

課題	課題1:二次元円柱に対する解析								
・解析条件:下記の条件を必須とし,それ以外は任意とする									
	M_{∞}	Re_D	備考]					
		10							
		20	定常流						
		40							
	那上稲流条件 (M − 0.1 程度)	50	遷移点						
	$(M_{\infty} = 0.1 12) $	100	非定常流						
		150							
		200							
				3					

This document is provided by JAXA.

課題1:二次元円柱に対する解析

•参考文献

[1] Qu et al., Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200, *Journal of Fluids and Structures* 39, pp.347–370 (2013).

[2] Nakabayashi et al., Numerical Analysis for Viscous Shear Flows past a Circular Cylinder at Intermediate Reynolds Numbers, *JSME International Journal Series B Fluids and Thermal Engineering* 36(1), pp.34–41 (1993).

[3] Das et al., Immersed boundary method (IBM) based direct numerical simulation of open-cell solid foams: Hydrodynamics, *AIChE Journal* 63(3), pp.1152–1173 (2017).

課題2:二次元角柱に対する解析

・解析条件:下記の条件を必須とし,それ以外は任意とする

M_{∞}	Re _L	θ, °	流れパターン
	30		S
	60	0	MS
	100		MS
	150		DSV
非圧縮流条件	60	2.5	MS
$(M_{\infty}=0.1$ 程度)	程度) 100		SSV
	150		DSV
	60	15	MS
	100		MS
	150		VM

課題2:二次元角柱に対する解析

・解析条件:下記の条件を必須とし,それ以外は任意とする

M_{∞}	Re_L	θ, °	流れパターン
	60		MS
	100	30 45	VM
非圧縮流条件	150		VM
$(M_{\infty}=0.1$ 程度)	60		MS
	100		VM
	150		VM

7

AXA

JAXA

課題2:二次元角柱に対する解析

- 流れパターンの分類[1]:
 - -S = steady
 - MS = main separation
 - VM = vortex merging
 - SSV = single secondary vortex
 - DSVs = dual secondary vortices

JAXA

課題2:二次元角柱に対する解析

JAXA ・提出データ(必須):各 Re_L, θ 条件について以下を提出する - C_D , C_L (時間平均), C'_D , C'_L (変動 RMS) - ストローハル数 St - 瞬時の渦度分布 ω_Z,時間平均速度分布(流線) ・提出データ(任意):以下については提出を任意とする - 流れパターンの分類(S / MS / VM / SSV / DSV) - 円柱表面の C_p, C_f 分布 $- C_{Dp}, C_{Df}, C_{Lp}, C_{Lf}, C_{ps}, C_{pb}$ - 循環域長さ*L*r 8

課題2:二次元角柱に対する解析

•参考文献

[1] Yoon et al., Flow past a square cylinder with an angle of incidence, *Physics of Fluids* 22, 043603 (2010).

[2] Sohankar et al., Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition, International Journal for Numerical Methods in Fluids 26. pp.39-56 (1998).

LAXA

課題 3:単純形状に対する壁面摩擦・熱流束の評価 解析条件:下記の条件を必須とし、それ以外は任意とする T_w, K M_{∞} Re_{∞} 10³ 断熱壁 / 等温壁 104 断熱壁 / 等温壁 5 10⁵ 断熱壁 / 等温壁 10³ 断熱壁 / 等温壁 7 104 断熱壁 / 等温壁 10⁵ 断熱壁 / 等温壁

課題 3:単純形状に対する壁面摩擦・熱流束の評価

•参考文献

[1] John D. Anderson Jr., Hypersonic and High-Temperature Gas Dynamics, Third Edition, Chapter 6, 2019.

9

課題 3-1: 平板に対する解析

M_{∞}	$Re_{\infty,x}$	U_{∞} , m/s	T_{∞} , K	P_{∞} , Pa	x _{ref} , mm
	10 ³		3000	2012.8	100
0.3	104	329.63		20128	100
	10 ⁵			201280	100
	10 ³		690.0	82.750	100
1.5	104	790.41		827.50	100
	10 ⁵			8275.0	100
	10 ³	1393.3	536.0	30.919	100
3	104			309.19	100
	10 ⁵			3091.9	100
-					

課題 3-1: 平板に対する解析

• 平板に対する解析条件の一例:

M_{∞}	$Re_{\infty,x}$	U_{∞} , m/s	T_∞ , K	P_{∞} , Pa	x _{ref} , mm
	10 ³	1830.4	333.0	10.439	100
5	104			104.39	100
	10 ⁵			1043.9	100
7	10 ³	1910.0	185.0	3.4542	100
	104			34.542	100
	10 ⁵			345.42	100

10

AXA

課題 3-2 : くさびに対する解析

・くさびに対する解析条件の一例:

M_{∞}	$Re_{\infty,s}$	U_{∞} , m/s	T_{∞}, K	P_{∞} , Pa	s _{ref} , mm
	10 ³		3000	2012.8	100
0.3	10 ⁴	329.63		20128	100
	10 ⁵			201280	100
	10 ³		690.0	82.750	100
1.5	10 ⁴	790.41		827.50	100
	10 ⁵			8275.0	100
	10 ³	1393.3	93.3 536.0	30.919	100
3	10 ⁴			309.19	100
	105			3091.9	100

課題 3-2: くさびに対する解析

・くさびに対する解析条件の一例:

M_{∞}	$Re_{\infty,s}$	U_{∞} , m/s	T_{∞} , K	P_{∞} , Pa	s _{ref} , mm
	10 ³			10.439	100
5	104	1830.4	333.0	104.39	100
	10 ⁵			1043.9	100
	10 ³			3.4542	100
7	104	1910.0	910.0 185.0	34.542	100
	10 ⁵			345.42	100

12

AXA

AXA

課題 3-3: 円柱に対する解析

M_{∞}	<i>Re</i> _D	U_{∞} , m/s	T_{∞}, K	P_{∞} , Pa	D, mm
	10 ³	529.80	310	318.04	10
15	10 ⁴			3180.4	10
1.5	10 ⁵			31804	10
	10 ⁵			3180.4	100
	10 ³	882.42	215	98.822	10
2	10 ⁴			988.22	10
3	10 ⁵			9882.2	10
	10 ⁵			988.22	100

課題 3-3: 円柱に対する解析

・円柱に対する解析条件の一例:

M_{∞}	Re _D	U_{∞} , m/s	T_{∞} , K	P_{∞} , Pa	D, mm
	10 ³	1003.0	100	19.838	10
5	10 ⁴			198.38	10
5	10 ⁵			1983.8	10
	10 ⁵			198.38	100
7	10 ³	1087.7	087.7 60.0	6.2986	10
	104			62.986	10
	10 ⁵			629.86	10
	10 ⁵			62.986	100

14

JAXA

This document is provided by JAXA.

ディスカッションのまとめ

- ワークショップの方向性について:
 - 直交格子 CFD 以外の参加者も受け入れる(物体適合非構造格子 CFD & 非構造格子自動生成などの手法もウェルカム).
 - 質量保存の問題を本格的に実施する.
 - すでに実施済みの課題についても何らかのまとめが必要か.
 - 格子の自動生成(直交格子だけでなく、物体適合非構造格子もアリ)に 関する問題などを設定してもよいかもしれない。
 - スクラム実験機 (S-520-RD1) に関する問題も設定したい (ANSS企画2 宇宙輸送を支えるシミュレーションとのコラボレーション).

XX

第4回までのワークショップを受けての所感など

- •課題1:物体周りの流れは正確に解ける(空力係数,剝離位置, 循環域長さ).しかし,壁面に沿った圧力・せん断力の分布には ガタつく傾向がみられ,改善の余地がある.
- ・課題3:壁面に沿ったせん断力・圧力・熱流束の分布はともに 大まかな傾向を捉えられるが,振動が顕著.ただし,格子解像度 を上げることで振動は押さえられる.
- 新たな方向性として質量保存に注目した課題を提案したが、
 参加者の皆さんの興味はどの程度あるだろうか

第4回までのワークショップを受けての所感など

- せん断力や熱流束の分布にみられる振動は IP の取り方などで 改善できる余地があるはず。
- 物体形状を精密に捉えるため、もしくは、熱流束などの壁面上の 分布を正確に計算するために格子を細かくすると、直交格子 CFD は格子セル数が過剰になる傾向があるのではないか、
 三次元計算だと簡単に 10 億セルくらいになりそう。
- 物体近傍で格子を細かくすることをあきらめ、粗い格子で壁面上の分布を正確に計算する手法やモデル(壁モデルのようなもの)を追求するのも一つの方向か。

4

JAXA

- ・少なくとも、第5回までは開催する予定(松山の考えです).
- •第6回目以降をどうするかについては WS 参加者の意見を お聞きしたい.参加者の皆様がどうしたいかが最も重要です.
- ・いくつか方向性を考えてみました.
 - 第5回で一度 WS を終了とする. 今後, 新たな問題意識が はっきりした時点で再開, もしくは, 新たな WS を立ち上げる.
 - これまでの問題設定は原理原則を明らかにするためシンプル な設定にしてきたが、もっと実問題(実際の複雑形状)や直交 格子 CFD でしか解けないような問題にシフトする.

XX

課題 0: Verification 問題

- •目的:内部流の解析を実施し,流入·流出境界および流路内 での質量流量が正しく計算され,系全体の質量が保存 されることを示す
- •解析対象: 直管流路, ベンチュリ管, 曲がり管, ラバールノズル, 高圧タンク, 連結された1対のタンク, など

AXA

