
Elements of Modern Computing
Hardware for Computational Fluid

Dynamics

F.D. Witherden

Department of Ocean Engineering
Texas A&M University

Introduction Cache Blocking GPUs ConclusionHow a CPU
Works

The Memory
Wall

121第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

Introduction

• Computational uid dynamics (CFD) is the
bedrock of several high-tech industries.

Introduction

• However, over the last decade—on a cost basis—the
performance of many industrial CFD codes has plateaued.

• In this presentation we will investigate the root cause of
this and review alternative coding paradigms and hardware
that can get solver performance back on track.

122 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

Introduction Cache Blocking GPUs ConclusionHow a CPU
Works

The Memory
Wall

How a CPU Works

• CPUs perform work by executing a series of simple
instructions.

• These instructions manipulate data stored in registers.

• A register is a small region of ultra-fast memory located on
the chip itself.

123第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

How a CPU Works

• The data itself can be broken up into two categories:

Integers
(32- or 64-bit)

 42
-1912

Floating point numbers
(32- or 64-bit)

 3.14159
-0.88

How a CPU Works

• The rate at which a processor can execute instructions is
determined by its clock speed.

• This is usually somewhere between 2 and 5 GHz.

• We remark here that power consumption scales with
approximately the cube of the clock speed.

124 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

How a CPU Works

• This relationship places practical limits on how high a chip
can be clocked and still be power efcient.

• The solution here is to increase the amount of work we do
per clock cycle.

How a CPU Works

• One issue is that many instructions, especially those
operating on oating point data, take multiple cycles to
return a result.

• A solution to this is pipelining which enables a new
instruction to start execution before the current one has
nished.

125第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

How a CPU Works
• Consider evaluating as:

add f, a, b
add f, f, c
add f, f, d

• Now, let us assume add takes two cycles to complete:

f = a + b + c + d

6 cycles total

How a CPU Works

• As our code is currently structured it does not matter if our
processor is pipelined or not: execution will always take 6
cycles.

• However, this can be resolved by rearranging our
operations.

126 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

How a CPU Works
• Lets try as:

add f, a, b
add t, c, d
add f, f, t

• Again assuming add takes two cycles to complete:

f = (a + b) + (c + d)

5 cycles total

6 cycles totalWithout pipelining:

With pipelining:

How a CPU Works

• Going beyond pipelining another a second strategy is that
of superscalar execution.

• Here, we duplicate functional units enabling us to execute
multiple independent instructions per cycle.

127第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

How a CPU Works

• If our processor can simultaneously issue independent add
instructions then things get even better still:

add f, a, b
add t, c, d
add f, f, t

4 cycles totalPipelined superscalar:

How a CPU Works

• Decoding and scheduling a large number of instructions
however is a power intensive operation.

• As such the practical limit for modern high-end processors
is around eight instructions per cycle.

128 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

How a CPU Works

Processor Instruction Set
Issue Width

(Instructions / Cycle)
Max Clock Speed

(GHz)

Intel Golden Cove x86-64 6 5.8

AMD Zen 4 x86-64 6 5.4

Apple Firestorm AARCH64 8 3.2

Fujitsu A64FX AARCH64 4 2.2

How a CPU Works

• For numerical applications the key operation is the oating
point operation or FLOP (+ or - or *).

• To improve efciency most architectures support a fused
multiply-add instruction (FMA) which computes:

.c ← a ⋅ b + c (two FLOPs)

129第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

How a CPU Works

• The best means of further improving performance is to
increase the amount of work done by each instruction.

• This can be accomplished by having the instructions
operate on small vectors in lieu of simple scalars.

How a CPU Works

• Also known as single instruction multiple data (SIMD)
typical vector lengths are between 128- and 512-bits.

• SIMD capabilities are a core part of all recent processor
architectures.

130 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

How a CPU Works

• Increasing the vector length is a simple means of improving
peak performance.

• However, not all codes can fully utilise large vectors.

• As such general purpose processors are yet to go beyond
512-bits.

How a CPU Works

Processor Vector Width
Multiply-Add Rate

(Per Cycle)
Max DP FLOPs

(Per Cycle)

Intel Golden Cove 512-bit 2 MADD 32

AMD Zen 4 512-bit
1 MADD
1 ADD

24

Apple Firestorm 128-bit 4 MADD 16

Fujitsu A64FX 512-bit 2 MADD 32

131第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

How a CPU Works

• Having reached the practical limit of what is possible for a
single general purpose core, the simplest means of
improving performance is to replicate them.

• This leads us to multi-core chips with the number of cores
on a single package being between 8 and 128.

How a CPU Works

• A typical processor has either 16 or 32 general purpose
integer registers and either 16 or 32 vector registers.

• Clearly, this is not sufcient to contain all of the data
needed for any non-trivial problem.

132 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

How a CPU Works

• The solution here is to attach some memory to our
processor.

• This is usually some kind of dynamic memory which is
cheap and has reasonable densities.

How a CPU Works

• Memory is usually connected to the CPU through traces
(wires) on a circuit board.

Processor
Memory

Memory

Memory

Memory

133第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

How a CPU Works

• This places practical limits on the latency and bandwidth of
main memory.

• Specically latency is usually ~50 ns and bandwidth for an
eight channel DDR4 conguration is ~250 GiB/s.

Introduction Cache Blocking GPUs ConclusionHow a CPU
Works

The Memory
Wall

134 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

The Memory Wall

• To put these numbers into perspective a six-issue core
running at 3 GHz can execute almost 1,000 instructions in
50 ns!

• If we can dual-issue 512-bit FMA’s this is about the same
amount of time as is needed to perform 4,800 double
precision oating point operations.

The Memory Wall

• Now, let us consider bandwidth.

• Consider a function to perform the following ‘AXPY’
operation:

,

where and are vectors and is a scalar.

y ← αx + y

x y α

135第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

The Memory Wall

• This simple vector addition operation is a building-block of
many linear algebra kernels.

• Running through our vectors each loop iteration requires us

to load a component of and and write a component of

.

x y
y

The Memory Wall

• On a 2 GHz core with 512-bit vectors that can sustain two
loads and one store per cycle our bandwidth requirements
are:

!{2 × 512
8

+ 512
8 } × 2 ⋅ 109 = 358 GiB/s

136 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

The Memory Wall

• A single core hence needs one and a half times more
bandwidth than our entire memory setup can provide.

• This memory bandwidth, however, is shared amongst all of
the cores on the chip.

The Memory Wall

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1994 1997 2000 2003 2006 2009 2012 2015 2018 2021

CPU MB/S CPU MFLOP/S

Intel CPU performance

137第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

The Memory Wall

• Although it is possible to increase memory bandwidth it is
not economical at scale.

• Most general purpose (non-HPC) applications are not
bandwidth limited and thus it is not worth the extra
expense and power.

Introduction Cache Blocking GPUs ConclusionHow a CPU
Works

The Memory
Wall

138 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

Cache Blocking

• The standard approach for reducing the bandwidth
requirements for a scheme is kernel fusion.

for (int i = 0; i < n; i++)
 a[i] += b[i];

for (int i = 0; i < n; i++)
 a[i] += c[i];

for (int i = 0; i < n; i++)
 a[i] += b[i] + c[i];

Bandwidth ~ 6n Bandwidth ~ 4n

Cache Blocking

• Fusion is not a panacea however.

• Kernels become more difcult to write, test and maintain.

• Also requires access to the source since one can’t fuse
across library calls.

139第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

Cache Blocking
• An alternative to fusion on CPUs is cache blocking.

• Idea is to break up our loops into small blocks b such that
the outputs remain resident in cache.

for (int j = 0; j < n; j += b) {
 for (int i = j; i < j + b; i++)
 a[i] += b[i];

 for (int i = j; i < j + b; i++)
 a[i] += c[i];
}

Cache Blocking

• Key advantage is that it enables existing tried, tested, and
optimised kernels to be used—only now we call them
more frequently with different starting offsets and smaller
element counts.

• Not a new idea; has been used by BLAS for decades.

140 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

Cache Blocking

Intel Sapphire
Rapids Xeon

2 Ghz / 56 cores

Capacity
(KiB)

Latency
(Cycles)

Bandwidth
(Bytes / cycle)

Net Bandwidth
(GiB/s)

L1
(Private per core)

48 5 128 13,351

L2
(Private per core)

2,048 14 ~50 5,215

L3
(Shared)

1,920 (per core)
107,968 (56 cores)

88 < 32 < 1,000

Cache Blocking

• Effectiveness depends on the working set of the application
relative to the size of the cache being blocked for.

• When solving the Euler equations using DG on a p = 4
hexahedra storing U and F(U) for eight elements requires
160 KB.

141第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

Cache Blocking
• Baseline arrangement

for evaluating

 .∂tU = − ∇ ⋅ F(U)

negdivconfR(u) R(u)6

tdivtconfU(f) R(u)5

comm fluxU(f) U(f)4

tdivpcorfF(u) R(u)3

tdisfU(u) F(u)2

disuU(u) U(f)1

Matrix multiplication

Pointwise operation

Pointwise operation (indirect)

Cache Blocking

• Scheduling designed to maximise overlapping of MPI
communication with computation.

• Net main memory bandwidth for one RHS eval:

• ~59 KiB / curved p = 3 hex;

• ~107 KiB / curved p = 4 hex.

142 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

Cache Blocking

negdivconfR(u) R(u)

tdivtconfU(f) R(u)

tdivpcorfF(u) R(u)

tdisfU(u) F(u)

3

2 comm fluxU(f) U(f)

1 disuU(u) U(f)

• Net main memory bandwidth
for one RHS eval:

• ~29 KiB / curved p = 3 hex;

• ~49 KiB / curved p = 4 hex.

Cache Blocking

• This represents a twofold reduction in bandwidth!

• For Navier–Stokes the reduction is closer to threefold due
to additional opportunities for data reuse.

143第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

Introduction Cache Blocking GPUs ConclusionHow a CPU
Works

The Memory
Wall

GPUs

• All of the cache, wide issue width, and advanced execution
capabilities in CPUs consume large amounts of power and
area.

• GPUs remove this functionality in lieu of more execution
resources enabling super peak performance per Watt.

144 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

GPUs

• This makes them more efcient, but also more difcult to
program, as the hardware is doing less work for you.

• Moreover, the minimum problem size required to fully
utilise a GPU is typically much larger than is required by a
CPU.

GPUs

AMD MI250X Intel Max NVIDIA H100

• Examples GPUs for high-performance computing include:

145第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

GPUs

Clock Speed
(GHz)

Power
(W)

DP TFLOP/s
(Vector/Matrix)

Ratio
(W per TFLOP/s)

Intel Sapphire Rapids
(56 cores)

2.00 350
 3.6
 3.6

97.7
97.7

NVIDIA H100
(132 cores)

1.98 700
34.0
66.9

20.9
10.5

AMD Mi250X
(2 × 110 cores)

1.70 560
47.9
95.7

11.7
 5.9

GPUs

• GPUs also typically come with high bandwidth memory.

• However, this comes at the cost of capacity, which can be
a problem for some (typically implicit) solvers.

• Furthermore, as cache blocking is not practical on GPUs
they often make less efcient use of bandwidth.

146 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

GPUs

Memory Type
Memory Capacity

(GiB)
Memory Bandwidth

(TiB /s)

Intel Sapphire Rapids
(One Socket)

DDR5 1,536 0.25

NVIDIA H100 HBM3 80 3.0

AMD Mi250X HBM2e
128

(2 × 64)
3.2

(2 × 1.6)

GPUs

• At the moment GPU memory is usually managed
separately to that of the host.

CPU
Memory

Memory

GPU M
em

ory

DDR5
~250 GiB/s

PCIe 5
~63 GiB/s

147第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

GPUs

• Thankfully, there is a strong trend towards fully unied
memory which will eliminate this issue.

• The rst such HPC GPU doing this is the upcoming AMD
MI300A, but we can expect other vendors to follow suit.

• The transfer problem is solved!

GPUs

• Practically, the biggest downside of GPUs is the use of
vendor-specic programming languages:

• NVIDIA: CUDA.

• AMD: HIP.

• Intel: OpenCL and oneAPI.

148 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

GPUs

• This makes it difcult to achieve performance portability
and can lead to vendor lock-in.

• Irrespective of which environment one uses there is one
common problem: kernel launch latency.

• This makes it difcult to port codes function-by-function
even if memory is unied.

GPUs

• As such porting a code to GPUs is a substantial undertaking
and a lot of work is often required before observing any
performance gains.

• Often it is easier to rewrite a code from scratch, e.g.,
Nek5000 to nekRS.

149第55回流体力学講演会／第41回航空宇宙数値シミュレーション技術シンポジウム論文集

This document is provided by JAXA.

Introduction Cache Blocking GPUs ConclusionHow a CPU
Works

The Memory
Wall

Conclusion

• Computing hardware for CFD—and HPC in general—is at
an inection point.

• Performance per Watt requirements means that GPUs are
probably here to stay…

• …but you’ll probably need to rewrite your code.

150 宇宙航空研究開発機構特別資料　JAXA-SP-23-009

This document is provided by JAXA.

