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¥ Methods (focus on in-tunnel simulations)

¥ Choice of initial conditions
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¥ Adjustment of test-section Mach number
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¥ Free-Alr DDES results
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# In-tunnel DDES results
* Comparison with experiment
¥ Comparison with Free-Air DDES
# Sensitivity analysis to boundary and initial conditions

¥ Conclusion & Outlook
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Introduction & Methodology

NASA’s CRM-HL configuration

Benchmark for stall prediction
Studied at NASA's 4" High-Lift Prediction Workshop (HLPW-4) and APC-8
¥ High-lift devices: Slats (red) and Flaps (blue)

# Slat Brackets | }

# Pylon (green) and Nacelle | )

Complex geometry with many details and gaps
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Test case

Beyond RANS: APC Test Cases 3 (free-air) & 4 (in-tunnel)
Nominal flow conditions of HLPW-4:

# Mach number: M=0.2

# Reynolds number: Re=5.49 million

¥ Nominal slat deflections: 30°/30° (inboard/outboard)

¥ Nominal flap deflections: 40°/37° (inboard/outboard)

Grids

Grids taken from NASA's HLPW-4 webpage
In-tunnel:

+ 105T-ANSA-Unstructured-Yplus1

*  C-Level resolution

+ 278 million celle, 226 million nodes

*  unstructured

Free-air:

+  103-ANSA-Unstructured-hid-Yplus1

*  C-Level resolution

+ 276 million cellg, 218 million nodes

*  unstructured
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Method (1): Numerical settings

All simulations performed using JAXA's in-house code FaSTAR

* Hybrid RANS/LES: Delayed Detached Eddy Simulation {DDES)

* Spalart-Allmaras turbulence model with rotation corrections (SA-noft2-R)
* Node-centerad finite volume method

+ Conwvective terms: HLLEW scheme

+ Gradient computation: GLSQ method

+ LU-5GS time-integration method:
* Time step of 4L = 3.6:107* convective time units {CTUs)
= Cowrant-Friedrichs-Lewy number equal to CFL=10

* Hishida (van Leer-type) slope limiter as well as a U-MUSCL scheme

* No-slip velocity and adiabatic temperature boundary conditions on the aircraft model and side-wall

Method (2): Initial conditions

Initial Conditions (IC): Isentropic nozzle flow

Using uniform flow for unsteady in-tunnel simulations, we end up with:
* long transients (the flow needs to convect through the entire wind tunnel)
* unstable flow conditions (the global flow in the wind-tunnel starts to oscillate)
* reduced time steps

Inlet
* numerical problems/failures
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Method (3): Boundary conditions

Boundary conditions (BC):
+ Inlet: Static pressure, temperature, and velocity
* Qutlet: Static pressure

* Values for BC according to isentropic nozzle flow

= The entire flow field as well as boundary conditions depend only on an
isentropic test-section Mach nurmbser M,

* If we change M, we need to change inlet & outlet BC!
+ Due to skin-friction losses at the wind-tunnel walls, M. is usually higher than the nominal Mach number M,

+ |Using alternative boundary conditions (e.g. total pressure/temperature) leads to numerical instabilities

« We carefully assessed the flow conditions in the wind tunnel and made sure that the solution is not depending
on the choice of boundary conditions (shown later)

Method (4): Adjust test-section Mach number

Procedure for each angle of attack:

* |Use isentropic relations to estimate a nozzle flow (initial condition) as well as inlet and outlet boundary
conditions based on an isentropic test-section Mach number M (a-priori unknown)

* Perform a steady RANS simulation of the entire wind-tunnel configuration including the aircraft model at
the given angle of attack

* Compute the nominal Mach number My, according to the procedure provided for the HLPW-4.

«If |{M-0.2)/0.2| 1% -> adjust M.

) Tunnel Calibrations
and re-iterate the procedure

Uang pressure data from the @atic probes, 3 value foi {Max-Noz) PT can be caloulsted directly. For & given tannel
pressure, Qineti(] provides 8 table of g/®1 v [Maz-Noe ) /PT, valid for the pressuns range of the test cases. Linear
,l:,,"y[.r interpolatian can e e 1o Seermies & 0PT vakie

M = 1.18 4= no-slip wall iMax-Nog/PT

00169265 Screenshot from HUPW-4

AM 0.03R0A20 documentation
T "
— = 95 += slip wall* 0.0303813
AM,,
Thee relaticreship batwesn qfPT and the test section Mach number (M) & defingd as
*Difference due to simplified wind-tunnel N GIRT 7NE {1+ 02040715 M
L T 15y
geometry for nozzle-flow calculation e N
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Method (5): Verify test-section Mach number

* Mach numbers upstream of the aircraft model
well within +-2.5% error with respect to M,= 0.2

* Upstream Mach and Reynolds numbers agree well
with those extracted from free-air simulations (blug)

Red lne plots:
In-tunnel RANS
data extracted
along green

stream—'lraue:

Blue line plots:
Free-alr RANS
data extracted
along green
stream-race

Free-air DDES

el it NRCE 12 p_ret

acn
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Free-air DDES results

+  Similar results for cold- and warm-started simulations

~200.000
iterations

Statistics collected for >100.000 time steps l
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Free-air DDES results

*  Similar results for cold- and warm-started simulations

+ Systematically under-predicting experimental measurements of CL
*  Fair agreement for CD

+ CM particularly off at low angles of attack

+ Significant differences at low angles of attack
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Free-air DDES vs RANS

ADA=17.05 ) ApA=19.57 ApA=21.47

FEEERFEIEFERIE] o

DDES Cold-Started

RANS Warm-Started

In-tunnel DDES
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L

ZE

2=

2]

22

Ninth Aerodynamics Prediction Challenge (APC-9)

In-tunnel DDES results
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*  Fully-developed flow in the wind-tunnel test section requires a long transient

* Better initial solution could speed up process
* Averaging only over the last ~40 convective time units

(some simulations ran longer than CL histories shown above)

* Starting from RANS solution is not recommended (same observation as for URANS in APCE)

In-tunnel DDES results
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statisties
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* Fairly good agreement between for CL and CD
* CM significantly over-predicted!
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In-tunnel DDES results
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+ Post-stall: low-frequency oscillations at 5t=0.07 ANEEE ] (RS SRR S 2 L g TS
+ At all angles of attack: oscillations intermediate frequencies P—

i i ili i i Characterization wia global stability snalysis on the
agreeing well with Global stability Analysis (Sansica et al. 2023) e e o

* 5t=0.35: mode inside nacelle and outboard separation mh- Andraa, Zaurar Markus, M8
*  5t=0.57: helical mode on the nacelle pylon

Comparison free-air DDES vs in-tunnel DDES (1)

free-air — 7.05 deg in-tunnel — 5.89 deg

This document is provided by JAXA.
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Comparison free-air DDES vs in-tunnel DDES (2)

free-air — 17.05 deg in-tunnel — 15.49 deg

§555555 o

§EsE

Comparison free-air DDES vs in-tunnel DDES (3)

free-air — 19.57 deg in-tunnel —17.89 deg
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Comparison free-air DDES vs in-tunnel DDES (4)

free-air —21.47 deg

in-tunnel —19.89 deg

Comparison free-air DDES vs in-tunnel DDES (5)

Fair agreement between free-air and in-tunnel
DDES results

In-tunnel DDES slightly closer to experimental
measurements

Given this good agreement between
free-air and in-tunnel DDES results,
the differences in CM is puzzling
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In-tunnel DDES results — rotating MRC

For free-air as well as in-tunnel simulations the

MRC is identical. That means:

+ For free-air simulations the MRC is constant in
the body-fixed coordinate frame

*  For in-tunnel simulations the MRC is constant
in the tunnel-fixed coordinate frame

* Do the provided uncorrected wind-tunnel
measurements also consider for all angles of
attack a constant MRC?

https://hiliftpw.larc.nasa. gov/Workshop4/geometries.htmil
-= "Instructions for rotating to a different angle of incidence are included in the pdf file below. (The rotation centerline is
parallel to the ¥ axis at X=1227.5, 7=198.0.)"

https://hiliftpw.larc.nasa. gov/Workshopd/OfficialTestCases-HiLiftPW-4-2021_v15.pdf
-> "Moment Reference Center (MRC) x = 1325.9 inches, y = 0.0 inches, z = 177.95 inches"

In-tunnel DDES results — rotating MRC

For free-air as well as in-tunnel simulations the 015

MRC is identical. That means:

* For free-air simulations the MRC is constant in
the body-fixed coordinate frame oz

+ For in-tunnel simulations the MRC is constant
in the tunnel-fixed coordinate frame

* Do the provided uncorrected wind-tunnel 025l
measurements also consider for all angles of
attack a constant MRC?

exp. (uncorrected)
iwed MAC

[ ]
rofated MRC
Tree-air
]
—

FEBN

.‘.

CM

Rotating the MRC around the rotation center by ! . /.'
the angle of attack for in-tunnel DDES e
* reduces errors to experimental measurements nasl e F d
« delivers similar results compared to free-air Lo el
simulations T—"' g

0.4 ,-.l -

Whether this correction is valid or not is currently under investigation Ach
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Sensitivity analysis of In-tunnel
simulations (mainly RANS)

Sensitivities to in-tunnel boundary conditions

HLPW-4: Required accuracy of M, is $2.5% (0.195 < M, < 0.205)

* How does CL change with error in nominal wind-tunnel Mach number M, ?
» AMy = 0.005 [2.5%) -> AC, = 0.1 (5%)
Cp = 2/(pMZ) § Ap ds
> Cu(My = 0.205)/ C (M = 0.2) ~ *E‘IE—= 1.05

If “free-stream® Mach number in tunnel deviates from reference Mach number by 2.5%
== Error in normalization of aerodynamic coefficients is 5% [as shown above) and proven by RANS simulations

This document is provided by JAXA.
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Sensitivities to in-tunnel boundary conditions

In- and Outlet Boundary Conditions for M, = 0.2 computed by RANS

Inlet Qutlet
= Pi T U, Po My Average M in DDES
0598 | 1768584 | 19206 | 879 | 17565.36 | 0.214 0.205

1548 | 17696.25 | 292.11 | 8.88 | 17573.54 | 0.216
17.98 | 17706.76 | 292.16 | 895 | 11581.80 | 0.218
19.98 | 17717.37 | 29221 | 9.03 | 17590.15 | 0.220 0.193

(histories in back-up)

Sensitivities to in-tunnel boundary conditions

28— . ; — 0.75
* As mentioned before, time average of Mach-rjumber -
nominal Mach number can differ from 281 correction .~ amamg 065
i ..l' % Correct CL up
reference Mach number of M=0.21 S . __..9
+ We can correct CL by the ratio of the Mach- 24 o T " ,I =
number squares (see previous slides) T -
. e h s . o . M=0.193 #
* Predictions remain within +/-5% error margin o =Ef o — 0,405 i
o 3
* Mach-number correction can be neglected for 2} ) /l/ 029
CD and CM /,
18 .7 M=0.205 0175
W5 4mmm Correct CL down
LET" y ~ 0.08
1 1 1

|
5 0 15 20
AohA
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Sensitivities to in-tunnel boundary conditions

HLPW-4: Required accuracy of M, is #2.5% (0.195 < M, < 0.205)

* How does CL change with error in nominal wind-tunnel Mach number M, ?
= AMy = 0,005 (2.5%) - AC; = 0.1 [5%)
€, = 2/ (pM2)§ Ap ds
<= Oy (My = 0.205)/ C (Mo = 0.2) ~ E?: 1,05
an
If “free-stream” Mach number in tunnel deviates from reference Mach number by 2.5%
== Error in normalization of aerodynamic coefficients is 5% [as shown above) and proven by RANS simulations
Measurement accuracy of wind-tunnel reference conditions important!

* |5 there a difference in CL using slip or no-slip wind-tunnel walls?
¥ YES [for preliminary RANS at least)
More analysis required

* |5 there a sensitivity adjusting only back pressure to set wind-tunnel Mach number M, ?
¥ NO
Present procedure delivers similar results (e.g. CL=1.915) as adjusting My, solely by outlet pressure (e.g. CL=1.907)

Sensitivities to in-tunnel boundary conditions

Verification of boundary conditions for two different Ms

* Almost perfect agreement between simulations using different s B
BC to obtain My=0.205 in the test section ) "

+ ACL=0.00519, ACD=-0.000656 ACM=-0.000343

* The case, where we adjust only the back-pressure to obtain 1400 |-
M,=0.2 in the test section {cyan curve) does not converge well.
This supports our choice of boundary conditions
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Baseline: Change In-&0utlet BC
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Sensitivities to initial conditions

Free-alr RANS at Aof=19.57 [APC-8): [Experiment Cl=2_51%) Im-tunnel RANS at Aof=17.98 |APC-9): [Experiment CL=2_572)
Cold start {fram Unifarm Aowl CL=2.298 [-8.6%) . Cold start {fram Unifarm fowl CL=2.215 |-13.7%)
‘Warm start [incrementally increasing Acéi): Cl=2.535 (+0.8%) . Cold start {from isentropic ozzle Flow): Cl=1.938 |-24.7%)

Free-alr URANS at Aod=19.57 [APC-8)

Cold start [from Uniform flos: Cl=2.485
Warm start {from RAKS solution): Cl=2_256 [-10.3%)
Free-air DDES at Aofi=15.57 |APC-5): In-tunnel DDES at AoA=17.98 [APC-9):
Cold start [from Uniform flow): L=2_347 [-B.7%) . Cald start (fram Uniform flow): Cl=1.854 [-27.5%]

[first order computations, highly unstable]
Warm start {from RAKS solution):
Waem start {from BANS solution): Cl=2 246 (-12.7%)

Cold start [from isentropic nozzle flow): Cl=2.475 [-4.8%)
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Conclusions

* DDES simulations on the CRM-HL have been carried out
* Uncertainties due to Initial- & Boundary-Conditions have been assessed

* In-tunnel as well as free-air DDES deliver similar results:
+ Accuracy of CL and CD near 5% error margin
+ Lift is systematically underpredicted
+ CL of In-tunnel simulations slightly closer to experimental data
* CM of In-tunnel simulations significantly over-predicted
¥ the difference in CM between free-air and in-tunnel simulations is under investigation

Outlook

* Revisiting characteristic grid length-scale (used in shielding function of DDES)
may help to improve results

Thank you very much for your attention
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