CflowによるCRM-HLの検証解析 - 風洞壁の影響・澤木 悠太, 安田 英将, 山内 優果, 浅野 宏佳 (川崎重工)

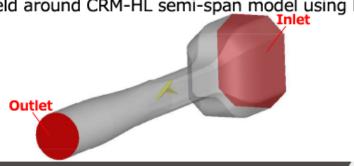
2023年7月12日(水) 国立オリンピック記念青少年総合センター 第55回流体力学講演会/第41回航空宇宙数値シミュレーション技術シンポジウム Ninth Aerodynamics Prediction Challenge (APC-9)

1A01 CflowによるCRM-HLの検証解析 - 風洞壁の影響

Validation for the CRM-HL using Cflow – Effects of Wind Tunnel Wall

○澤木 悠太、安田 英将、山内 優果、浅野 宏佳 (川崎重工業株式会社 航空宇宙システムカンパニー)

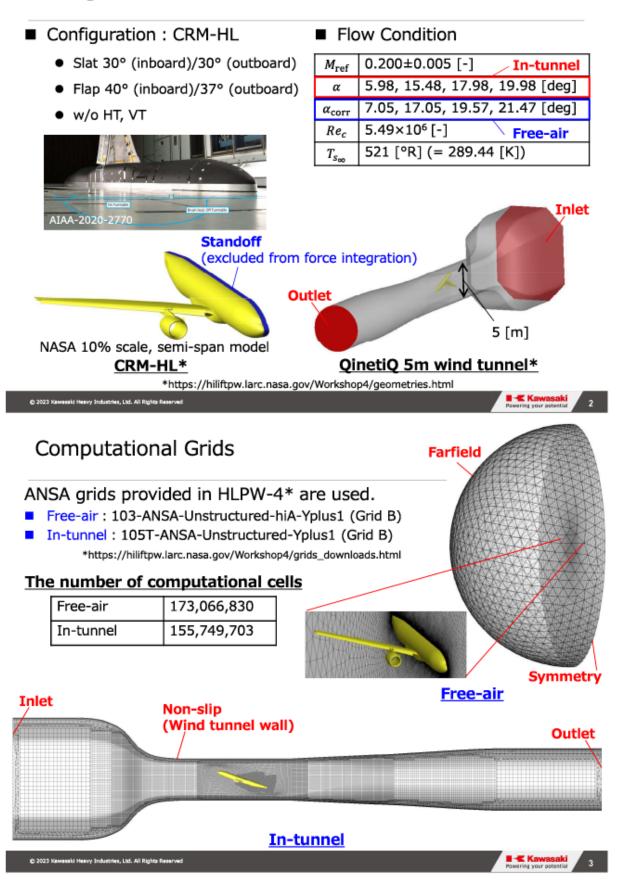
Yuta Sawaki, Hidemasa Yasuda, Yuka Yamauchi and Hiroyoshi Asano (Kawasaki Heavy Industries, Ltd., Aerospace Systems Company)



Motivation & Objective for APC-9

Motivation

<u>In-tunnel CFD analysis</u> is effective way for understanding the differences of data between:


- certain wind tunnel & another wind tunnel
- WTT (wind tunnel testing) & CFD
- Objective [Case 2]
 - <u>Practice the typical CFD iterative procedure</u> for convergence of Mach number at test-section in a wind tunnel
 - Investigate the effects of the QinetiQ wind tunnel wall for flowfield around CRM-HL semi-span model using RANS

© 2023 Kawasaki Heavy Industries, Ltd. All Rights Reserved

Powering your potential

Configuration and Flow Condition

Numerical Methods

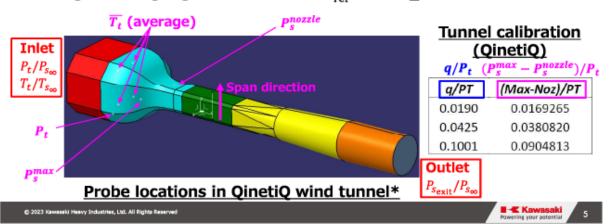
Numerical methods of Cflow (KHI in-house)

Governing equations	Compressible Reynolds-averaged Navier-Stokes eqs.			
Spatial discretization	Cell-centered finite volume method			
Flux reconstruction	2nd-order accurate reconstruction based on MUSCL			
Gradient	Green-Gauss			
Inviscid flux	Simple low-dissipation AUSM scheme (SLAU)			
Slope limiter	minmod			
Viscous flux	2nd-order accurate central difference			
Turbulence modeling	SA-neg-QCR2000-R(Crot=1)			
Time integration /	Matrix-free Gauss Seidel (MFGS) implicit method			
	Local time-stepping			

SA-neg-QCR2000-R(Crot=1):

- was KHI best practice on APC-8 (2022)
- · is recommended in the fixed-grid RANS group of HLPW-5 (2024)

© 2023 Kawasaki Heavy Industries, Ltd. Ali Rights Reserved

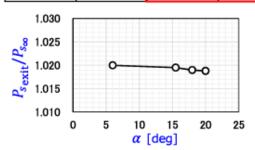


4

Iterative Procedure for Convergence of M_{ref}

 $*https://hilliftpw.larc.nasa.gov/Workshop4/Geometry/Q5m_Tunnel_Modeling_V01.pdf$

- ① Total pressure $P_t/P_{s_{\infty}}$ & total temperature $T_t/T_{s_{\infty}}$ assuming $M_{\infty}=0.200$ are imposed at the inlet boundary.
- ② Set static pressure $P_{s_{\mathrm{exit}}}/P_{s_{\infty}}$ at the outlet boundary.
- 3 Run CFD solver.
- 4 Compute $(P_s^{max} P_s^{nozzle})/P_t$ using variables at the probes and obtain q/P_t by interpolating the tunnel calibration table.
- ⑤ Mach number M_{ref} is computed using q/P_t .
- ⑥ Iterate ② \sim ⑤ until a tolerance $M_{\text{ref}} = 0.200 \pm 0.005$ is satisfied.



Converged M_{ref} and Outlet Pressure

We successfully obtained converged M_{ref} with about three times iterations.

Converged M_{ref} and outlet pressure

		Inlet		Outlet		Massflow
α [deg]	M _{ref} *	$P_{s_{ m inlet}}/P_{s_{\infty}}$	$U_{\mathrm{inlet}}/a_{\infty}$	$P_{S_{\mathrm{exit}}}/P_{S_{\infty}}$	$U_{\mathrm{exit}}/a_{\infty}$	$\rho UA/(\rho_{\infty}a_{\infty}S_{\mathrm{ref}})$
5.98	0.199	1.0278	0.025	1.0200	0.094	2.094
15.48	0.200	1.0278	0.026	1.0195	0.094	2.104
17.98	0.199	1.0278	0.025	1.0190	0.094	2.095
19.98	0.200	1.0278	0.025	1.0188	0.094	2.096

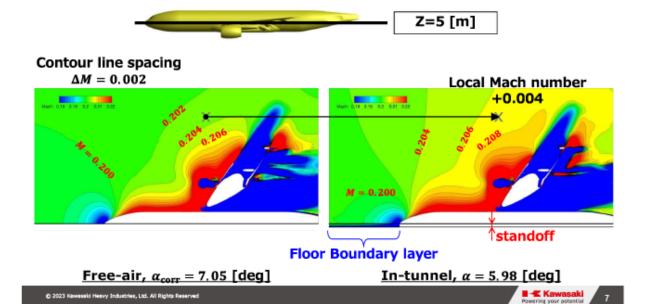
 $dM_{\rm ref}$

* Tolerance, $M_{\rm ref} = 0.200 \pm 0.005$, is satisfied

 $\frac{dP_{\text{rei}}}{d\left(\frac{P_{\text{sexit}}}{P_{\text{so}}}\right)} \approx -10$

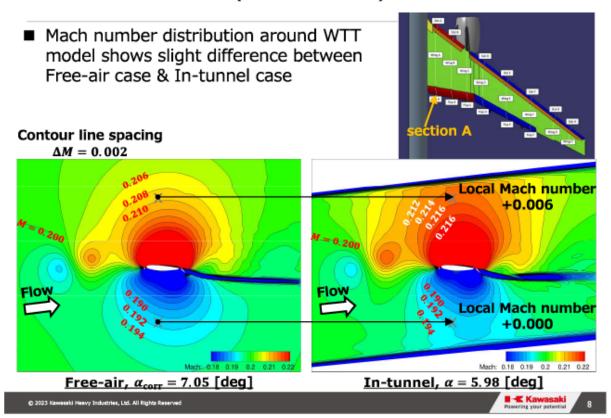
Outlet pressure

Sensitivity of outlet pressure for Mref

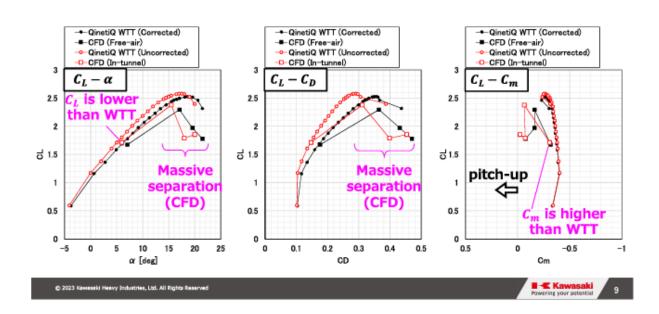

© 2023 Kawasaki Heavy Industries, Ltd. All Rights Reserve

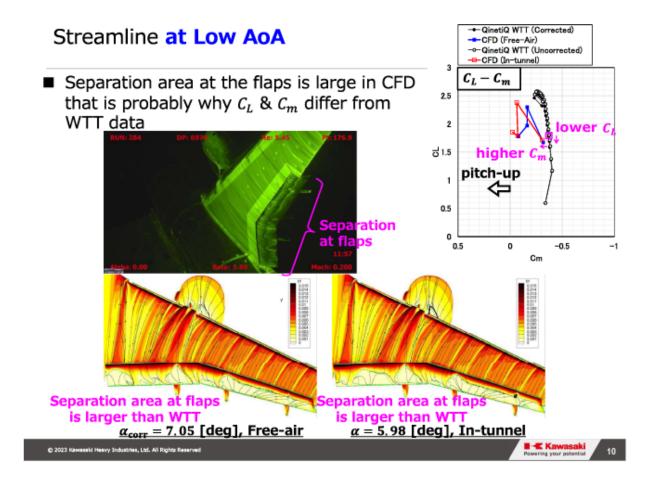
Pawering your potential

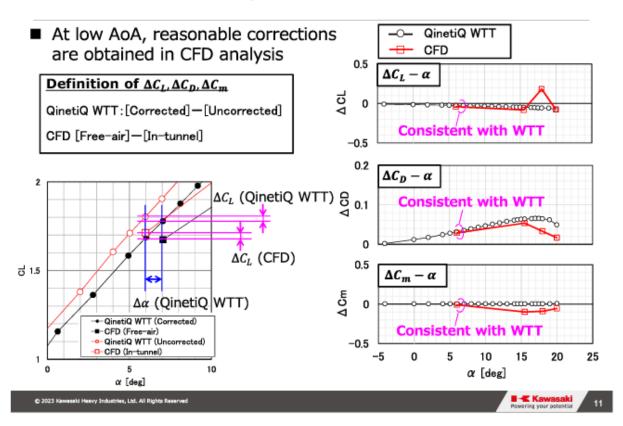
6


Local Mach Number (Effects of wall)

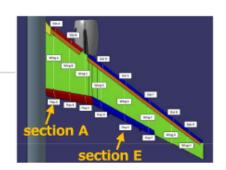
- Floor boundary layer thickness is less than standoff distance
- Mach number distribution around WTT model shows slight difference between Free-air case & In-tunnel case

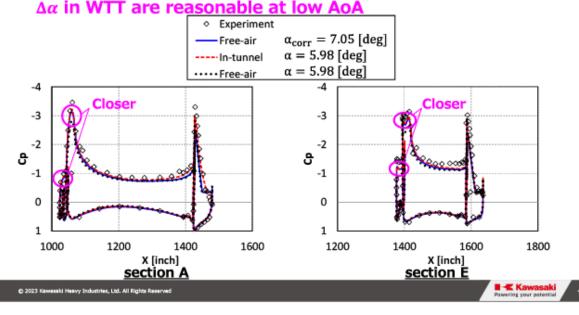

This document is provided by JAXA.


Local Mach Number (Effects of wall)

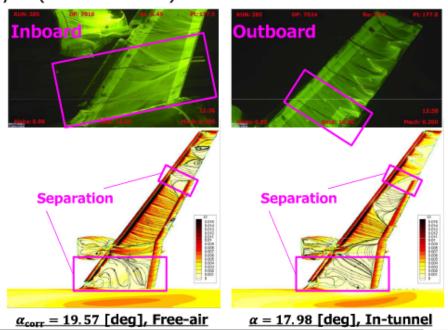

Aerodynamic forces

- At low AoA, C_L is lower and C_m is higher in CFD than WTT
- Massive separation is observed at high AoA (to be explained later)




Corrections for Aerodynamic forces

Section C_p at Low AoA


At low AoA, C_p (Free-air, $\alpha_{corr} = 7.05$ [deg]) distribution is closer to C_p (In-tunnel, $\alpha = 5.98$ [deg]) than C_p (Free-air, $\alpha = 5.98$ [deg]) These results explain AoA corrections

Streamline at High AoA

 There are massive separation at inboard & outboard wing in CFD analysis (unlike the WTT)

This document is provided by JAXA.

Conclusion

- Typical CFD iterative procedure for convergence of M_{ref} in a wind tunnel was practiced
- The effects of the wind tunnel wall for flowfield around CRM-HL semi-span model were investigated
 - Floor boundary layer thickness was less than standoff distance
 - At low AoA, reasonable corrections were obtained in CFD
 - At high AoA, massive separation was observed in CFD