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High-fidelity transonic
buffet instabilities

* Transonic buffet is an aerodynamic instability that
limits the flight envelope of aircraft.

* Depending on configuration, known to consist of:

a) A 2D shock-oscillation mode.
b) A 3D ‘buffet cell’ span wise modulation mode.

* Most computational studies are limited to low-fidelity
(RANS)-based methods.

¢ High-fidelity (ILES/DNS) are very expensive, typically
limited to narrow domains (Span ~ 5% chord length ~
0.05 aspect ratio).

* Therefore, only suitable for studying the 2D shock
oscillations.

* In this work, we apply ILES to wider spans up to
AR=3, to search for 3D effects.

a) 2D shock oscillation instability: OpenSBLI multi-block simulation of transonic
buffet on infinite (span-periodic) OAT15A wing segment, on 100 V100 GPUs on
the JSS3 supercomputer.
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b) 3D buffet cell instability: [CFD: Sansica A., Hashimoto A. AIAA-J, 61(10) 2023];
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3 EXP: Koike et al, AIAA Aviation, 2016; Sugioka et al, Exp. In Fluids, 2018]

High-fidelity transonic
buffet instabilities

* Transonic buffet is an aerodynamic instability that
limits the flight envelope of aircraft.

* Depending on configuration, known to consist of:

a) A 2D shock-oscillation mode.
b) A 3D ‘buffet cell’ span wise modulation mode.

* Most computational studies are limited to low-fidelity
(RANS)-based methods.

¢ High-fidelity (ILES/DNS) are very expensive, typically
limited to narrow domains (Span ~ 5% chord length ~
0.05 aspect ratio).

* Therefore, only suitable for studying the 2D shock
oscillations.

* In this work, we apply ILES to wider spans up to
AR=3, to search for 3D effects.

Extruded wings comparison

Existing high-fidelity § -
buffet studies: Only
2D shock instability

AR ~ 0.05 - 0.065 b

Current study:

3D buffet cell
instability
AR=1, AR=2

Aspect Ratio: AR=W /¢
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Open questions and NP

= t d = Buffet @w‘ A Qéc& /l//
previous studies b & A
Dy 7
3D ‘buffet cell’ span wise modulation A %f
5 &
* Previous studies: (Exmded;" ¥ %

Aerofoil Chord
¢ 3D instability is superimposed over

the 2D shock-oscillation. 3D buffet cell instability: [CFD: Sansica A., Hashimoto A. AIAA-J, 61(10) 2023];
EXP: Koike et al, AIAA Aviation, 2016; Sugioka et al, Exp. In Fluids, 2018]

* 3D instability is dominant for
realistic configurations (finite-wings).

* Buffet cells convect with sweep Plante et al, JEM (2021)
angle. [
) ) . lovnovich and Raveh, AIAA-J (2015) ]‘ ‘
* Q: Can we identify 3D effects in the os
absence of sweep (+ infinite a [ A Figure 4.3 — Surface pressure coefficient and skin friction lines of 3-D steady solution with
= 2 030035 0 042020 0% 060 065 070 075 224 (left) and 112 (right) spanwise grid cells (NACA4412, M = 0.2, Re = 350000, a = 15°,
ng)- R §=0° L, = 6).

* Lack of high-fidelity literature for
3D buffet.

jwa m ey W

() 5=0°.

* Buffet cells / stall cells share similar
features - Are they the same
phenomena at different flow

e 2 Fig. 26 U rf: i infinit
conditions? configuration, b/c = 12, and A = 25 deg nominal buffet conditions,

e

(b) 6 = 30° (right 112 spanwise grid cells, left 168 spanwise grid cells).

Figure 4.7 — Instantaneous surface pressure coefficient and skin friction lines for URANS
simulations of infinite swept wings with two sweep angles (OALT25, M = 0.7352, Re =
5 3x 105 a=4° L, =6).

OpenSBLI Python-based code-generation

High-level problem specification via symbolic algebra

* OpenSBLlI is a Python-based code- - 1
generation framework for compressible et B el
CFD using finite-differences [1]. T o Pl

stress_tensor
heat_flux = "Eq(q_j, (-mu/((g

¢ Users specify the equations to solve and
simulation options in Python. ok HAL33, 1

boundaries [direction] [side] - IsothermalWallBC(direction, 0, wall_eqgns)

TraditionalAlgorithmRK(block)

¢ Symbolic algebra (SymPy) is converted
into a complete ILES/DNS CFD solver in
C/C++ code.

alg
0PsC(alg)

Generate a
. Transl: E:
* The OPS DSL enables parallel execution on C code from parjfe?t;tdz Clommsitl (ke . ze;lj:;et
many platforms (MPI/OpenMP/CUDA/...). Python with e parallel code -
OpenSBLI WI architecture

* Developed 2016-2021 (University of
Southampton), during my PhD [1].
[1] D.J. Lusher, S.P. Jammy, N.D. Sandham. OpenSBLI: Automated code-
H generation for heterogeneous computing architectures applied to compressible
¢ New development at JAXA’ JSPS prOJect fluid dynamics on structured grids. Computer Physics Communications (2021).
(2022-2023) - next release & paper.
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Oxford Parallel Structured (OPS) DSL

i il OP-DSL

Automatic parallelisation for multi-block structured mesh applications

* OpenSBLI/OPS collaboration.

* The OPS library uses source-to-source
code translation for structured mesh
applications.

* OpenSBLI code written in the OPS API can
be automatically parallelised.

* Supports C/C++/Fortran, to generate:
MPI/OpenMP/CUDA/OpenCL/OpenACC/HIP

* JSS3 TOKI-RURI & NASA Cluster (Nvidia
GPUs) -> CUDA+MPI+GPUDIRECT.

* JSS3 TOKI-SORA & Fugaku (A64FX CPUs)
-> Hybrid MPI+OpenMP.

G. Mudalige, |. Reguly, M.Giles.

https://op-dsl.github.io/

I. Z. Reguly, G. R. Mudalige and M. B. Giles, Loop Tiling in Large-Scale

Stencil Codes at Run-Time with OPS, in IEEE Transactions on Parallel

and Distributed Systems, vol. 29, no. 4, pp. 873-886, 1 April 2018, doi:
10.1109/TPDS.2017.2778161.

ange64(] = {-3, ,
opensbliblock@@Kernel064,

Parallel loop structure Body of the function being called

benpd + 4, -3, bonpl + 4, -3, bonp2 + 4};
ations evaluatiol
, stencil_
, stencil
, stencil_o_ol
, stencil_

, rangesa,

, stencil o,

Summary of OpenSBLI
numerical methods

Central + WENO shock-capturing

* Non-dissipative (central) schemes for high-
resolution of turbulence and wave
propagation.

¢ Convective terms written in cubic-split form to
improve numerical stability.

¢ 5th order WENO-based shock-capturing is
applied only at shockwaves.

¢ Dispersion-Relation-Preserving (DRP) filters
are used in the freestream.

¢ Explicit 4th order low-storage Runge-Kutta
time-stepping.

[1] G. Coppola et al. Journal of Computational Physics (2019).

[2] H. Yee et al. Computers & Fluids (2018).
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Cubic split-form of convective derivative operators for the compressible Naiver-Stokes equations [1]

i2 i1 i ‘ i+l i+2 i+3

| Ut = Ut — Atls (F)

ik

1 ] =%
Le(F)iju= Ax [Fj-(-l/2,k - Fj—1/2,k] +..

Application of non-linear shock-capturing

Staggered 5th order WENO shock-capturing stencil at the end of a full time-step [2]

Cross-validation of OpenSBLI to the
FaSTAR code for supersonic
cylinder flows.

Solver:
FaSTAR
OpenSBLI

Sansica, A, Lusher, D., Hashimoto,
A. Mach Evolution of the Cylinder 0
Wake Flow Bifurcations.

The 34th International Symposium
on Shockwaves (ISSW34, South
Korea 2023)

8 5
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U pe n S B EI : ] \p pl Icatl O ns Ede shocklets in turbul/ent counter-flows [3].
B e J

Compressible turbulence and shockwave/boundary-layer interactions

* Previous applications include
compressible turbulence[2],
3D shockwave/boundary-layer
interactions, shock-trains.

* Now extended to multi-block for

aerofoil and cylinder problems . _ _ s -0 250D madal decomposition,,, .
(bottom, right). < ‘ g il A _ i
¢ Successful Fugaku FY2023 S A i T
Junior Researcher project : el L
completed. e b e

2
0 2

et M LT
-1 S 2 0.2 By 24 02

[1] A. Gillespie, N.D. Sandham. Shock Train
Response to High-Frequency Backpressure
Forcing. AIAA Journal 60 (6), 3736-3748
[2] D.J. Lusher, N.D. Sandham. Assessment of
Low-Dissipative Shock-Capturing Schemes for
the Compressible Taylor-Green Vortex. AIAA
Journal (2021).

Vorticity
[3] A. Hamzehloo, D.J. Lusher, S. Laizet, N.D.
Sandham. Direct numerical simulation of
compressible turbulence in a counter-flow

3
2
1
se> 11 L
=L
channel configuration. Physical Review Fluids

6 (9), 094603 Turbulent transonic shock buffeg (NASA CRM) -

OpenSBLI: Recent validations

Cylinder and Airfoil validations in new OpenSBLI

release T

* Low Reynold_s nqmber Without SFD
(Re=100) validations > oo
against literature [1,2].

* Circular cylinder flows -
with Selective B

log|vr - vi(t

Frequency Damping ooral| 7
(SFD). 0 100 200 300 400 1072 10;‘reque:2: 10!

I‘E‘% #®  Giannetti and Luchini (JFM, 2007) E ]
. ? e OpensBLI *
* SFD demonstration ! S
. . 4 3
z With SFD
with code and meshin & = &
the release. R T
epmolds
® * o2 ¥
gms [ . g0 4 ¥
[1] F. Giannetti, et al. Journal of Fluid Mechanics ~ £** o oz s
581 (2007). %"“‘4 = ;D.Dﬁ i
Ho1s % “x Barkley and Henderson (JFM, 1996) oY % Giannetti and Luchini (JFM, 2007)
[2] D. Barkley, et al, Journal of Fluid Mechanics fer L% Operctll Sk $ Cpensitl
60 70 80 100 50 60 70 80 90 100
(1996). Reynolds Reynolds
10
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OpenSBLI: Recent validations

Cylinder and Airfoil validations in new OpenSBLI

release w 08

* Low Reynolds number
(Re=10,000) pr
validations against ooff
DNS data [1,2]. ° o2 B

* NACAO0012 airfoil. |

* Open geometry can

H H (b) 0.08
be contained in the
Code release. 006 ‘ :Zz ~— 10% of the data collection petiod
) > 0.000
. . . —-0.001
* Airfoil demonstration e
with code and mesh T
107® 4 —— Reference, Jones (2008)
1| = OpensBLI
10
[1] L. E. Jones, Ph.D. thesis, University 0.001 g 10
of Southampton (2008). An ¢
[2] L. E. Jones, Journal of Fluid b

Mechanics (2008). " 10 10° 10

Frequency

OpenSBLI: Large-scale HPC on JAXA JSS3 GPUs

Using JSS3/Fugaku to generate high-quality DNS databases to improve RANS models at JAXA

* DNS of supersonic turbulence, mixed
isothermal/adiabatic wall conditions within the same
problem configuration [1].

(JAXA): Dr. David J. Lusher, Dr. Andrea Sansica, Dr.
Atsushi Hashimoto, Dr. Hiroyuki Abe.

(NASA): Dr. Gary Coleman, (Boeing/Retired) Dr. Philippe
Spalart.

Generation of high-quality (thermally balanced) DNS
databases of turbulent quantities.

* OpenSBLI DNS on JSS3 GPUs allows us to: ! ~ S - = - 4
¢ Validate lower-fidelity methods and boundary- - .
conditions used in FaSTAR. A - v, Vi
¢ Improved understanding of terms such as the turbulent uvelocly
Prandtl number. 2 4 6 8 10 12 14 16 18 20 22 24
R S e S
Time: 0.012500

* Applied for FY2024 Fugaku Junior Researcher Project.

[1] DJ Lusher, GN Coleman. Numerical Study of Compressible Wall-Bounded
Turbulence—the Effect of Thermal Wall Conditions on the Turbulent Prandtl Number in
the Low-Supersonic Regime. International Journal of Computational Fluid
Dynamics, 1-19, (2023)

Temperature

[2] D.J. Lusher, G.N. Coleman. Numerical Study of the Turbulent Prandtl 1 15 2 25 3 35
Number in Supersonic Plane-Channel Flow — the Effect of Thermal Boundary — L | —
Conditions. NASA Technical Memorandum, 10483 (2022).
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Computational setup

Multi-block mesh and flow parameters

* OpenSBLI was validated for buffet against literature
for Dassault Aviation V2C airfoil [1].

¢ Using 3-block structured C-Mesh (Nx, Ny) plane
points: (701,681), (2249,681), (701,681).

¢ Uniformly extruded in the span: 50-75 points per
0.05c width ~ 2.5 - 7.5 billion mesh points.

* Narrow (0.05c) cases are extruded to generate
restart conditions for wide-span (1c - 2c) cases.

* Flow conditions:
* Moderate Reynolds number: 500,000.
* Baseline Freestream Mach: 0.72.
* AOA: 4 to 8 degrees.

* Zero sweep angle: Q: Can we observe 3D effects
without any imposed cross-flow?

* Turbulent buffet: wall tripped at 0.1c chord.

sin kiz
0.05¢

(x - xt)z
202

3
,ou,,|n=0 = Z Aexp (— ) sin (w;t + @;)
i=1

© " @

0.008
-10

0.006f\ |
0.004

S o002

0.000

-0.002

-0.004

06 08 1o

CL/Cp C. Cp
2097 076 0.036 0.0037 0.032
17.66 (-15.8%) 0.61 (-16.0%) 0034 (-5.5%) 0.0034 (-8.1%)  0.031 (-3.1%)
2136 (+18%) 0.76 (£ 0.0%) 0.035 (2.8%) 0.0037 (x 0.0%) 0.032 (= 0.0%) |

Cp,f Cp,p

Zauner et al [46]
OpenSBLI (Uniform filter)
I OpenSBLI (Targeted filter)

[1] Lusher D., et al. Automatic Code-Generation to Enable High-Fidelity
Simulations of Multi-Block Airfoils on GPUs. AIAA SciTech 2023.

0.4
Example NASA-
02 CRM segment -
2D mesh
> 00 configuration with
3 blocks.
-02 )
(Plotting every 7th
line for clarity)
-0.4
-06 ]
00 02 04 06 08 1.0 12 14 16

Narrow Domain: AoA Study

Time histories of surface skin-friction

2D (shock oscillation) buffet
onset conditions are
investigated with 3D
simulations at AR=0.05.

Range of: 4-8 degrees AoA.

Time history (x-t) plot of
surface skin-friction.

AoA = 4 (pre-onset): fixed
shock location.

AoA = 5 (buffet onset): shock
oscillates on the suction side

Trip location

R
nononou

100

0.012

0.009

0.006

0.003

-
0.000 3
-0.003
-0.006
-0.009

-0.012

0.2 0.4 0.6

z

AoA = 5 (buffet post-onset)

08

AoA = 4 (pre-onset)

x-t diagram of surface skin friction
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Extrusion to wide-span: AR1
Wide-span buffet effects no longer purely 2D
* AR=1 case, M=0.72, AoA: 6 degrees.

¢ 2.5 billion mesh points at AR=1

¢ At AR=1: the flow is no longer strictly 2D across
the span.

* Large 3D separation bubbles occur, during
low-lift phases.

¢ Sectional plots across the span (bottom) show
the lack of span homogeneity.

* Seem to be linked to the point of maximum Near surface: High-lift buffet phase (2D)

flow separation (low-lift).

14

Time: 52.500000

(a) 20%

0%
60%
0%

20%
40%
60%
80%

1.8e+00

-
T &
Mach

l 0.0e+00

Near surface: Low-lift buffet phase (3D effects)

Time: 45.500000

Mach

0.4 0.6 0.8 10

Extrusion to wide-span: AR1, AoA:

§lide-span buffet effects no longer purely 2D
* AR=1 case, M=0.72, AoA: 8 degrees.

* At AR=1: the flow is no longer strictly 2D across the span.
¢ Large 3D separation bubbles occur, during low-lift phases.

¢ Seem to be linked to the point of maximum flow separation
(low-lift).

¢ Curvature of the shock front (no longer 2D planar shock)

Time: 75.500450
2.2e+00

1.5

1

Mach

—05
l 0.0e+00
8.9¢-01

05

o
rhou2

Time: 63.750000

-7.1e-01

0.5 1 1.5 21e+00

Time: 75 500000
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OpenSBLI (ILES) vs FaSTAR

W?AN'S}] Steady RANS + Unsteady RANS (Cp distributions)
alidation of (2D) buffet (@) =20 () 20
frequency p -15
N 775, 9 -10 -1.0
’ W i) 1% 77 ! 1 -0.5
R (7 S
0.0
0.5
—— FaSTAR (Steady-RANS): @ =5"
1.0 —— FaSTAR (Steady-RANS): a = 4" 10 —— OpenSBLI (ILES): a=5"
—— OpenSBLI (ILES): a=4" —— FaSTAR (URANS): a=5"
-0.4 15 y 15
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
06 X X

x' ’ Very good agreement at moderate AoA - Despite many differences between
ILES/URANS, grid etc
Example NASA-CRM mesh. (Plotting

every 5th line for clarity) Unsteady RANS (CL, CD histories and PSD comparison) - AoA = 5
(a) 120 - - (b)0-080 - - (c) 103 T - T
—— OpenSBLI (ILES): AR=1 —— FaSTAR (URANS): AR =1 —— OpenSBLI (ILES): AR =1 —— FaSTAR (URANS): AR =1 —— OpenSBLI (ILES): AR =1
1154 --- & =1.00 ——- =102 0.075 4 ~-- To=0.0587 - T5=0.0501 10-6 —— FaSTAR (URANS): AR=1

-

1.10 0.070 ‘ 109
VNV ENYIE:
PP e A Y A O W\ @m\ /\ g
SVYIVY Sy vy
0.90 0.050 10-21

0.85 0.045 102

0.80 0.040 T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 102 1071 10t 10? 10°

t—to t—to s

3D buffet effects at AR=2 & URANS comparison FaSTAR (URANS) - Andrea-san
AoA =
* Similar behaviour 9penSBLI: AOA =
observed at AR=2 e 0
and AcA =7
degrees.

* However, now
multiple large
intermittent 3D
separation bubbles
develop across the T T TIT
span. -

* Persistent across
multiple buffet cycles
and strongest
during low-lift
buffet phases.

08060402 0 02040608 1 1214 16 18 2
i il
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D.). Lusher*, A. Sansica, A. Hashimoto - Japan Aerospace Exploration Agency (JAXA)
3D turbulent transonic buffet on wide-span aerofoils in the OpenSBLI code on multi-GPUs

HASHERS

Japan Society for the Promotion of Science

1.04 —— Aspect Ratio = 2.00 : Angle of attack = 7° || This high-fidelity simulation investigates
. | the intermittent nature of
/| 3D transonic buffet on wide-span wings

Lift-Coefficient

30 40 50 60 700 80 90 100 Computed on 120 Nvidia V100 GPUs
Time on the JAXA JSS3 Supercomputer

Top-Down View

| —

———
-1 -0.5 0 0.5 1 15 2
Streamwise velocity

Conclusions &

Smmerve 3D buffet effects for infinite (periodic) wings with zero sweep? - Yes, at sufficiently wide
aspect ratios.

* World first high-fidelity 3D wide-span turbulent transonic buffet simulations were performed on JSS3 GPU
nodes, for NASA-CRM extruded wings at Re = 500,000 and Mach 0.72.

* Large simulations on N > 10*9 mesh points.
* Parametric study showed 2D shock oscillation buffet onset occurs between 4-5 degrees AoA at AR=0.05.

* At wide-span (AR=1,2,3), large 3D separation bubbles form during low-lift phases, these cannot be
captured by narrow-span simulations.

* They lead to span-wise inhomogeneous curvature of the main shockwave.
* We show that narrow span simulations are not sufficient to fully capture buffet phenomenon.

* Outlook: Applying Modal Decomposition Methods (SPOD/DMD), publishing results.

Contact: lusher.david@)jaxa.jp. More information on the OpenSBLI code (https:/github.com/opensbli/opensbli): D.J. Lusher, S.P.
Jammy, N.D. Sandham. OpenSBLI: Automated code-generation for heterogeneous computing architectures applied to
compressible fluid dynamics on structured grids. Computer Physics Communications (2021).

JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE

This work is funded by a JSPS postdoctoral fellowship and JSPS KAKENHI Grant: 22F2205. Computational time was provided by DDA i N\
the JAXA JSS3 supercomputing facility and associated support staff, and the Fugaku supercomputer at RIKEN on projects E ZR %’ﬁ;&-ﬁ ray

hp220195, hp220226. 20
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Thank you - Questions?
Aspect ratio AR=3, AcA =6

Time: 159.50

T — I
-0.8 0 0.8 1.6
Streamwise velocity
Contact: lusher.david@jaxa.jp. More information on the OpenSBLI code (https://github.com/opensbli/opensbli): D.J. Lusher, S.P.

Jammy, N.D. Sandham. OpenSBLI: Automated code-generation for heterogeneous computing architectures applied to
compressible fluid dynamics on structured grids. Computer Physics Communications (2021).

This work is funded by a JSPS postdoctoral fellowship and JSPS KAKENHI Grant: 22F2205. Computational time was provided by
the JAXA JSS3 supercomputing facility and associated support staff, and the Fugaku supercomputer at RIKEN on projects
hp220195, hp220226. 21
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Extrusion to wide_span: initial Alternating white noise patches added to restart file (once)
condition

Avoiding long expensive transients

* Due to span wise periodic
boundary condition, wide-span
simulations can be initialised
with the fully developed
narrow-domain flow-fields.

0.0 0.5 ] 1.5
* 0.05c profile is repeated across Time = 23.5000 z \
the span 20-60 (AR1-AR3)
times.

* White noise is added to the
boundary-layer once into the
restart file to help break

symmetry quickly.
* No long wavelengths are forced, op e x5
large 3D effects develop Time = 31.8000 z
natu I‘a||y. Three-dimensional (3D) turbulence develops
Influence of forcing amplitude - IUTAM 2024 Laminar buffet (V2C) profile, un-tripped.
* Plan to submit e oy b
work to IUTAM I ?
2024 conference. Mo M e A oovc

1

* Varying the ‘ﬁ K A’NAVA%
strength of the G'V V V vv V V\

-

©

tripping on buffet °
cases. I [erers

— A=5.0x10"?

— A=7.5x10"2 (Hi

— A=1.0x10" (Very High) : , =0.984 Turbulent buffet (NASA-CRM) profile, tripped

* For weaker cases, > - - pn I (blue line).

the flow becomes e

transitional. (@ oo
* Would like to

understand the oo

point of switching "~ °™ o

between laminar I

and turbu'ent :::: Pressure Side Eziiszxiiﬁ)\,m. Suction Side

buffet. ' k- = |
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Influence of forcing amplitude

L 15 — A=25x10"2 (Low) @
: —— A=5.0x 1072 (Medium)
—— A=7.5x1072 (High) 10-°
-1.0 —— A=1.0x10"! (Very High)
1077
-0.5 _
G
a Sh
() g 107
0.0 a
107
05 —— A=2.5x1072 (Low)
—— A=5.0x1072 (Medium)
10713 -2
1.0 —— A=7.5x102 (High)
—— A=1.0x10"! (Very High)
0.0 0.2 0.4 0.6 0.8 10 To-t 100 To!
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