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Our Motivation

e We want to know whether there is life on other planets.
e How can we explore such life?

e Molecular bands, CH4 and CO2, in observed spectra are important for
understanding the environment of planets.

e Direct observations of exoplanets are much more difficult than those of brown
dwarfs.

e Studies of brown dwarf atmospheres are a foundation for the study of exoplanet
atmospheres and biology.

e | will present analyses of molecular bands in brown dwarf spectra taken by AKARI.
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Introduction:
Brown Dwarfs
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- too light to sustain hydrogen fusion ( mass < 0.08 Msun)

- Spectral type * L, T type

(Defined by strength of molecular absorption bands in optical and near-infrared range)

Spectral Class

- First observation in 1995 (Nakajima et al. 1995) => not yet fully understood

- recent observations of exoplanets => discover a large variety of planets.
=> Temperature overlap between BDs and exoplanets
=> BD and exoplanet atmospheres could potentially be similar.

Luminosity
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Introduction : Atmosphere
Molecular Atmosphere
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There are many molecular absorption bands.
=> They characterize brown dwarf spectra.
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Introduction : Atmosphere
Atmosphere with dust
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L type : Dust layer in upper photosphere.
Dust extinction appears in the spectrum.
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Brown dwarf atmospheres including the effects of dust are not yet understood.
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Problem:
We cannot yet understand entire spectrum
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AKARI/IRC

* Launched in February 2006

* Observations continued until February 2010

* Reflecting telescope (©68.5cm)
« Two instruments (IRC, FIS)

* InfraRed Camera (IRC) : 1.8 - 26 pm
 NIR  :1.7-5.5pm

* grism (R=X/AN=120)

« Wavelength range : 2.5-5.0 pm
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Unified Cloudy Model (UCM, Tsuji 2002, 2005)

UCM : B.D. atmosphere model (calculate radiative transfer based on hydrostatic equilibrium)

account for dust formation (condensation) and sublimation/sedimentation
(Fe, Mg2SiO3, Al,O3)

Physical parameters of model atmosphere:

UCM for B.Ds

* Teif (700-2200K, grid=100K), 5th parameter:
* log g (4.5, 5.0, 5.5), —l— T (1700K, 1800K, 1T900K, Tcond)
- solar chemical composition, (critical temperature; thickness of dust)

* solar Emicro (~Tkm/s)

T <Ter : Dust settles because dust
grains become large
Ter < T < Teond

: Condensation and sublimation
are balanced. A

gas
dust

>

(0.01 pm)
rapid phase changes
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Fitti ng Result CO2 CO We use supplementary shorter wavelength

spectra in our analysis in the model fitting.
UCM explains AKARI spectra in principle,
but not the entire spectrum.
D T
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New approach 1: for deviations in the CO/CO, bands

Tsuji Yamamura, Sorahana 2011

C and O elemental abundances Sorahana et al., 2013 submitted to ApJ

»In our previous studies : solar metallicity (Tsuji, Yamamura, Sorahana 2011)
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“C & O” abundances are different in each object
(Deviation of the CO abundance is future work).
=> These analyses can lead to the derivation of elemental abundances of exoplanets, which
are important for understanding their origin and formation.
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New approach 2: for deviations in CH4band
Signature of Chromospheric Activity sonna and suzi 2013

submitted to MNRAS
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Temperature structure based on radiative equilibrium wavelength (um)

=> monotonically decreases

New temperature structure including chromospheric ~ New model fits better than previous attempts.
activity =>may need to consider chromospheric

=> surface temperature should increase. activity when modeling early L dwarfs or young
=> we put floor value  7() = max(T(), Teons) = max(T(), fena ) planets

=> CHj decreases.
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Summary of Analyses of AKARI Spectral Data

e Studies of brown dwarf atmospheres are a foundation for the study of exoplanet
atmospheres and biology.

e We construct a spectral data set of brown dwarfs that continuously covers a new
wavelength range, 2.5-5.0 pm.

e We investigate CO, CH4 and CO; absorption bands against spectral types.
e “C & O” abundances are different in each object.

e These analyses can lead to the derivation of elemental abundances of exoplanets,
which are important for understanding their origin and formation.

e Thus we conclude that chromospheric activity should be accounted for when modeling
early L dwarfs or young planets.

e Our result is important for investigating life on exoplanets orbiting around BDs.
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Thank you very much for your attention. .
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