Contribution of JAXA to APC-9 using FaSTAR: Free-air and intunnel Hybrid RANS/LES calculations for CLmax prediction on the CRM high-lift configuration · Zauner Markus, Matsuzaki Tomoaki, Kojima Yoimi, Uchida Kosuke, Sansica Andrea, Hashimoto Atsushi (JAXA)

Contribution of JAXA to APC-9 using FaSTAR:

Free-air and in-tunnel Hybrid RANS/LES calculations for C_{L,max} prediction on the CRM high-lift configuration

9th Aerodynamic Prediction Workshop (APC-9), Tokyo June 12th 2023

Zauner Markus, Matsuzaki Tomoaki, Kojima Yoimi, Uchida Kosuke, Sansica Andrea, Hashimoto Atsushi

JAXA, Aircraft Lifecycle Innovation Hub

Agenda

- Methods (focus on in-tunnel simulations)
 - Choice of initial conditions
 - > Choice of boundary condition
 - > Adjustment of test-section Mach number
 - > Verifying flow conditions in test-section
- Free-Air DDES results
 - Comparison with experiment
 - Comparison with RANS
- In-tunnel DDES results
 - Comparison with experiment
 - Comparison with Free-Air DDES
- Sensitivity analysis to boundary and initial conditions
- Conclusion & Outlook

NASA's CRM-HL configuration

Benchmark for stall prediction

Studied at NASA's 4th High-Lift Prediction Workshop (HLPW-4) and APC-8

- High-lift devices: Slats (red) and Flaps (blue)
- Slat Brackets (magenta)
- Pylon (green) and Nacelle (cyan)

Complex geometry with many details and gaps

This document is provided by JAXA.

Test case

Beyond RANS: APC Test Cases 3 (free-air) & 4 (in-tunnel)

Nominal flow conditions of HLPW-4:

Mach number: M=0.2

> Reynolds number: Re=5.49 million

> Nominal slat deflections: 30°/30° (inboard/outboard)

Nominal flap deflections: 40°/37° (inboard/outboard)

5

Grids

Grids taken from NASA's HLPW-4 webpage

In-tunnel:

- 105T-ANSA-Unstructured-Yplus1
- C-Level resolution
- 278 million cells, 226 million nodes
- unstructured

Free-air:

- 103-ANSA-Unstructured-hiA-Yplus1
- C-Level resolution
- 276 million cells, 218 million nodes
- unstructured

Method (1): Numerical settings

All simulations performed using JAXA's in-house code FaSTAR

- · Hybrid RANS/LES: Delayed Detached Eddy Simulation (DDES)
- · Spalart-Allmaras turbulence model with rotation corrections (SA-noft2-R)
- · Node-centered finite volume method
- · Convective terms: HLLEW scheme
- · Gradient computation: GLSQ method
- · LU-SGS time-integration method:
 - Time step of Δt = 3.6·10⁻⁴ convective time units (CTUs)
 - Courant-Friedrichs-Lewy number equal to CFL=10
- · Hishida (van Leer-type) slope limiter as well as a U-MUSCL scheme
- · No-slip velocity and adiabatic temperature boundary conditions on the aircraft model and side-wall

7

Method (2): Initial conditions

Initial Conditions (IC): Isentropic nozzle flow

Using uniform flow for unsteady in-tunnel simulations, we end up with:

- · long transients (the flow needs to convect through the entire wind tunnel)
- · unstable flow conditions (the global flow in the wind-tunnel starts to oscillate)
- reduced time steps
- numerical problems/failures

This document is provided by JAXA.

Method (3): Boundary conditions

Boundary conditions (BC):

- · Inlet: Static pressure, temperature, and velocity
- Outlet: Static pressure
- · Values for BC according to isentropic nozzle flow
 - The entire flow field as well as boundary conditions depend only on an isentropic test-section Mach number M_T
 - If we change M₇ we need to change inlet & outlet BC!
 - Due to skin-friction losses at the wind-tunnel walls, M_T is usually higher than the nominal Mach number M_N
- · Using alternative boundary conditions (e.g. total pressure/temperature) leads to numerical instabilities
- We carefully assessed the flow conditions in the wind tunnel and made sure that the solution is not depending on the choice of boundary conditions (shown later)

9

Method (4): Adjust test-section Mach number

Procedure for each angle of attack:

- Use isentropic relations to estimate a nozzle flow (initial condition) as well as inlet and outlet boundary
 conditions based on an isentropic test-section Mach number M_T (a-priori unknown)
- Perform a steady RANS simulation of the entire wind-tunnel configuration including the aircraft model at the given angle of attack
- Compute the nominal Mach number M_N according to the procedure provided for the HLPW-4.
- If |(M_N-0.2)/0.2|>1% -> adjust M_T and re-iterate the procedure

$$\frac{\Delta M_T}{\Delta M_N} \approx 1.18 \leftarrow \text{no-slip wall}$$

 $\frac{\Delta M_T}{\Delta M_N} \approx 0.96 \iff \text{slip wall*}$

*Difference due to simplified wind-tunnel geometry for nozzle-flow calculation

Method (5): Verify test-section Mach number

- Mach numbers upstream of the aircraft model well within +-2.5% error with respect to M_N = 0.2
- Upstream Mach and Reynolds numbers agree well with those extracted from free-air simulations (blue)

Free-air DDES results

· Similar results for cold- and warm-started simulations

Free-air DDES results

- · Similar results for cold- and warm-started simulations
- · Systematically under-predicting experimental measurements of CL
- Fair agreement for CD
- · CM particularly off at low angles of attack
- · Significant differences at low angles of attack

In-tunnel DDES results

- · Fully-developed flow in the wind-tunnel test section requires a long transient
 - · Better initial solution could speed up process
- Averaging only over the last ~40 convective time units (some simulations ran longer than CL histories shown above)
- · Starting from RANS solution is not recommended (same observation as for URANS in APC8)

- Fairly good agreement between for CL and CD
- · CM significantly over-predicted!

In-tunnel DDES results

Comparison free-air DDES vs in-tunnel DDES (1)

Comparison free-air DDES vs in-tunnel DDES (2)

21

Comparison free-air DDES vs in-tunnel DDES (3)

Comparison free-air DDES vs in-tunnel DDES (4)

23

Comparison free-air DDES vs in-tunnel DDES (5)

- Fair agreement between free-air and in-tunnel DDES results
- In-tunnel DDES slightly closer to experimental measurements

Given this good agreement between free-air and in-tunnel DDES results, the differences in CM is puzzling

In-tunnel DDES results – rotating MRC

For free-air as well as in-tunnel simulations the MRC is identical. That means:

- For free-air simulations the MRC is constant in the body-fixed coordinate frame
- For in-tunnel simulations the MRC is constant in the tunnel-fixed coordinate frame
- Do the provided uncorrected wind-tunnel measurements also consider for all angles of attack a constant MRC?

https://hiliftpw.larc.nasa.gov/Workshop4/geometries.html

-> "Instructions for rotating to a different angle of incidence are included in the pdf file below. (The rotation centerline is parallel to the Y axis at X=1227.5, Z=198.0.)"

https://hiliftpw.larc.nasa.gov/Workshop4/OfficialTestCases-HiLiftPW-4-2021_v15.pdf

-> "Moment Reference Center (MRC) x = 1325.9 inches, y = 0.0 inches, z = 177.95 inches"

In-tunnel DDES results – rotating MRC

For free-air as well as in-tunnel simulations the MRC is identical. That means:

- For free-air simulations the MRC is constant in the body-fixed coordinate frame
- For in-tunnel simulations the MRC is constant in the tunnel-fixed coordinate frame
- Do the provided uncorrected wind-tunnel measurements also consider for all angles of attack a constant MRC?

Rotating the MRC around the rotation center by the angle of attack for in-tunnel DDES

- reduces errors to experimental measurements
- delivers similar results compared to free-air simulations

Whether this correction is valid or not is currently under investigation

Sensitivity analysis of In-tunnel simulations (mainly RANS)

27

Sensitivities to in-tunnel boundary conditions

HLPW-4: Required accuracy of M_N is $\pm 2.5\%$ (0.195 < M_N < 0.205)

How does CL change with error in nominal wind-tunnel Mach number M_N?

$$ightharpoonup \Delta M_N = 0.005 (2.5\%) -> \Delta C_L \approx 0.1 (5\%)$$

 $C_L = 2/(\rho_\infty M_\infty^2) \oint \Delta p \, ds$

->
$$C_L(M_N = 0.205)/C_L(M_\infty = 0.2) \sim \frac{M_N^2}{M_\infty^2} = 1.05$$

If "free-stream" Mach number in tunnel deviates from reference Mach number by 2.5%

-> Error in normalization of aerodynamic coefficients is 5% (as shown above) and proven by RANS simulations

Sensitivities to in-tunnel boundary conditions

In- and Outlet Boundary Conditions for $M_N = 0.2$ computed by RANS

OV	Inlet			Outlet	M_T	
α	p_i	T_i	U_i	p_o	MT	
05.98	17685.84	192.06	8.79	17565.36	0.214	
15.48	17696.25	292.11	8.88	17573.54	0.216	
17.98	17706.76	292.16	8.95	11581.80	0.218	
19.98	17717.37	292.21	9.03	17590.15	0.220	

0.205 0.200 0.201 0.193

(histories in back-up)

29

Sensitivities to in-tunnel boundary conditions

- As mentioned before, time average of nominal Mach number can differ from reference Mach number of M=0.2!
- We can correct CL by the ratio of the Machnumber squares (see previous slides)
- · Predictions remain within +/-5% error margin
- Mach-number correction can be neglected for CD and CM

Sensitivities to in-tunnel boundary conditions

HLPW-4: Required accuracy of M_N is $\pm 2.5\%$ (0.195 < M_N < 0.205)

How does CL change with error in nominal wind-tunnel Mach number M_N?

$$ightarrow \Delta M_N = 0.005$$
 (2.5%) -> $\Delta C_L \approx 0.1$ (5%)

 $C_L = 2/(\rho_\infty M_\infty^2) \oint \Delta p \, ds$

$$\sim C_L(M_N = 0.205) / C_L(M_\infty = 0.2) \sim \frac{M_N^2}{M_{\infty}^2} = 1.05$$

If "free-stream" Mach number in tunnel deviates from reference Mach number by 2.5%

-> Error in normalization of aerodynamic coefficients is 5% (as shown above) and proven by RANS simulations

Measurement accuracy of wind-tunnel reference conditions important!

- · Is there a difference in CL using slip or no-slip wind-tunnel walls?
 - YES (for preliminary RANS at least)

More analysis required

Is there a sensitivity adjusting only back pressure to set wind-tunnel Mach number M_N?

NC

Present procedure delivers similar results (e.g. CL=1.915) as adjusting M_N solely by outlet pressure (e.g. CL=1.907)

31

Sensitivities to in-tunnel boundary conditions

Verification of boundary conditions for two different Mn

- Almost perfect agreement between simulations using different BC to obtain M_N=0.205 in the test section
- ∆CL=0.00519, ∆CD=-0.000656 ∆CM=-0.000343
- The case, where we adjust only the back-pressure to obtain M_N=0.2 in the test section (cyan curve) does not converge well. This supports our choice of boundary conditions

Baseline: Change In-&Outlet BC

Sensitivities to initial conditions

	Free-air RANS at AoA=19.57 (APC-8):	(Experiment CL=2.515)	In-	tunnel RANS at AoA=17.98 (APC-9):	(Experiment CL=2.572)		
	 Cold start (from Uniform flow): 	CL=2.298 (-8.6%)		Cold start (from Uniform flow):	CL=2.219 (-13.7%)		
	Warm start (incrementally increasing AoA):	CL=2.535 (+0.8%)		Cold start (from isentropic nozzle flow):	CL=1.938 (-24.7%)		
	Free-air URANS at AoA=19.57 (APC-8):						
	 Cold start (from Uniform flow): 	CL=2.489 (-1.0%)					
	 Warm start (from RANS solution): 	CL=2.256 (-10.3%)					
Free-air DDES at AoA=19.57 (APC-9):			In-t	In-tunnel DDES at AoA=17.98 (APC-9):			
	 Cold start (from Uniform flow): 	CL=2.347 (-6.7%)		Cold start (from Uniform flow):	CL=1.864 (-27.5%) [first order computations, highly unstable]		
	 Warm start (from RANS solution): 	CL=2.350 (-6.7%)					
			•	Warm start (from RANS solution):	CL=2.246 (-12.7%)		
				Cold start (from isentropic nozzle flow):	CL=2.475 (-4.8%)		

33

Acknowledgements

The authors would like to thank

APC organizing committee

JAXA's high-performance computing facility JSS3

RIKEN's high-performance computing facility Fugaku

Hayashi-san (Ryoyu-Systems)

Saiki-san (Ryoyu Systems)

Conclusions

- · DDES simulations on the CRM-HL have been carried out
- · Uncertainties due to Initial- & Boundary-Conditions have been assessed
- · In-tunnel as well as free-air DDES deliver similar results:
 - · Accuracy of CL and CD near 5% error margin
 - · Lift is systematically underpredicted
 - · CL of In-tunnel simulations slightly closer to experimental data
 - CM of In-tunnel simulations significantly over-predicted
 - > the difference in CM between free-air and in-tunnel simulations is under investigation

Outlook

 Revisiting characteristic grid length-scale (used in shielding function of DDES) may help to improve results

35

Thank you very much for your attention

ありがとうございます