小型飛翔体実験におけるイリジウム衛星通信の活用と

データ配信システムの開発

永田 靖典(岡山大・院)

柳瀬 眞一郎(岡山大・院)

山田和彦 (JAXA/ISAS)

1 はじめに

気球やロケットなどの飛翔体を用いたフライト実験 において,飛翔体と地上との間でデータを送受信する ためには,電波による無線通信が必要不可欠であり, 地上系として特別な装置や施設が必要である.飛翔体 の位置情報や計測したデータをリアルタイムで取得す るには,アンテナを設置し,飛翔体を追尾してアンテ ナの方向を制御し続ける必要がある.このようなシス テムを構築・維持するには多大な労力と資金が必要と なってしまう.特に飛翔距離が長い場合には,複数の 地上局が必要となり,この問題はより深刻である.

これを解決する手段として,民間通信衛星を使った システムが考えられる.米国イリジウム社(Iridium Communications Inc.)は,高度約780[km]の低軌道 上にある66個の通信衛星で構成された通信網を用い ることで,世界中どこでも通信可能なサービスを提供 している⁽¹⁾.地上系の施設に関しては,衛星を運用す るイリジウム社によって保守・運用されているため, ユーザは最低限の装置だけでデータの送受信を実現す ることが可能である.イリジウム衛星通信は世界中ど こでも使用可能であるため,飛翔体が地上アンテナの 視野外に行っても通信でき,その状況をモニタリング し続けることができる.また,通信経路を冗長化させ ることで,バックアップ用としても有効であると考え られる.

我々はこれまでに,イリジウム衛星通信と GPS と を組み合わせた位置特定システムの開発とそのフライ ト実証を進めており,システムの有効性を示してきた ^(2,3).ハードウェアとしての位置特定システムと共に, 取得したデータをリアルタイムで配信するデータ配信 システムについても開発を進めてきた.本報告では, 2015 年度に実施された豪州大気球実験,B-EGG ゴム 気球実験,観測ロケット S-520-30 号機実験について, 搭載したシステムとデータ配信システム,および飛翔 結果について述べる.

2 システムの概要

2.1 搭載システム

ここで述べる 3 つのフライト実験に搭載したシス テムは,全て異なるシステムであるが,共通する構成 要素は,イリジウム通信モジュールとこれを制御する FPGA コントローラ,測位用の GPS モジュール,イ リジウム用アンテナ,GPS 用アンテナである.共通 する機能としては,GPS による測位データなどのテ レメデータをダウンリンクするとともに,アップリン クされたコマンド内容に応じた振る舞いを行うことで ある.

このシステムでは,少量のパケット単位でパルス的 にイリジウム衛星通信を行う,SBD(Short Burst Data) 通信⁽⁴⁾を用いている.SBD通信では,小型の端末と 通信用アンテナを用いることで,衛星通信ネットワー ク,イリジウム社設備,およびインターネットを介し たデータ通信が可能となる.ユーザはイリジウム社と 電子メールでやりとりすることで,SBD 通信モジュー ルからのテレメータのダウンリンクおよびコマンドの アップリンクを行うことができるため,インターネッ トに接続された PC 等の端末と QL (Quick Look)プ ログラムを用意するだけで地上系を構築することがで きる.現状の SBD 通信モジュールの場合,1回の通信 でテレメータデータを 340 [bytes] まで,コマンドデー タを 270 [bytes] まで送受信できる.

2.2 データ配信システム

フライト実験では通常,不測の事態を避けるため に,インターネットから隔離された PC が用いられ るが,SBD 通信の場合,インターネットを介して データの送受信が行われるため,必然的にインター ネットに接続された PC を用いることになる.その ため,インターネットを介したデータ配信システム とシームレスに連携させることが可能であり,遠隔 地とのリアルタイムな情報共有が容易に実現可能で ある.この点に着目し,搭載システム開発当初から AirMAAC (Accessible IRidium satellite system using Mini-Apparatus for Aerospace teleCommunication)と 名付けたデータ配信システムを整備し,研究グループ メンバー間での情報共有を図ってきた.

このデータ配信システムでは,SBD 通信で送られて きたメールを自動で取得,解析した後,データをWeb サーバにアップロードする.閲覧者は,PC やスマホ のWeb ブラウザを用いて指定のURLを開くことで, アップロードされたデータが自動で逐次読み込まれ, 画面に位置情報などが表示される.表示内容として は,Google Maps上の飛行軌跡,高度履歴などがある. また,Google Earth上に3次元的な飛行軌跡をリアル タイムで表示させることもできる.これにより,飛翔 体の現在位置や軌道の様子を一目でわかるようになっ ている.図1に,AirMAACにおけるデータの流れを 示す.

3 豪州大気球実験

GRAINE (Gamma-Ray Astro-Imager with Nuclear Emulsion)計画の一環である 2015 年度豪州大気球実 験では,気球搭載用イリジウム SBD テレコマシステ ム IBO-K1 (Iridium SBD telecom system for Balloon Operation ver. K1) が搭載され, SBD 通信を用いて, 位置データ等のテレメータ受信とカッター動作を含む クリティカル運用のコマンド送信が行われた.本気球 は,2015年5月12日6:00(JST)に豪州アリススプリ ングス気球放球基地から放球され,約14時間飛翔し た後に,アリススプリングスから東へ約1000 [km]の クイーンズランド州ロングリーチ郊外に着地した.飛 行高度は約37[km]である.フライト実験では,飛翔 体を常にモニタリングし運用する必要があるが,豪 州での気球実験では飛翔距離が長大になるため,地 上局の視野外に気球が行ってしまう恐れがある.そ のため, SBD 通信を用いたテレコマシステムである IBO-K1は,豪州大気球実験において重要な役割を果

1

図1 AirMAAC におけるデータの流れ(B-EGG の場合)

たしている.

図 2 に, IBO-K1 の外観を示す. IBO-K1 は, SBD 通信モジュールを組み込んだベースボードと GPS な ど各種センサを組み込んだオプションボードとで構成 されており,これにイリジウム用アンテナと GPS 用 アンテナが接続される.表1に,IBO-K1 の主要機器 を示す.ベースボード上に搭載された FPGA は,オプ ションボード上のセンサ類から得られたデータをまと め,SBD 通信モジュールを操作し,テレメデータとし て送信する.SBD 通信モジュールがコマンドを受信 した場合には,FPGA がそれを読み取り,コマンドに 応じた動作を行う.テレメ送信間隔は15秒,1分,3 分から選択可能であり,通信に失敗した場合には速や かに再送を行う.また,コマンドを受信した場合には、 受信したことを知らせるために,速やかに次のテレメ 送信を行う.

約14時間の飛翔中,テレメのダウンリンクは1263 回,コマンドのアップリンクは17回成功した.取得 したテレメデータは現地での運用に用いられると同時 に,岡山大学のWebサーバを介してデータ配信を行っ た.各実験隊員の持つスマホでも配信データを閲覧で きるため,着地点であるロングリーチで待機している 隊員と円滑に情報共有ができ,運用に役立てられた.

4 B-EGG ゴム気球実験

B-EGG (Balloon experiment for re-Entry satellite with Gossamer aeroshell and Gps/iridium) ゴム気球実 験は,超小型衛星 EGG の予備実験として,EGG 搭載 品とシステムの健全性を確認するとともに,イリジウ ム SBD 通信を使った運用手法を確立することを目的 として実施された.EGG の EM (Engineering Model) を吊り下げた直径 11m のゴム気球は,2015 年 8 月 22 日 5:00(JST) に北海道 大樹航空宇宙実験場から放球さ れ,約2時間の飛翔後,沖合の海上に着水した.この

図 2 気球搭載用イリジウム SBD テレコマシステム IBO-K1

衣 I IDU-NI のリイス,土安饿

基板サイズ	50×95mm (突起物含まず)		
ベースボード			
コントローラ	FPGA (Xilinx Spartan6)		
イリジウムモジュール	Iridium SBD 9602		
オプションボード			
GPS モジュール	Garmin GPS 15x		
ADC	MAX1270		
気圧計	MEAS 4525 シリーズ		
温度計	AD590		

図3 豪州大気球の高度履歴とコマンド受信タイミング

間に,EGGにおいてクリティカル運用となる,ワイ ヤーバーナーを用いた太陽電池パネル展開,CO2ボン ベ開栓,電磁弁動作などの動作をSBD通信経由でコ マンド送信して実行させ,その動作の検証を行った. また,JPEGカメラで撮影された画像データをSBD 通信経由で分割して取得した.B-EGGの最高高度は 31.7 [km]である.

図4に,B-EGGの外観を示す.B-EGGは,システム 全体を制御するMCU(Main Control Unit),電力管理 を行うPCU(Power Control Unit),展開機構,ガス系, センサ系などで構成されており,SBD通信モジュー ルが組み込まれた宇宙用イリジウムSBD制御基板が 2台搭載されている.それぞれのSBD制御基板には, FPGAとSBD9603モジュールが組み込まれており, FPGAがMCUから送られてきたテレメデータを受け 取り,SBD通信モジュールを操作することで,送信さ

図 4 B-EGG (超小型衛星 EGG の EM)

表 2 B-E	GG のサイズ	, 主要機器
---------	---------	--------

基板サイズ	$300 \times 100 \times 100$ mm	
	(突起物含まず)	
コントローラ	FPGA (Microsemi ProASIC3)	
イリジウムモジュール	Iridium SBD 9603	
GPS モジュール	NovAtel OEM615	
	センサコム firefly	
JPEG カメラ	Adafruit 1386	

表 3 B-EGG における飛翔中の通信状況

	通信成功	コマンド受信
SBD1(上向き)	308	50
SBD2 (下向き)	57	4
合計	365	54

れる.テレメ送信間隔は,1分,3分,および即座に 次の通信を開始から選択可能であり,B-EGGでは即 座に通信開始が用いられた.B-EGGには,JPEGカメ ラが搭載されており,撮影された画像データも SBD 通信経由で取得されるが,この場合,SBD制御基板の バッファに画像データが保存され,バッファ内のデー タが分割されて順次送信される.SBD通信モジュー ルが受信したコマンドはFPGAが読み取り,MCUに 送られて,MCUがコマンドに応じた処理を実施する. コマンドには実行タイミングの情報が付加されてお り,MCU内部のカウンタと連動して実行される.こ れにより,実行タイミングを細かく設定することがで きるようになっている.表2に,B-EGGの主要機器 を示す.

表3に,飛翔中のSBD通信状況を示す.搭載され た2台のSBD通信モジュールの内,アンテナが上方 を向いているSBD1が全体の84%の通信を行ってい るが,アンテナが下方を向いているSBD2でも通信が できている.イリジウム用アンテナは無指向アンテナ であるため,カバー範囲が広く,イリジウム衛星が水 平線近くに見えるときに通信ができたと考えられる. 図5に,SBD通信経由で得られたB-EGGの高度履歴 を示す.高度データが得られていない時間帯は,JPEG 画像データを取得しているタイミングであり,この間 はGPS位置データを取得していない.図6は飛翔中 に撮影されたカメラ画像であり,これはSBD通信19 回に分割して取得された.

B-EGG では全てのテレメデータを SBD 通信を介し て取得しており,データ配信によって,現場の運用担 当者が得るものと同様の情報が共有された.

図 5 B-EGG の高度履歴

図 6 B-EGG 搭載 JPEG カメラ画像(高度約 25 [km])

5 観測ロケット S-520-30 号機実験

2015 年 9 月 11 日 20:00(JST) に鹿児島県 内之浦宇 宙空間観測所から打ち上げられた観測ロケット S-520-30 号機には, SCU 系として GPS モジュールとイリ ジウム SBD 通信モジュールを組み合わせた位置特定 システムが搭載された. 同様のシステムは, S-310-43 号機にも搭載されたが,今回は GPS モジュールとし てセンサコム社製 firefly が搭載されており,この国産 GPS モジュールの観測ロケットによるフライト実証が 行われた.また,SBD モジュールが S-520 に搭載さ れるのは初めてであり,S-310 よりも高高度を飛行す るため,より高高度での SBD 通信の実証が図られた. S-520-30 の最高高度は 312 [km] である.

S-520-30 に搭載した位置特定システム(図7)は, S-310-41 号機とS-310-43 号機で実績のある SCU 基板 をコントローラとし、イリジウム SBD 制御基板(ICB, Iridium Control Board)とGPS モジュールで構成され る.SCU 基板上の FPGA でまとめられたテレメデー タは, ICB に送られ, ICB 上の FPGA が SBD 9602 モ ジュールを操作することで,送信される.テレメ送信 間隔については,通信終了後に即座に次の通信を開始 することで,最大限通信を行うようにした.SCUか らのテレメデータは PI-AVIO 経由でも地上に送られ ており,これにより SCU や GPS モジュールの細かい 挙動をモニタリングできる.SBD 通信モジュールが 受信したコマンドは FPGA が読み取り, SCU に送ら れ, SCU のステータス情報が変更される. イリジウム 用アンテナはノーズコーン内に設置されているため, SBD 通信が成功するのはノーズコーン開頭後となる. 表4に, SCU 系システム (GPSR, ICB)の主要機器を 示す.なお, B-EGG に搭載された宇宙用イリジウム SBD 制御基板も, CANON-AVIO に組み込まれること

図7 S-520-30のSCU系(GPSR, ICB)

表4 S-520-30の SCU 系 (GPSR, ICB) 主要機器

コントローラ	SCU 基板	
	(S-310-41, S-310-43 実績品)	
	FPGA (Xilinx Spartan6)	
イリジウムモジュール	Iridium SBD 9602	
GPS モジュール	センサコム firefly	

表 5 S-520-30 における飛翔中の通信状況

通信回数			通信成功率	
試行	成功	失敗	コマンド送信	
23	10	13	2	43%

で, S-520-30 に搭載された.

表5に,S-520-30におけるイリジウムSBD通信の 成否をまとめ,図8に,高度履歴とSBD通信の実施 タイミング,およびその成否を示す.ノーズコーン開 頭後,SBD通信は連続して成功しているが,11回目 以降は一度も成功していない.図9に,通信を試みた タイミングでの,S-520-30から見たイリジウム衛星位 置を算出した結果を示す.これによると,南東から北 東の方向にイリジウム衛星があり,この方向にアンテ ナが向いていれば通信できるはずである.しかし,実 際にはS-520-30の姿勢は先端方向を南東から南西の 方向に変化していることが,フライト後の解析で示さ れており,イリジウムアンテナの視野外に出てしまっ たため,通信ができなかったと考えられる.実績とし て,今回高度258[km]でのSBD通信に成功した.

S-520-30 では, SBD 通信で得られた GPS 位置デー タを用いて,観測ロケットの軌道を予測し,その予測 軌道もテレメデータとともに配信することを試みた. 図 10 は,配信された画面を示しており,SBD 通信で 取得した軌道データと予測軌道とを同時に配信されて いることがわかる.

6 まとめ

2015 年度に実施されたフライト実験において,SBD 通信を用いた搭載システム,データ配信システムにつ いてまとめた.情報共有を円滑に行い,運用に役立つ データ配信システムを構築した.今後は,システムの 習熟を図り,確実な運用を行うための環境を整備して いく.

謝辞

本実験を行うにあたり, JAXA/ISAS 大気球実験室の皆様, JAXA/ISAS 観測ロケット実験室の皆様には

図 9 S-520-30 から見たイリジウム衛星の位置

図 10 S-520-30 における AirMAAC データ配信画面

多大なるご助力を賜りました.ここに感謝の意を表し ます.

参考文献

- "Manual for ICAO Aeronautical Mobile Satellite (ROUTE) Service Part 2-IRIDIUM; DRAFT v4.0," ICAO, 2007.
- (2) 永田靖典,本間直彦,山田和彦,鈴木宏二,安 部隆士,「民間通信衛星を使った宇宙飛翔体用テレ メータシステムの実証実験」,大気球シンポジウム,2009.
- (3) 永田靖典,山田和彦,安部隆士,「イリジウム SBD による小型テレメータ・コマンドシステムの実証 実験」,大気球シンポジウム,2012.
- (4) "9602 SBD Transceiver Developer's Guide," Iridium Communications Inc., 2010.