

Prediction of aerodynamic characteristics of HL-CRM using the AMM model

H. Abe, T. Nambu and Y. Mizobuchi JAXA APC9, July 12, 2023

1

Motivation

- The k-ε model is widely used in engineering calculations, but not in aeronautical flows
- · This reflects impaired predictions for TBLs with separation
- In particular, we see a smaller separation bubble for k-ε than for experiments and SA and SST
- The motivation is to develop the AMM k-ε model with a QCR (AMM-QCRcorner), which predicts wing-body juncture flows
- In APC9, we test the AMM-QCRcorner model against 3D HL-CRM to clarify the prediction on aerodynamic characteristics.

AMM model (Abe-Mizobuchi-Matsuo 2019) (1/3)

Two-equation eddy viscosity model (low Re k- ε model)

Eddy viscosity approximation

$$\overline{u_i u_j} = \frac{2}{3} k \delta_{ij} - 2 v_r S_{ij} \qquad \left(S_{ij} \equiv \left(\overline{U}_{i,j} + \overline{U}_{j,i} \right) / 2 \right)$$

Representation of v_t

$$\mathbf{v}_t = C_{\mu} f_{\mu} k^2 / \varepsilon$$

k equation

$$\frac{\partial k}{\partial t} + \overline{U}_{j} \frac{\partial k}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left\{ \left(v + \frac{v_{t}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{j}} \right\} + P_{k} - \varepsilon$$

 ε equation

$$\frac{\partial \varepsilon}{\partial t} + \overline{U}_{j} \frac{\partial \varepsilon}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left\{ \left(v + \frac{v_{t}}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_{j}} \right\} + \frac{\varepsilon}{k} \left(C_{\varepsilon 1} P_{k} - C_{\varepsilon 2} f_{\varepsilon} \varepsilon \right)$$

Model functions

$$f_{\mu} = \left\{1 - \exp\left(-\frac{R_{y}}{A}\right)\right\} \left[1 + \frac{5}{R_{i}^{3/4}} \exp\left\{-\left(\frac{R_{i}}{200}\right)^{2}\right\}\right] \quad (A = 120) \qquad f_{\varepsilon} = \left\{1 - \exp\left(-\frac{R_{y}}{B}\right)\right\} \left[1 - \frac{2}{9} \exp\left\{-\left(\frac{R_{y}}{6}\right)^{2}\right\}\right] \quad (B = 12)$$

$$\left[R_{i} = k^{2} / \nu \varepsilon \qquad R_{y} = \sqrt{k}y / \nu\right]$$

AMM model (Abe-Mizobuchi-Matsuo 2019) (2/3)

Model constants modification

(2022 TSFP; 2022 NASA Turbulence model Symp.; AIAA J Submitted)

Model constants	C _μ	σ_{k}	σ_{ϵ}	$C_{\epsilon 1}$	$C_{\epsilon 2}$
AMM	0.09	$1.1/f_{sig}$	$1.25/f_{sig}$	1.5	1.9
	$f_{rig} = 1 + 6($	$f_{rig} = 1 + 6\left(-\exp\left(R_y / 20\right)^2\right)$		$R_y = \sqrt{k} y / v$	

Eddy viscosity modification (2022 TSFP)

$$\begin{aligned} \boldsymbol{v}_{t} &= \frac{\rho \, C_{\mu} \, f_{\mu} \, k \, T_{\mu}}{\left(1 + C_{sn} \left[\left(S_{ij}^{2} - \Omega_{ij}^{2} \right) \left(k \, / \, \boldsymbol{\varepsilon} \right)^{2} \right]^{2} \right)^{1/2}} \\ \\ & \left[\quad T_{\mu} &= \min \left(\frac{k}{\boldsymbol{\varepsilon}}, \, \frac{0.6}{\sqrt{6}} \, \frac{1}{C_{\mu} S_{ij}^{2}} \right) \quad C_{sn} &= 1 \qquad S_{ij} \equiv \frac{1}{2} \left(\frac{\partial \overline{U}_{i}}{\partial x_{j}} + \frac{\partial \overline{U}_{j}}{\partial x_{i}} \right), \, \, \Omega_{ij} \equiv \frac{1}{2} \left(\frac{\partial \overline{U}_{i}}{\partial x_{j}} - \frac{\partial \overline{U}_{j}}{\partial x_{i}} \right) \end{aligned} \right] \end{aligned}$$

- v_t is modified by incorporating a parameter $S_{ij}^2 \Omega_{ij}^2$, representing the acceleration and retardation of the mean flow, into the turbulence time scale T_μ using the augmented time scale procedure by Yoshizawa et al. (2006).
- This is done to avoid the large magnitude of ν_t in the trailing edge where the adverse pressure gradient is large.

4

3

AMM model (Abe-Mizobuchi-Matsuo 2019) (3/3)

Two-equation eddy viscosity model (low Re k- ε model)

Improved Quadratic Constitutive Relation (QCRcorner) (2023 TSFP)

We consider the non-zero value of the mean streamwise vorticity in a corner flow where the Reynolds stress anisotropy plays a crucial role (Bradshaw 1987).

In QCR corner, a $\Omega\Omega$ term is added to the original AMM-QCR, i.e.

$$\begin{split} -\overline{u_{i}u_{j}} &= -\frac{2}{3}k\boldsymbol{\delta}_{ij} + 2\boldsymbol{v}_{t}\boldsymbol{S}_{ij} - \boldsymbol{C}_{1}\frac{k}{\boldsymbol{\varepsilon}}\boldsymbol{v}_{t}\Big[\boldsymbol{\Omega}_{ik}\boldsymbol{S}_{jk} + \boldsymbol{\Omega}_{jk}\boldsymbol{S}_{ik}\Big] - \boldsymbol{C}_{2}\frac{k}{\boldsymbol{\varepsilon}}\boldsymbol{v}_{t}\Big[\boldsymbol{S}_{ik}\boldsymbol{S}_{kj} - \frac{1}{3}\boldsymbol{S}_{mn}\boldsymbol{S}_{mn}\boldsymbol{\delta}_{ij}\Big] \\ -\boldsymbol{C}_{3}\frac{k}{\boldsymbol{\varepsilon}}\boldsymbol{v}_{t}\Big[\boldsymbol{\Omega}_{ik}\boldsymbol{\Omega}_{kj} + \frac{1}{3}\boldsymbol{\Omega}_{mn}\boldsymbol{\Omega}_{mn}\boldsymbol{\delta}_{ij}\Big] & \boldsymbol{C}_{1} = 0.6, \boldsymbol{C}_{2} = 0.2, \boldsymbol{C}_{3} = -0.3 \end{split}$$

 C_1 , C_2 , C_3 have been determined using DNS data in the channel and square duct.

.

APC9 Case 2

Geometry	3D CRM-HL		
Flap deflection	40deg / 37deg		
(inboard/outboard)			
Re _c	5.49 x 10 ⁶		
T _{ref}	521R		
AoA	5.98, 15.48, 17.98, 19.98 deg		
Grid	HLPW4		
	105T-ANSA-Unstructured-Yplus1		
Grid Level	В		
	(Node number 120,515,486)		
	(Cell number 155,749,703)		

Solver

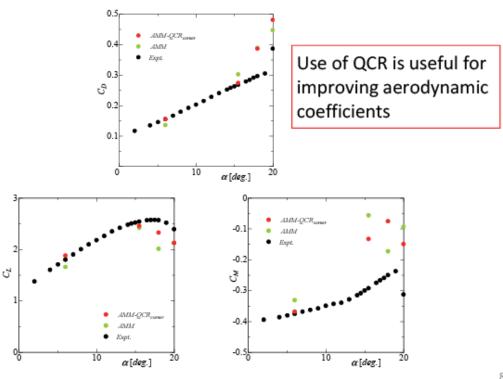
The flow solver used in this work is FaSTAR developed by JAXA (Hashimoto et al. 2012 AIAA paper), which is an unstructured-grid compressible flow solver with the second-order accuracy. In the present study, the inviscid flux scheme HLLEW (Obayashi and Guruswamy 1995 AIAA J.) is used for the convective terms. The numerical flux has been calculated at a cell vertex.

Turbulence model

AMM-QCRcorner, AMM (Turbulence intensity 0.6%, Viscous ratio 10)

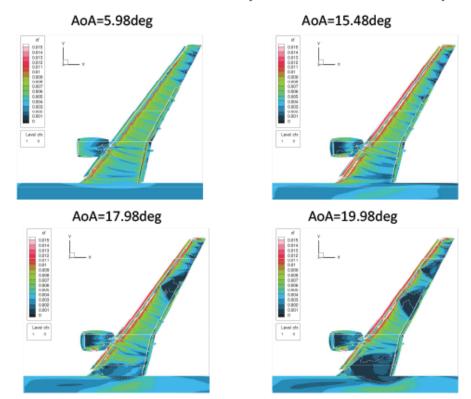
7

Aerodynamic coefficients



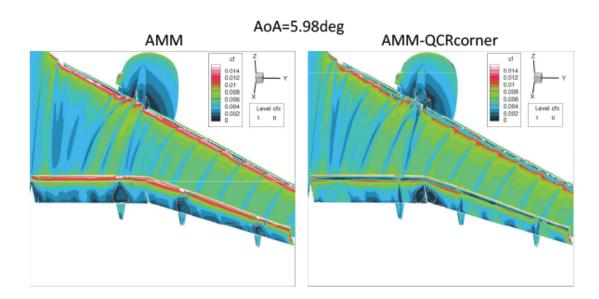
8

Surface Cf contours (AMM-QCRcorner)



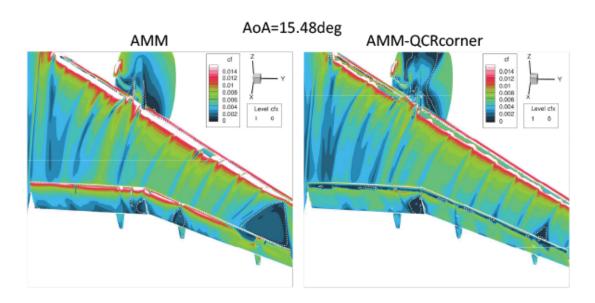
-

Surface Cf contours



Use of QCR yields an increased positive Cf over the wing

Surface Cf contours



Use of QCR also avoids a large separated region

11

Summary

- AMM-QCRcorner predicts aerodynamic coefficients reasonably for AoA = 5.98 and 15.48 deg, but not for AoA= 17.98 and 19.98 deg. C_{Lmax} is not well predicted.
- QCR is useful for improving aerodynamic characteristics at each AoA. Use of QCR yields an increased positive C_f region over the wing and also avoids a large separated region.
- At large AoA, AMM-QCRcorner predicts large separated regions not only in the mid span of the wing, but also near the wing-body juncture, highlighting that further improvement is required for the prediction of separated flow.