Metamorphosed Clasts in the CV Carbonaceous Chondrite Breccias Mokoia and Yamato-86009: Evidence for Strong Thermal Metamorphism on the CV Parent Asteroid

K. Jogo¹, A. N. Krot² and K. Nagashima²

¹Tohoku University

²University of Hawai'i at Mānoa

Thermal metamorphism in CV chondrites

CV3 chondrites

- \bigcirc Petrologic subtypes: 3.1 ->3.7 (Bonal et al., 2006)
- Most metamorphosed CV chondrite is <u>Allende</u>
- → Peak metamorphic T: ~500–600 °C (e.g., ol-sp thermometer: Weinbruch et al., 1994)
- Paleomagnetic record of Allende
- → CV parent asteroid might be partly melted and form Fe-Ni core (e.g., Weiss et al., 2010)
- ⇔Impact? (Bland et al., 2011)

Thermal evolution of CV asteroid is not well-known

CVs?

Fe-Ni core?

CV parent asteroid

Metamorphosed clasts in CV3 chondrites

Metamorphosed clast in Y-86009 (CV) (Jogo et al., 2008)

- Olivine-rich aggregates
- Triple junctions
- Compositionally uniform ol & cpx
- Metamorphic T: >750−800 °C (ol-sp & cpx thermometers: Krot and Hutcheon, 1997)

Clasts formed by prolonged annealing in asteroidal interior (e.g., Krot and Hutcheon, 1997)

Genetic relationship between CV chondrites?

Purpose of this study

- ✓ Genetic relationship between metamorphosed clasts and CV chondrites?
- → Constraints on the internal structure and thermal history of CV asteroid
- We found 50 metamorphosed clasts in the CV3 breccias Mokoia and Yamato-86009
 - ✓ Mineralogy and petrology
 - ✓ O-isotope compositions of olivine (UH Cameca ims-1280 ion microprobe)

Metamorphosed clasts

- O Coarse-grained (10-50 μm), granular, polymineralic rocks composed of:
 - ✓ olivine (Fa₃₁₋₃₉)
 - ✓ diopside (Fs₇₋₁₃Wo₄₄₋₅₃)
 - √ plagioclase (An₃₇₋₈₄Ab₆₃₋₁₇)
 - ✓ Cr-spinel (Cr/(Cr+Al) = 0.21-0.45, Fe/(Fe+Mg) = 0.64-0.77)
 - ✓ nepheline, sulfides, phosphates, and rare grains of Ni-rich taenite
 - ✓ low-Ca pyroxene is absent
- Triple junctions
- Uniform compositions of ol & px within an individual clast (e.g., Fa₃₅, Fs₁₀₋₁₁Wo₄₈₋₅₀)
- Metamorphic T: >700-800 °C (ol-sp & cpx thermometers)

⇒prolonged annealing

Metamorphosed clast in Mokoia

Results & Discussion

O-isotope compositions of olivine

✓ Olivine grains (Fa₂₅₋₃₉) in 5 clasts in Mokoia & Y-86009

O-isotope compositions of clasts plot along or near CCAM line and the Allende mass fractionation (AMF) line.

 Uniform O-isotope compositions within individual clast

⇒Prolonged annealing

Chondrule -like part finer-grained materials

Less-metamorphosed clasts

Clast = chondrule + matrix

- No triple junctions
- Variations in ol & px compositions within an individual clast

Periphery: re-crystallized finer-grained materials

Olivine (Fa₃₈₋₃₉), Ca-rich pyroxene (Fs₁₀₋₁₂Wo₄₇₋₅₁), plagioclase (An₇₀₋ ₇₂Ab₂₈₋₃₁), spinel and sulfide

- ✓ Similar mineralogy to clasts
- ✓ Similar bulk chemical compositions to CV_{OxA} Allende coarse-grained rim and matrix

Center: chondrule-like (Fa₂₅₋₃₀)

←Less-metamorphosed clast in CV Mokoia

O-isotopes: Lessmetamorphosed clasts

- ✓ Olivine grains (Fa_{25 39}) in 2 clasts in Mokoia & Y-86009
 - O-isotope compositions of olivine grains show a variation within individual clast
 - ⇒Original O-isotope compositions of precursors
 - Similar O-isotope compositions of olivine in CV chondrules and matrix

Genetic relationship between clasts and CV chondrites

In CV_{OxA} chondrites or Allende dark inclusions, low-Ca pyroxene in chondrules were preferentially replaced by ferroan olivine by hydrothermal alteration in the CV asteroid (e.g., Brearley and Krot, 2011)

CV_{OxA} Allende (Brearley and Krot, 2011)

Clasts

- Absence of low-Ca px
- O-isotope compositions of ol
- Chondrule size
- Bulk chemical composition

Heavily-altered CV chondrites could be precursors of the clasts

Summary

- We found 50 metamorphic clasts in CV Mokoia and Y-86009 breccias
- The clasts are coarse grained, granular rocks having homogeneous chemical and O-isotopic compositions
 - ⇒The clasts formed by prolonged annealing (>700-800 °C)
- Mineralogy and O-isotopic compositions of clasts are most similar to those of CV chondrites
 - ⇒The clasts formed by annealing of CV-like chondritic materials
 - ⇒Thermal metamorphism (>700-800 °C) was occurred in the CV asteroid