタ)が求められている.このような要 求を満たすマイクロスラスタの一つにイオンスラスタが挙 げられる.著者らは図 1 に示すような高周波誘導結合プ ラズマ源(ICP: Inductively Coupled Plasma)を利用した 超小型イオン推進機の研究開発を数値計算および実験 の両面から行っている¹⁻⁴.

一般に高周波(RF)誘導放電には低電力でプラズマ 密度が低い容量結合放電領域(E モード)と高電力でプ ラズマ密度が高い誘導結合放電領域(H モード)の存在 が知られている⁵⁾. イオンスラスタの推進効率を上げるに は高いプラズマ密度が不可欠なため, H モードの放電を 得ることが望ましい. 一方, マイクロスラスタでは利用でき る電力が小さいため, そのような低電力では H モードが 実現できない可能性が考えられる⁶⁾.

また, RF電力を供給するアンテナコイルの両端には V = *oLI*(*a*: RF角周波数, *L*: コイル自己インダクタンス, *I*: コイル電流)に相当する電位差Vが発生することにより, Hモードの放電であっても容量結合が無視できない可能 性もある. 特に系が小さくなると, (i) コイルとプラズマを 隔てる誘電体窓の厚さが薄くなり, かつ, (ii) 体積に対 する表面積が大きくなることでプラズマ密度が低下し シース厚さが無視できないレベルになる. これら2つの効 果のために, コイル両端の電位差 V が誘電体窓だけで なくシースにおいても大きく電位降下し, 容量結合がより 顕著に現れると考えられる⁷⁾.

本研究の目的は、これまでに著者らが開発した粒子 計算モデルに容量結合の効果を考慮することで、(i) 容 量結合がプラズマ源に与える影響と、(ii) E モードから H モードへの遷移現象を把握することとする.

2. 数值計算方手法

図 2(a) に超小型イオン推進機のイオン源に相当す る計算対象領域を示す.イオン源は半径 5 mm,長さ10 mm とし,円筒型の誘電体容器の周囲に円環コイルを 5 巻した形状となっている(各コイルの位置は z = 1,3,5,7,

図 1. 超小型高周波イオン推進機の(a)概念図および (b)試作機の写真.

9 mm).本研究で用いる粒子計算手法は ES PIC (Electrostatic Particle-in-Cell)であり,荷電粒子(電子およびイオン)と背景中性ガス粒子との衝突を Monte Carlo 法(MCC: Monte Carlo Collisions)によって加味している. モデルの詳細に関しては参考文献に委ね^{8,9},ここでは 簡単に述べるに留める.

本研究では以下の仮定の下で計算を行った.(i)座 標は2次元軸対称 (r,z)とする.(ii)作動ガスはXeとす る.(iii)電子と1価のイオンのみを粒子として扱う.(iv) 中性粒子は粒子として取り扱わず,プラズマ源内でその 密度は空間的・時間的に一定とする.(v)荷電粒子と中 性粒子との衝突では,電子は弾性・励起・電離の各衝突 を,イオンは弾性と電荷交換の各衝突を考慮する¹⁰⁻¹³⁾. なお,電荷交換によって生じる中性粒子,励起状態の準 安定原子,および荷電粒子間のクーロン衝突は考慮し ない.そして,中性粒子の速度分布は 300 K のマクス ウェル分布とした.また,計算セルは軸方向・径方向とも に 0.1 mm の等間隔格子とし,計算粒子は電子・イオンと もに各 50 万個程度を与えている.

本計算モデルは、荷電粒子の分布から生じるポテン シャルを求めるポアソン方程式、コイル電流により生じる 誘導電磁場を求める支配方程式、そして荷電粒子の運 動方程式とMCCからなる.なお、MCCには計算時間の 省力化のため null collision 法を用いている¹⁴⁾. イオンス ラスタで利用される低圧プラズマにおいては、無衝突加 熱機構が電力吸収において重要な役割を果たすことが

図 2. (a)本研究で対象とする計算領域. (b)容量結合を 考慮しない場合におけるポテンシャルの境界条件. (c) 容量結合を考慮する場合における同境界条件.

図 3. 時間平均した電子密度 *n*eの空間分布(*P*_{abs} = 0.1 W, *f* = 100 MHz, *p* = 5 mTorr, *L* = 200 nH). (a)容量結合考慮無し, (b)容量結合考慮有り.

知られている¹⁵⁾.この無衝突加熱を考慮するためには, 電子群の運動を追跡することにより直接プラズマ電流を 求めればよい⁹. なお, 次節の計算ではプラズマに吸収 される電力 P_{abs} を入力パラメータとし, それを満たすよう にコイル電流を調節している.

容量結合の効果を調べるため,ポテンシャル計算に はプラズマが存在する領域に加えて,誘電体領域も考 慮している^の. ここでは, 図 2(b),(c) に示すようにポアソ ン方程式の境界条件として2つの方式を用いた.一方は, コイルと誘電体の間にファラデーシールドが挿入されて おり,そこでの電位は常にゼロとしたもの.もう一方は,コ イルの接地側(z = 1 mm)から高電位側(z = 9 mm)にか けて線形に電位振幅が上昇するものである.後者に関し ては、コイル電流を $I(t) = I \sin(2\pi ft)$ とした場合、コイル の高電位側におけるポテンシャルは $\phi(t) = 2\pi fLI$ cos(2πft) と振動する. 実際には、容量結合が生じると各 コイルに流れる電流は容量結合成分だけ徐々に減少す るため、今回の計算ではやや過剰な見積もりになる¹⁶. この効果の考慮については今後の課題である.以下で は、容量結合を考慮しない場合を w/o CC (without Capacitive Coupling), 考慮する場合を with CC と略記す る. なお, 誘電体部分を計算領域に含めるにあたり, 誘 電体壁面上における電荷蓄積も考慮している¹⁷⁾.

3. プラズマ源の解析結果と考察

3.1. 容量結合の影響

まず計算条件を、プラズマに吸収される電力 $P_{abs} = 0.1$ W, RF 周波数 f = 100 MHz, Xe ガス圧力 p = 5 mTorr, コイルの自己インダクタンス L = 200 nHと固定して計算を 行った.図 3-5 に電子密度 n_e 、ポテンシャル¢、電子温 度 T_e の空間分布を示す.前述の通り、各図の w/o CC は 容量結合を考慮せず純粋な誘導結合のみを考慮した場 合、with CC は誘導結合に加えて容量結合を考慮した 結果である.なお、この条件における電力密度は 1.3×10^{-1} W/cm³であり、半径 15 cm、長さ5 cm の容器に 450 W 投入した電力レベルとなる.また、図の分布は RF 500 周期分 (5 µs) で時間平均化したものである.

図 3 の電子密度分布が示すように、低圧での拡散効 果、および、系が小さいことに伴うプラズマ容器表面での 大きな損失のため、円筒容器中心軸上において最大電 子密度を取り、密度勾配の大きい分布となる. 純粋な誘 導結合のみを考慮した場合 (w/o CC)は、完全に対称な 分布となっている. 一方、容量結合を考慮すると(with CC)、電子密度の最大値は 7.5×10¹⁶ m⁻³ から 6.6×10¹⁶ m⁻³ へと1 割強減少し、かつ、その分布も両者で大きく異 なる. 容量結合を考慮した場合はシースが厚くなることで より密度勾配が大きくなっている. 特に、コイルの高電位 側(z = 9 mm)においてシースが厚くなり、そこでの電子

図 4. 時間平均したポテンシャルφの空間分布(P_{abs} = 0.1 W, f = 100 MHz, p = 5 mTorr, L = 200 nH). (a)容 量結合考慮無し, (b)容量結合考慮有り.

密度減少が顕著である. ここには図示していないが, イ オン密度分分布も同様な形状となる. このプラズマ密度 分布を見る限り, 径方向になるべく一様なプラズマ分布 を得るためには, 加速グリッド電極の反対側にコイルの 高電位側を配置する方が望ましいと考えられる.

このような電子密度分布の違いが現れるのは図 4 に 示すポテンシャル分布の相違が大きく影響しているので あろう. 容量結合を考慮しない場合(w/o CC), プラズマ ポテンシャルの最大値は21 V であるのに対して、考慮す る場合(with CC), 84 V にもなっている. また, 図では分 かりにくいが,誘電体壁面上ではいずれの場合も負に帯 電しており、容量結合を考慮しない場合は-2.3 V、考慮 する場合は-54 V となる. 特にコイルの高電位側におい て,容量結合を考慮する場合にはプラズマバルク部と誘 電体壁面上で大きなポテンシャル差が生じている.この 結果,シースが厚くなることで図 3 に示すような電子密 度分布になると考えられる.なお,誘電体壁面上で負に 帯電する理由は、そこでの正味の直流電流はゼロとなる 必要があるからである(電極面積と接地面積が異なる非 対称な平行平板容量結合プラズマ源と同じ原理.誘電 体が直流阻止コンデンサの役割を果たしている)⁹.

容量結合を考慮するかしないかによって、電子密度分 布およびポテンシャル分布が大きく異なるように、電子温 度分布も同様に大きな差異が現れている(図 5).純粋 な誘導結合の場合(w/o CC)、コイル電流によって生じる 周方向の誘導電場 E_{θ} の影響を大きく受けて、真ん中の

図 5. 時間平均した電子温度 T_e の空間分布($P_{abs} = 0.1$ W, f = 100 MHz, p = 5 mTorr, L = 200 nH). (a)容量結 合考慮無し, (b)容量結合考慮有り.

表 1. プラズマに吸収される電力 Pabs と損失電力 Ploss のパワーバランス.

w/o CC							
P _{abs} (mW)	100	P _{loss} (mW)	100				
$P_{e,r}$ (mW)	-15.2	$P_{e,wall}$ (mW)	10.9				
$P_{e,z}$ (mW)	22.8	$P_{i,wall}$ (mW)	29.9				
$\pmb{P}_{e,\theta}$ (mW)	61.2	P _{e,elas} (mW)	0.006				
<i>P</i> _{i,r} (mW)	18.3	P _{e,exc} (mW)	34.7				
P _{i,z} (mW)	12.9	P _{e,ion} (mW)	23.1				
$\pmb{P}_{i,\theta}$ (mW)	-0.019	P _{i,elas} (mW)	0.249				
-	_	P _{i,cex} (mW)	1.08				
with CC							
	wit	h CC					
P _{abs} (mW)	wit 100	h CC P _{loss} (mW)	100				
P _{abs} (mW) P _{e,r} (mW)	wit 100 14.5	h CC P _{loss} (mW) P _{e,wall} (mW)	100 13.1				
P_{abs} (mW) $P_{e,r}$ (mW) $P_{e,z}$ (mW)	wit 100 14.5 16.8	h CC P _{loss} (mW) P _{e,wall} (mW) P _{i,wall} (mW)	100 13.1 62.9				
$P_{abs} (mW)$ $P_{e,r} (mW)$ $P_{e,z} (mW)$ $P_{e,\theta} (mW)$	witt 100 14.5 16.8 2.14	h CC P _{loss} (mW) P _{e,wall} (mW) P _{i,wall} (mW) P _{e,elas} (mW)	100 13.1 62.9 0.001				
$P_{abs} (mW)$ $P_{e,r} (mW)$ $P_{e,z} (mW)$ $P_{e,\theta} (mW)$ $P_{i,r} (mW)$	wit 100 14.5 16.8 2.14 40.6	h CC P _{loss} (mW) P _{e,wall} (mW) P _{i,wall} (mW) P _{e,elas} (mW) P _{e,exc} (mW)	100 13.1 62.9 0.001 9.55				
$P_{abs} (mW)$ $P_{e,r} (mW)$ $P_{e,z} (mW)$ $P_{e,\theta} (mW)$ $P_{i,r} (mW)$ $P_{i,z} (mW)$	wit 100 14.5 16.8 2.14 40.6 26	h CC P _{loss} (mW) P _{e,wall} (mW) P _{i,wall} (mW) P _{e,elas} (mW) P _{e,exc} (mW) P _{e,ion} (mW)	100 13.1 62.9 0.001 9.55 10.7				
$P_{abs} (mW)$ $P_{e,r} (mW)$ $P_{e,z} (mW)$ $P_{e,\theta} (mW)$ $P_{i,r} (mW)$ $P_{i,z} (mW)$ $P_{i,\theta} (mW)$	wit 100 14.5 16.8 2.14 40.6 26 -0.021	h CC P_{ioss} (mW) $P_{e,wall}$ (mW) $P_{i,wall}$ (mW) $P_{e,elas}$ (mW) $P_{e,exc}$ (mW) $P_{e,ion}$ (mW) $P_{i,elas}$ (mW)	100 13.1 62.9 0.001 9.55 10.7 0.348				

コイル直下で電子温度が最大となる.一方,容量結合を 考慮する場合(with CC),真ん中のコイル直下ではなく, コイルの高電位側の近傍で最大値を取ることが分かる. これは, E_{θ} よりも容量結合に伴うポテンシャル振動の影 響が大きいためと考えられる.

図 6. 空間平均したプラズマ密度の電力および周波数 依存性. (a)容量結合考慮無し, (b)容量結合考慮有り.

表 1 にプラズマに吸収される電力 P_{abs} と損失電力 P_{loss} のパワーバランスを示す. 表中各添字は, e: 電子, i: イ オン, r.z.θ. 各方向, wall: 壁面での損失, elas: 弾性衝 突による損失, exc: 励起衝突による損失, ion: 電離衝 突による損失, cex: 電荷交換衝突による損失を表す. 定常状態であるので、 $P_{abs} = P_{loss} = 100 \text{ mW} となり、また、$ 電子・イオンそれぞれにおける吸収と損失はバランスす る(小計すると同じ値になる)ことを確認している. 表が示 す通り,容量結合を考慮しない場合(w/o CC),電子温 度分布の説明で述べた通り,周方向による電力吸収が 支配的である.また,系が小さく壁の影響が大きいため, イオンが壁面に持ち去る電力は大きいものの、電離にも 電力が使われていることが分かる.一方,容量結合を考 慮する場合(with CC), E_{θ} はほとんど電力吸収に寄与し ておらず,電力の大部分がイオンに吸収されていること が分かる.このイオンによる電力吸収は、シースにおける 電位差によって生じるものであり、そのほとんどは容器壁 面で損失している.よって,容量結合を考慮する場合に は, RF 電力がイオンによって消費されてしまい, 電離に 必要な電子の加熱にあまり使われていない事がわかる. このため、図3に示すように容量結合を考慮する場合は、 しない場合と比べて電子密度が減少する結果となる.

これらの図および表が示すように、容量結合を考慮す るかしないかによって、プラズマ源の各パラメータ分布は 大きく変化する.よって、本研究で扱うような小さな ICP

図 7. コイル電流の電力および周波数依存性. (a)容量 結合考慮無し, (b)容量結合考慮有り.

プラズマ源をモデル化する際には注意を要することが分かる. なお,本研究が対象とする超小型 ICP プラズマ源 にはファラデーシールドを用いていないため¹⁾,この節で 計算を行った条件 ($P_{abs} = 100 \text{ mW}$, f = 100 MHz, p = 5 mTorr)においては,容量結合が支配的な E モードの放 電になっていると考えられる.

3.2. RF 電力・周波数依存性(モード遷移)

はじめに述べたように、イオンスラスタの推進効率を上 げるには高いプラズマ密度が得られるHモードとなること が望ましい.ここでは、Hモードが現れる条件を探るため、 吸収電力を $P_{abs} = 0.1-2.0$ W, RF 周波数をf = 10, 100,500 MHz と大きく振って計算を行った.

図 6 に空間平均したプラズマ密度の電力・周波数依存性を示す.容量結合を考慮しない場合(w/o CC)は, RF周波数にはほとんど依存せず,いずれの周波数条件においても吸収電力の増加とともにプラズマ密度は単調に増加している.なお,f = 10 MHz での計算は不安定になりやすく,容量結合を考慮しない場合,一番電力の高い $P_{abs} = 2.0$ W では計算粒子が発散に向かい収束解を得ることができなかった.一方,容量結合を考慮する場合(with CC),同様に吸収電力の増加とともにプラズマ密度は増加するが,その値は RF 周波数にも大きく依存していることが分かる.ここで,f = 10 MHz, $P_{abs} = 2.0$ W の条件では容量結合を考慮しない場合と同様に計算粒子が発散し収束解を得ることができなかったが, $P_{abs} = 20$ W

表 2. 各計算条件におけるポテンシャルの最大値 ϕ_{max} , 最小値 ϕ_{min} , およびその差分 $\Delta \phi$.

w/o CC	$m{P}_{abs}$ (W)	${oldsymbol{\phi}}_{ ext{max}}$ (V)	${\pmb \phi}_{ m min}$ (V)	<i>∆φ</i> (∨)
10 MHz	0.1	19.7	-2.3	22.0
	0.2	19.3	-2.7	22.0
	0.5	<u>19</u> .1	-3.3	22.4
	1.0	19.9	-3.6	23.5
	0.1	20.6	-2.3	22.9
100	0.2	20.2	-2.8	23.0
	0.5	20.2	-3.5	23.7
IVITIZ	1.0	20.7	-4.0	24.7
	2.0	24.4	-3.9	28.3
	0.1	19.1	-3.3	22.4
	0.2	19 .1	-3.3	22.4
500 мнz	0.5	23.2	-1.6	24.8
	1.0	20.9	-3.8	24.7
	2.0	24.3	-3.7	28.0
with CC	P _{abs} (W)	$\phi_{\scriptscriptstyle max}$ (V)	$\phi_{_{ m min}}$ (V)	<i>∆φ</i> (v)
with CC	<i>P</i> _{abs} (W) 0.1	∲ _{max} (V)	∮ _{min} (∨)	<i>Δφ</i> (∨)
with CC 10	<i>P</i> _{abs} (W) 0.1 0.2	∲ _{max} (V) 	∮ _{min} (V) 	<i>Δφ</i> (∨)
with CC 10 MHz	P _{abs} (w) 0.1 0.2 0.5	∲ _{max} (V) 30.8	∮ _{min} (V) - - -16.4	<i>Δφ</i> (∨) - - 47.2
with CC 10 MHz	P _{abs} (w) 0.1 0.2 0.5 1.0	∳ max (V) - 30.8 30.3	<pre></pre>	<i>Δφ</i> (v) - 47.2 44.3
with cc 10 MHz	P abs (W) 0.1 0.2 0.5 1.0 0.1	¢ max (V) - 30.8 30.3 84.1	<pre></pre>	<i>∆</i> ¢ (∨) 47.2 44.3 137.8
with CC 10 MHz	P abs (W) 0.1 0.2 0.5 1.0 0.1 0.2	<pre></pre>	<pre></pre>	∠¢ (v) - 47.2 44.3 137.8 166.1
with CC 10 MHz 100	P abs (W) 0.1 0.2 0.5 1.0 0.1 0.2 0.5	 	<pre></pre>	∠¢ (v) - 47.2 44.3 137.8 166.1 207.5
with CC 10 MHz 100 MHz	P abs (W) 0.1 0.2 0.5 1.0 0.1 0.2 0.2 0.5 1.0	 <i>φ</i> max (V) − 30.8 30.3 84.1 101.0 123.0 132.0 	<pre></pre>	<i>∆</i> ¢ (v) - 47.2 44.3 137.8 166.1 207.5 224.6
with CC 10 MHz 100 MHz	P abs (W) 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 1.0 2.0	 	<pre></pre>	 ∠φ (v) - 47.2 44.3 137.8 166.1 207.5 224.6 217.5
with CC 10 MHz 100 MHz	P abs (W) 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 2.0 0.1	 	<pre></pre>	 ∠φ (v) - 47.2 44.3 137.8 166.1 207.5 224.6 217.5 48.3
with CC 10 MHz 100 MHz	P abs (W) 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 2.0 0.1 0.1 0.2	 		 ∠φ (v) - 47.2 44.3 137.8 166.1 207.5 224.6 217.5 48.3 48.7
with CC 10 MHz 100 MHz 500	P abs (W) 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 2.0 0.1 0.2 0.1 0.2 0.5 1.0 0.5 0.5	 	 ✓ min (V) ✓ <li< td=""><td> ∠φ (v) – 47.2 44.3 137.8 166.1 207.5 224.6 217.5 48.3 48.7 61.0 </td></li<>	 ∠φ (v) – 47.2 44.3 137.8 166.1 207.5 224.6 217.5 48.3 48.7 61.0
with CC 10 MHz 100 MHz 500 MHz	P abs (W) 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 2.0 0.1 0.1 0.2 0.5 1.0 1.0 0.1 0.2 0.5 1.0	 	 ✓ min (V) ✓ <li< td=""><td> ∠φ (v) - 47.2 44.3 137.8 166.1 207.5 224.6 217.5 48.3 48.7 61.0 75.0 </td></li<>	 ∠φ (v) - 47.2 44.3 137.8 166.1 207.5 224.6 217.5 48.3 48.7 61.0 75.0

0.1, 0.2 W の低電力においては, コイル電流を増やして も計算粒子が消滅しプラズマを維持できない結果となっ た. このことは, *f* = 10 MHz の低周波の場合, 低電力に おいては E モードの放電が支配的であることを示唆して おり, 容器壁での損失が大きくなることでプラズマを維持 できなかったと考えられる. 実際, 実験においても, 10 MHz 程度の周波数においてはプラズマ点火が難しく, かつ, 放電維持電力も 10 W 以上必要であった¹⁾.

図 7 にコイル電流の電力・周波数依存性を示す. 基本的には吸収電力の増加とともに必要なコイル電流も増加するが,容量結合を考慮しない場合 (w/o CC) は, f = 100,500 MHz においてコイル電流が逆に減少する結果となった. これは, ICP プラズマ源の等価回路モデル計算が示すように¹⁾,本来, f = 100,500 MHz の高周波に

5

表 3. 容量結合を考慮する場合の各条件における,電 子による吸収電力の各方向成分の割合.

	with CC	P _{abs} (W)	$P_{e,r}/P_{abs}$	$P_{e,z}/P_{abs}$	$P_{e,\theta}/P_{abs}$
	10 MHz	0.1	-	-	-
		0.2	-	-	-
		0.5	-13.3%	-3.2%	72.4%
		1.0	-9.9%	5.2%	<mark>61.1%</mark>
		0.1	14.5%	16.8%	2.1%
		0.2	12.4%	13.8%	4.1%
100	0.5	8.7%	9.9%	8.1%	
	IVITIZ	1.0	5.5%	6.8%	12.2%
		2.0	3.2%	6.9%	14.6%
500 мнz	0.1	<mark>1</mark> 9.9%	<mark>32</mark> .0%	-0.2%	
	0.2	<mark>2</mark> 3.9%	<mark>2</mark> 3.5%	1.2%	
	0.5	<mark>2</mark> 1.8%	<mark>2</mark> 2.4%	0.9%	
	1.0	<mark>2</mark> 0.2%	<mark>2</mark> 1.3%	1.1%	
	2.0	<mark>1</mark> 8.5%	23.0%	1.0%	

おいては容量結合が支配的であると考えられるところに, 強制的に誘導結合のみを考慮しているためと考えられる. 一方,周波数の増加に伴い必要なコイル電流は減少し, 特に容量結合を考慮する場合(with CC),その減少幅 は顕著となる.

表 2に各条件におけるポテンシャルの最大値 ϕ_{max} ,最 小値 ϕ_{min} およびその差分 $\Delta \phi$ をまとめて示す.純粋な誘 導結合の場合(w/o CC),表が示す通り,ポテンシャルの 最大値,最小値,その差分ともに,電力・周波数いずれ に対しても大きな変化は見られない.一方,容量結合を 考慮する場合(with CC),電力と周波数に応じて大きく 変化する.特に,f = 100 MHzにおいてポテンシャルの 差 $\Delta \phi$ が極めて大きくなっている.この大きな $\Delta \phi$ の結果, 前節で述べたように,RF電力の多くが電子ではなくイオ ンによって消費されることで,結果として,図 6(b) が示 すようにプラズマ密度がf = 100 MHz で大きく減少する 結果になっていると考えられる.

最後に、モード遷移についての考察を行う. 表 3 に容量結合を考慮する場合 (with CC)の各条件における、吸収電力の各方向成分の割合を示す. なお、ここではイオンによる電力吸収は省いてあるため、各項目を足し合わせても 100%にはならない. f = 100,500 MHz の高周波の場合、全ての吸収電力条件において、電子の周方向運動による電力吸収がほとんど寄与していないことが分かる. 一方、f = 10 MHz の低周波においては容量結合を考慮しても周方向の電力吸収が支配的であり、H モードであると考えられる. このことより、等価回路モデル計算の結果と同様に¹⁾, f = 100,500 MHz の高周波領域にお

いては,容量結合が支配的である一方,f = 10 MHzの 低周波領域においては高電力条件で H モードになるこ とが示された.

4. おわりに

本研究では、容量結合の効果を考慮する粒子計算モ デルを構築し、超小型イオン推進機の ICP プラズマ源に おいて、容量結合がプラズマ源に与える影響と、E モー ドおよび H モードとなる条件について解析を行った. そ の結果、特に RF 周波数 100 MHz において、容量結合 の効果が顕著に現れた. これは、電荷蓄積に伴い誘電 体表面でポテンシャルが大きく負となりバルクのポテン シャルと大きな電位差が発生、その結果、電子ではなく 主にイオンに RF 電力が吸収されることが原因であると考 えられる. また、10 MHz の低周波領域においては、容量 結合を考慮した場合でも、高電力条件においてHモード が支配的であることが確認できた.

今後の課題としては,現在 PIC 計算の結果を基に等価回路モデル計算を行っている一方通行の回路モデル 計算を PIC と双方向にすることで,本解析をより実際の系に近づけることが挙げられる.また,イオンビーム引き出しを含めた計算の拡張を行い,実験結果との比較を行っていく予定である.

参考文献

- 阪本将隆, 鷹尾祥典, 江利口浩二, 斧高一: 超小型高 周波イオン推進機の回路シミュレーションと実機特 性評価, 平成 24 年度 宇宙輸送シンポジウム, 2013, STEP-2012-061.
- Takao, Y., Eriguchi, K., and Ono, K.: Miniature Ion Thruster Using a Cylindrical Micro ICP, Proceedings of 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, USA, 2012, AIAA-2012-3950.
- Takao, Y., Eriguchi, K., and Ono, K.: Two-Dimensional Particle-in-Cell Simulation of a Micro RF Ion Thruster, Proceedings of 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 2011, IEPC-2011-076.
- 4) Takao, Y., Eriguchi, K., and Ono, K.: Numerical Analysis of a Micro Ion Thruster Using PIC/MCC Model Proceedings of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, Tennessee, USA, 2010, AIAA-2010-6947.
- Kortshagen, U., Gibson, N. D., and Lawler, J. E.: On the E - H mode transition in RF inductive discharges, J. Phys.

D, 29 (1996), pp. 1224-1236.

- Takao, Y., Eriguchi, K., and Ono, K.: Effect of capacitive coupling in a miniature inductively coupled plasma source, J. Appl. Phys., **112** (2012), pp. 093306-1-10.
- Lieberman, M. A. and Litchenberg, A. J.: Principles of Plasma Discharges and Materials Processing, 2nd ed., Wiley, Hoboken, NJ, 2005, p. 471.
- Birdsall, C. K. and Langdon, A. B.: Plasma Physics via Computer Simulation, IOP Publishing, Bristol, U.K., 1991.
- Takao, Y., Kusaba, N., Eriguchi, K., and Ono, K.: Two-dimensional particle-in-cell Monte Carlo simulation of a miniature inductively coupled plasma source, J. Appl. Phys., **108** (2010), pp. 093309-1-8.
- Boyd, I. D.: Modeling of the near field plume of a Hall thruster, J. Appl. Phys., 95 (2004), pp. 4575-4584.
- Hayashi, M.: Determination of electron-xenon total excitation cross-sections, from threshold to 100 eV, from experimental values of Townsend's α, J. Phys. D, 16 (1983), pp. 581-589.
- 12) Heer, F. J. d., Jansen, R. H. J., and Kaay, W. v. d.: Total cross sections for electron scattering by Ne, Ar, Kr and Xe, J. Phys. B, **12** (1979), pp. 979-1002.
- 13) Rapp, D. and Englander-Golden, P.: Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization, J. Chem. Phys., 43 (1965), pp. 1464-1479.
- 14) Vahedi, V. and Surendra, M.: A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges, Comput. Phys. Commun., 87 (1995), pp. 179-198.
- 15) Turner, M. M.: Collisionless electron heating in an inductively coupled discharge, Phys. Rev. Lett., 71 (1993), pp. 1844-1847.
- 16) Kawamura, E., Graves, D. B., and Lieberman, M. A.: Fast 2D hybrid fluid-analytical simulation of inductive/capacitive discharges, Plasma Sources Sci. Technol., **20** (2011), pp. 035009-1-12.
- Vahedi, V. and DiPeso, G.: Simultaneous Potential and Circuit Solution for Two-Dimensional Bounded Plasma Simulation Codes, J. Comput. Phys., **131** (1997), pp. 149-163.