気球搭載遠赤外線干渉計 FITE

芝井 広、佐々木彩奈、伊藤哲司、中道みのり、大山照平、谷 貴人、 住 貴宏、松尾太郎、小西美穂子、山本広大(阪大理)、 成田正直、土居明広、吉田哲也、斉藤芳隆(ISAS/JAXA)、河野裕介(国立天文台)

遠赤外線干渉計 FITE (Far-Infrared Interferometric Telescope Experiment) について、研究目 的、装置の設計仕様、開発・準備状況、フライト 計画について記述する。FITE 全般については[1] を参照されたい。

1. 次期フライト計画

2015年の宇宙研のオーストラリア気球実験が 成功裏に終わったことから、FITEとしては2017 年4,5月にオーストラリアからフライトができる ように、装置全体は準備を進める計画である。以 下では、2017年4-5月期にキャンペーンが実施さ れる前提で記述する。仮に、10月期に実施される 場合は、観測天体を変更する可能性がある。科学 目的達成可能な観測対象は、いずれの時期でも存 在する。

また、夕方打ち上げの機会が少ないとされてい る。もし朝(日出前)打ち上げにせざるを得ない 場合は、夜が来るまで待たなければならばい。そ の際に解決すべき問題点として、

- A. 日照中の温度環境に耐えることができるか。
- B. バッテリー容量が十分か。
- C. 遠方までフライトした状態で、観測運用が 可能か。

がある。Aについては白色塗装を施すなどの対策 を行っている。Bについてはバッテリー個数を増 やすことで対応する。Cについてはアリススプリ ングス基地と遠方の基地局との間で、高速のデー タ伝送(数100kbps)ができればよい。あるいは 日照中でも観測運用ができるならばよいが、3つ ある可視光のスターカメラについて、短波長カッ トフィルターや長いバッフルの開発・検証が必要 である。

観測天体については、最初のフライトでもある ので、まずは木星、土星、海王星を狙う。次に確 実に姿勢制御がかかり、センサーで捕捉できるも の、しかも科学的に価値があるものとして、代表 的な晩期型星であるIRC+10216を観測する。日没 後に短時間ではあるが観測可能である。 IRC+10216は、全天で2番目に明るい赤外線天体 (中間赤外線で)であり、代表的なAGB星である。 主系列星段階の安定期を終えて巨星化し、周囲に 大量の質量放出を繰り返しつつあり、いずれは惑 星状星雲を形成すると考えられる。周囲に星間塵 が分布していることが確実である。遠赤外線強度 分布の高解像観測によって、暖かい星間塵(30K -100K)の分布が得られれば、質量放出活動に関 する制限が得られると期待される。FITEは Fizeau干渉計であり、鮮鋭度の値から「星の直径」 を知ることができる。今回、調整のために観測す る天王星は視直径が約4秒角である。IRC+10216 の星間塵が星のすぐ周辺だけに分布している場 合は、天王星より高い鮮鋭度がえられるであろう し、広く分布している場合はより低い鮮鋭度が得 られるであろう。このように、光源の輝度分布パ ターンを仮定することで、基線一点の観測からそ の広がり方についての情報が得られると期待さ れる。

その後は、銀河系の中心方向の銀河面が観測好 機を迎えるので、天体には事欠かない。M17、 NGC6357等の代表的星形成領域の観測を行う。 M17、NGC6357などは銀河系中心方向にある代 表的なだ規模星生成領域であり、遠赤外線の高解 像撮像観測が成功すれば、従来は分からなかった 密度・温度構造が明らかになっていくと期待され る。

2. 研究目的

遠赤外線領域で世界最高の空間分解能を達成 し、原始惑星系円盤や星生成領域、晩期型星ダス トシェルなどの詳細観測研究をすることを目的 とする装置である。

星生成領域、原始惑星系円盤、銀河核スター バーストなど、星間塵熱放射がきわめて重要な 役割を果たしている天体について、秒角スケー ルの角分解能の観測を行い、各天体において星 間塵温度分布を明らかにすることが主目的で ある。その結果、恒星誕生直前の原始星の温度 構造、原始惑星系円盤の温度構造、および銀河 核スターバーストの温度構造を解明できると 期待される。

図1. 既存/計画中の望遠鏡の解像度比較

これらの天体の星間塵雲の輻射輸送+密度 構造については、理論的シミュレーションの結 果を間接的な方法で検証するしかなく、熱放射 のピークが来る遠赤外帯においての高解像直 接的観測はきわめて重要である。そこで、遠赤 外帯において初めて基線長 20m の干渉計を開 発し観測に用いる。遠赤外線に対しては地球大 気が全く不透明なので、科学観測用大気球を用 いて干渉計を上空に浮遊させる。将来の大規模 宇宙赤外線干渉計プロジェクトへの応用・発展 が期待される。

本研究では遠赤外帯で他のどの観測装置よ りも5倍以上高い空間分解能(解像度)を持つ 遠赤外線干渉計を開発する。図1に示されるよ うに、他の波長に比べて格段に劣っていた遠赤 外線波長帯の解像度を格段に向上させること で、天文学の多くの多くの観測研究分野で、か けがえのないユニークな貢献ができることが 期待できる。さらに遠赤外波長帯で初めて干渉 計を実現することで、将来の本格的な宇宙干渉 計への足がかりとなり、大変重要な意味を持つ であろう。現在計画中の SPICA ミッション以 後は、格段に大きい宇宙望遠鏡を遠赤外線で実 現するのは大変難しくなり、何らかの意味の干 渉計技術を導入することは避けられないから である。

3. FITE システム

FITEの主要諸元を表1に示す。また全体の様子(フレームは旧型。現在は一体型の白色塗装 CFRPフレームを使用、図6)を図2、3に示す。

<u>3-1. 干渉計</u>

望遠鏡は Fizeau 型の 2 ビーム干渉計である。 各ビーム径は約 40cm、基線長は当初、8m とす る。これを平面鏡で干渉計部に導入し、焦点を共 有する二つの軸外によって焦点面で干渉させる。 この間隔は 1.5m である (Pupil Remapping)。干 渉計の新しい原理[2]、光学調整精度要求[3]につ いては別の文献を参照されたい。

この二つの軸外放物面鏡の焦点を、観測中に所 定の精度(波長の数分の一以下)で一致させる必 要がある。このための装置が、干渉計調整装置と 放物面鏡調整装置である。2008年、2010年のブ ラジルキャンペーンでの経験を踏まえて、現地で 短期間に調整できる装置を新規に開発した。干渉 計調整装置(図4、[4])は、市販のシャックハル トマン波面センサーを改造し、視野内の2ビーム を独立かる同時に波面計測する装置であり、高精 度の参照球面も新規開発した。これらの装置によ って、2週間程度かかっていた現地の調整期間を 半分以下に短縮することが期待される。

3-2. 遠赤外線アレイセンサー

干渉計の焦点部に生じる干渉縞の強度分布を 測定するために、横15 ピクセル、縦5 ピクセル の二次元アレイセンサーを新規開発した(図 5、 [5])。全体が超流動ヘリウムで2Kに冷却される。 検出素子はGe:Gaであり、加圧機構(インコネル 製)によって感度波長帯の延伸を高感度化を達成 した。また低レベルの信号を直近で低インピーダ ンス化するために、市販のオペアンプ(LF444) を用いた初段TIA アンプを、80Kで動作させて いる。センサーと前置光学系全体が、専用のクラ イオスタット[6]で極低温冷却される。

3-3. 姿勢制御

FITE の姿勢制御システムは新開発の重心点懸 下型3軸姿勢制御方式である[7]。アクチュエイタ ーにはリアクションホイールを、アンローディン グのためには、気球本体を足場とする「より戻し」 機構(ヨー軸)と重力を利用する錘移動ステージ (ロール軸、ピッチ軸)を搭載する。これは世界 的に例のない方式である。また姿勢センサーとし て、制御のフィードバック用にはリングレーザー

Structure	Dimension	8.5m x 4m x 2.5m (H)
	Dry Weight	1600 kg (without Ballast)
	Structure	CFRP Pipes
Telescope/ Interferometer	Туре	Two-Beam Fizeau-Type Interferometer
	Mirrors	Four Plane Mirrors (SiC)
		Two Off-Axis Parabolas (Zerodur)
	Aperture	40 cm (dia)
Sensors	Far-Infrared	15×5 pixel array (newly developed)
	Beam Monitors	MIR 320x240 array + 3 CCDs
	Cryostat	Super-fluid He (30 ltrs)
Control System	Onboard System	6 CPUs + Functions
	Moving Part	25 actuators
	Battery	300 AH @ 24 volts (Li-Ion, rechargeable)
	Data Rate	56 kbps + 800 kbps
	Ground System	8 QL Monitors + Video Camera Monitor

表1:FITEの主要諸元

図2. FITE望遠鏡部

図3. FITE制御部

図 4. 新型 2 ビーム同時波面計測装置外観図

図5. 遠赤外線アレイ+初段回路

ジャイロ、絶対指向方向決定用に、3台のモニタ ーカメラを用いる。リングレーザージャイロに関 しては独自のデータ処理によって、0.1秒角の精 度が得られること、ドリフトはとても小さいこと がわかっている。2010年のブラジルキャンペーン において、現地で2回の独立な故障が起きた。ま た故障調査の過程で、新たな部品破壊(外形的性 能には影響しない)が発覚した。これらについて は専門家とメーカーで詳細な調査を行い、対処方 法を決定した。

ペイロードの重心で懸下するためには、バラス ト投下による重心の鉛直移動を補正する必要が ある。従来はバネを利用した受動的なシステムを 用いていたが、今回、能動的な制御システムを使 用することとした。これによって、フライト前の 作業期間の短縮が期待される。

3-4. 構造系

今回新たに、白色塗装したCFRP角パイプフレ ーム構造を採用した(図6)。補足的な強度解析、 細部の設計、組み立てなどを進めている。

図6. 新フレーム

3-5. オンボード制御システム

2010年までは6台の小型CPU等をすべて、大型 の与圧容器に収納して用いていた。今回は、低温 かる低圧環境で使用できる小型車載用CPUシス テムを採用する。これについては、2種類各2台、 計4台の実機について、真空低温(+高温)試験を 行い、使用可能であることを確認した。また同時 に、光ファイバーによるI/Fシステムも使用可能 であることを確認した。

4.2010年からの変更点

2010年までの実験で判明した改善すべき点、オーストラリア実験として実施するために改善す

べき点、性能と信頼性向上のための変更点を以下 にまとめる。

- 重量削減
- -フレーム構造の強化、白色塗装
- リングレーザージャイロの不具合対策
- 遠赤外線アレイセンサーの高性能化
- 姿勢制御性能の増強
- -現地光学調整期間の短縮
- -重心調整の効率化(鉛直方向錘移動機構)
- -制御CPUの更新、光ファイバーI/Fの使用
- -懸下部のスパンを50cmに拡大
- -バッテリーの能力アップ
- ー日照中の待機を許容

参考文献

[1] "Balloon-borne far-IR telescope," Shibai, SPIE Newsroom, 16 April 2010

気球搭載遠赤外線干渉計FITE、芝井他、 大気球シンポジウム、2014年、相模原

- [2] "Novel Spectral Imaging Method for Fizeau Interferometers," Matsuo, et al., Publ. Astron. Soc. Jp., 60 (2), 303, 2008.
- [3] 気球搭載型遠赤外線干渉計FITE:結像光学 系の要求性能評価と公差解析、伊藤他,日 本天文学会2014年秋季年会
- [4] "Far-Infrared Interferometric Telescope Experiment: Optical Adjustment System," Sasaki, et al., IEEE Trans. Terahertz Science and Technology, 4, 179, 2014.

Far-Infrared Interferometric Telescope Experiment : FITE, Terano, A., et al., ESO/ESA/ALMA/NRAO-NAASC Workshop, February, 2015, Chille

[5] Far-Infrared Interferometric Telescope Experiment : FITE, Nakamichi, M., et al., FISICA workshop, January 28-29, 2015, Maynooth, Ireland

FITE用圧縮型Ge:Ga二次元遠赤外線アレイ の開発・II、芝井 他、日本天文学会2014年 春季年会

宇宙遠赤外線観測用圧縮型Ge:Ga二次元ア レイセンサの開発、秋山他、日本赤外線学 会研究発表会、2012年

- [6] "Far-Infrared Interferometric Telescope Experiment (FITE): II. Sensor Optics," Kohyama, et al., Trans. JSASS Space Tech. Japan, 7, Tm_55, 2009.
- [7] "Far-Infrared Interferometric Telescope Experiment (FITE): Three-Axis Stabilized Attitude Control System," Nakashima, et al., Trans. JSASS Aerospace Tech. Japan, 8, Tm_19, 2011