TASによるCRM-HLの風洞壁を考慮したRANS定常空力解析・田中 健太郎 (菱友システムズ)、 伊藤 靖, 村山 光宏 (JAXA), 古谷 龍太郎 (菱友システムズ)

July 12, 2023 Ninth Aerodynamics Prediction Challenge (APC-9)

Reynolds-averaged Navier-Stokes simulations of CRM-HL in wind tunnel using TAS code

TASによるCRM-HLの風洞壁を考慮したRANS定常空力解析

OKentaro TANAKA (Ryoyu Systems) Yasushi ITO (JAXA) Mitsuhiro MURAYAMA (JAXA) Ryutaro FURUYA (Ryoyu Systems)

Cases calculated

2

Test Cases

- Case 1: Turbulence model verification study in 2D simulations
- Case 2: C_{L,max} study "in-tunnel" simulations

	Case 1	(ref.) Case 1 of APC-8 "free-air"	Case 2 "in-tunnel"
Geometry	2D CRM-HL	3D CRM-HL	3D CRM-HL + QinetiQ 5m WT
Flap deflection (inboard/outboard)	-	40°/37°	
AoA α_c : collected α_u : uncollected	16°	(2.78°) 7.05° (11.29°) 17.05° 19.57° 21.47°	5.98° (9.98°) 15.48° 17.98° 19.98°
Initial conditions	cold starts	warm & cold starts	warm starts
Grid	Family 1*1	240-JAXA-unstructured*3	240-JAXA-unstructured + wind tunnel walls
Grid Level	L1~7*2	C-level*4 ~86Mpts	C-level ~122Mpts

- *1 Grid provided by NASA TMR *2 L1 (coarsest) to L7 (finest)
- *3 Grid provided by JAXA (downloadable from HLPW-4 website)
- *4 A-level (coarsest) to D-level (finest)

Computational conditions & Numerical methods

3

Computational conditions

- Case1
 - Mach = 0.2, Re = 5.00 x 10⁶ (C_{ref} = 1), T_{ref} = 272.1K
- Case2
 - Mach = 0.2, Re = 5.49 x 10⁶ (C_{ref} = 275.8 in), T_{ref} = 521R (289.4K)

Numerical methods

Code	TAS	
Governing Equations	RANS (Reynolds Averaged Navier-Stokes) Eq.	
Discretization	Cell-vertex finite volume method	
Convection term	HLLEW (Harten-Lax-vanLeer-Einfeldt-Wada)	
Reconstruction method	2 nd order Unstructured MUSCL	
Time integration	LU-SGS implicit	
Turbulence model (fully turbulent)	SA-noft2-R (C _{rot} =1) SA for Case 1	

Computational Resources

 JAXA Supercomputer System generation 3 (JSS3) was used for these computations.

Grid generation & initial conditions in-tunnel simurations

- Prepared the free-air (APC-8) grid & results.
- Replaced the symmetry plane with a tunnel floor and standoff.
 - Automatic local remeshing features of MEGG3D were used.
 - Flow variables were extrapolated by 0th order.
- Extracted grid elements & solution data at a specified distance from the CRM-HL (< 0.3 MAC) to obtain element-independent results as much as possible from in-tunnel simulations.
- Prepared an empty-tunnel grid separately.
 - Convergence results were calculated using estimated back pressure.
- Installed #3 in #4 at each angle of attack.
 - Automatic local remeshing features of MEGG3D were used.
 - Velocity vectors were rotated with angle of attack within the free-air grid region.
 - Warm start from the α = 7.05° result of the free-air simulation were conducted in all in-tunnel calculations.
 - Flow variables were substituted from the empty-tunnel results within the in-tunnel grid & remeshed region.

* Same procedure as previous research during HiLiftPW-3, doi: 10.2514/1.C036741

Sectional & surface grids

6

Comparison of sectional grids

7

- Both grids had the same elements around the CRM-HL (< 0.3 MAC).
- Spatial grid resolutions of in-tunnel grids were finer than the free-air grid.

Boundary conditions & reference Mach number

8

Mach_ref

- Calculated by the static pressure drop through the nozzle (as specified).
- Calculated values were within a desired tolerance (0.195–0.205) by adjusting back pressure.

Boundary layer profile at the tunnel floor

TAS results disagree with exp.

- Similar tendencies have been reported*1 at HLPW-4
- The results in the experiment appear to have been laminar.

TAS results seem correct if the boundary layer is turbulent.

Boundary layer thickness ($\sigma \sim 33.5$ in) is close to standoff height (= 35 in).

*1 https://hiliftpw.larc.nasa.gov/Workshop4/WorkshopPresentations/07_GMGW3_HLPW4_WMLES-LB.pdf

Aerodynamic coefficients (Case 2)

10

- As for results of in-tunnel simulations,
 - C, agrees well with exp. except a large drop at the post-stall.
 - Near $C_{L,\text{max}}$, C_L is slightly lower and C_D is slightly higher than exp.
 - C_m tends to be higher (=pitch-up) than exp. throughout the AoA.

Spanwise sectional C_p distribution at $\alpha_u = 19.98^{\circ}$ (post-stall) 13

- In sec A, in-tunnel result is closer to that of the experiment, and the free-air result shows a
 higher suction peak due to the attached flow.
- In sec D, free-air result is closer to that of the experiment because the in-tunnel result has
 excessive separation near this section.
- In sec F, in-tunnel result is closer to that of the experiment because the free-air result has large separation at the wake of slat brackets on the outboard wing.
- In sec H, both results disagree with that of the experiment due to large flow separation at the wake of slat brackets.

Surface streamlines & sectional total pressure distribution14

- Compared to free-air cases, in-tunnel cases show thicker boundary layers on the LE of the wing root because of the boundary layer developed on the tunnel floor.
 - The thicker boundary layer may have contributed to the excessive side of body separation in the post-stall case.

Summary 15

Turbulence model study in 2D simulation

- SA in TAS code were verified by comparison with FUN3D results.
- Compared to SA in TAS code, SA-noft2-R(C_{rot}=1) shows
 - Lower C_l, C_{df} and higher C_m
 - Similar C_d and C_{dp}

■ C_{L,max} study

- As for results of in-tunnel simulations,
 - Aerodynamic characteristics showed good agreement with exp. until C_{Lmax}.
 - Near C_{L,max} flow separations occurred on the wake of slat brackets on the outboard wing and nacelle lip.
 - The side of body separation seen in the experiment was observed, but overpredicted at the post-stall.
 - This appeared to be the result of the thicker boundary layer on the LE of the wing root because of the boundary layer developed on the tunnel floor.