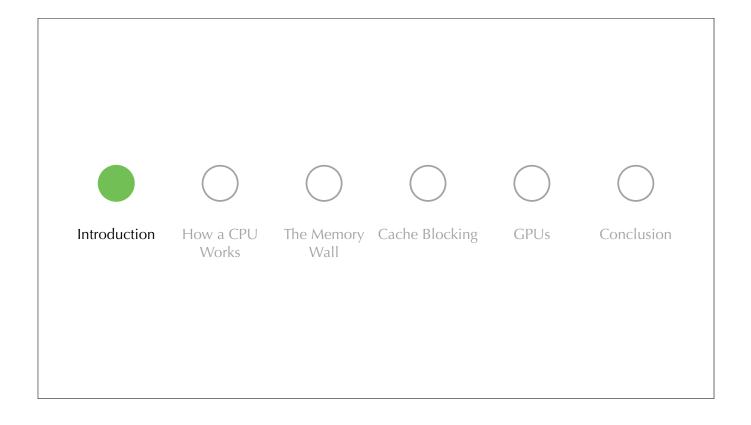
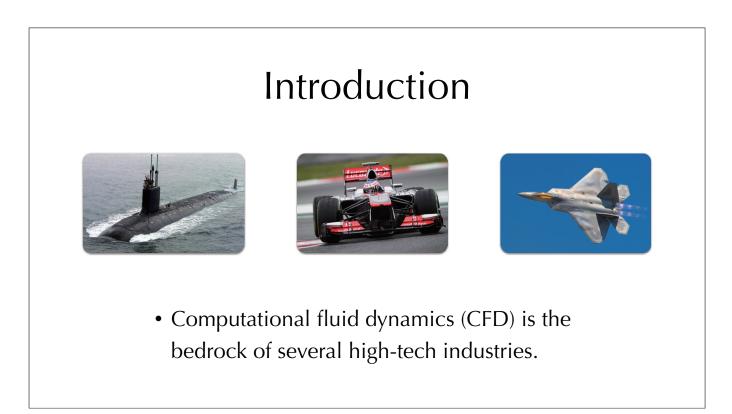


F.D. Witherden

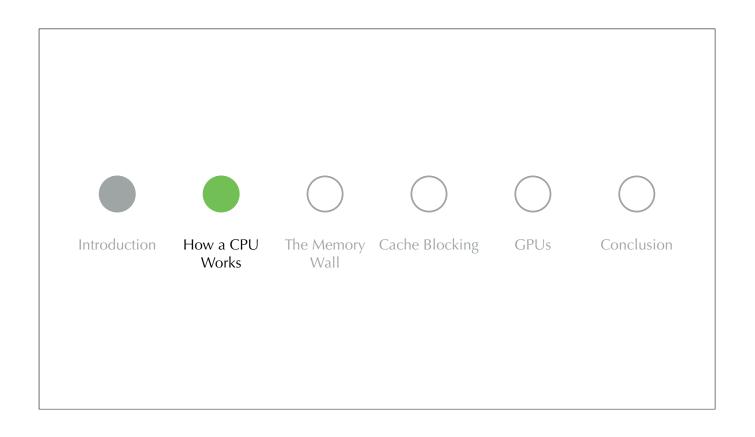
Department of Ocean Engineering Texas A&M University

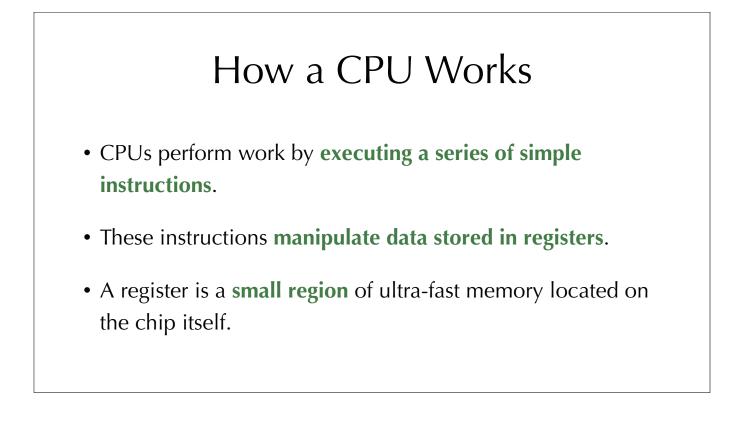


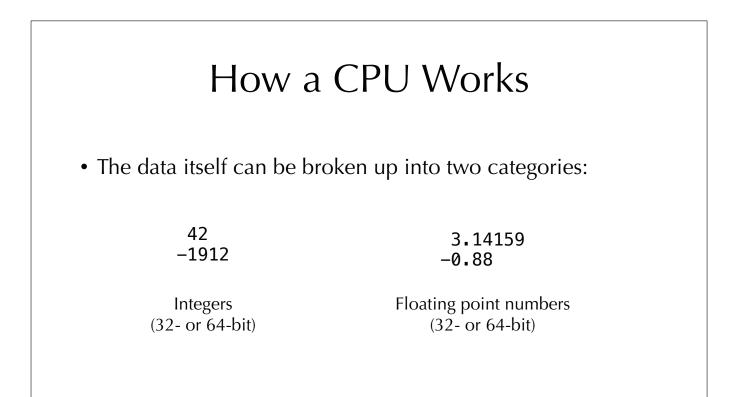


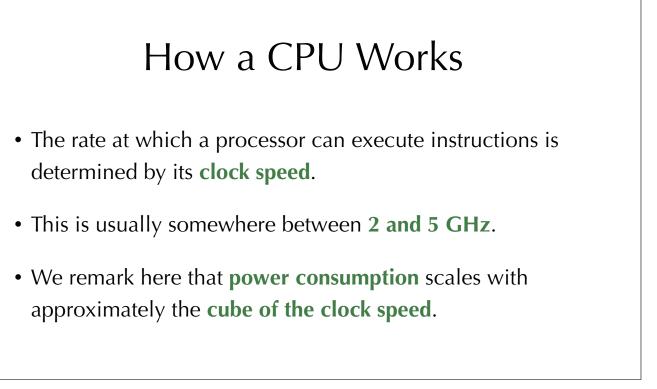
Introduction

- However, over the last decade—on a cost basis—the performance of many industrial CFD codes has plateaued.
- In this presentation we will **investigate the root cause** of this and review alternative coding paradigms and hardware that can **get solver performance back on track**.



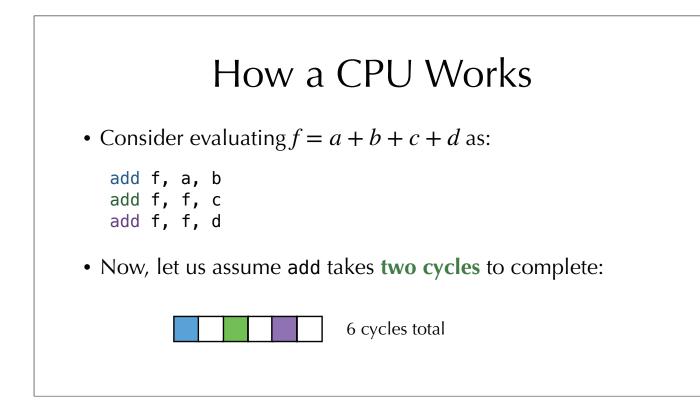


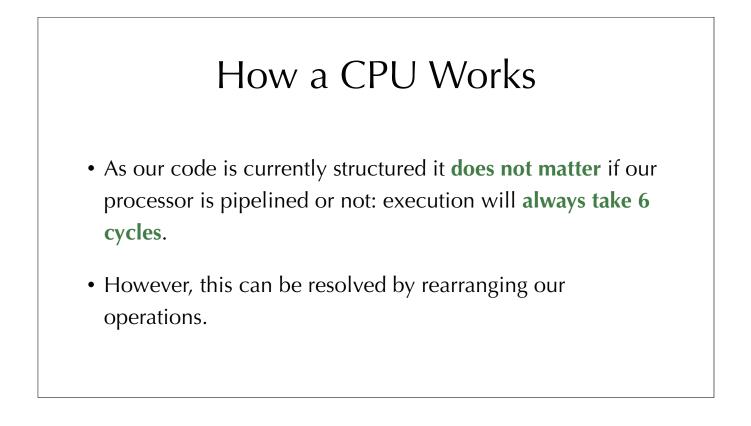


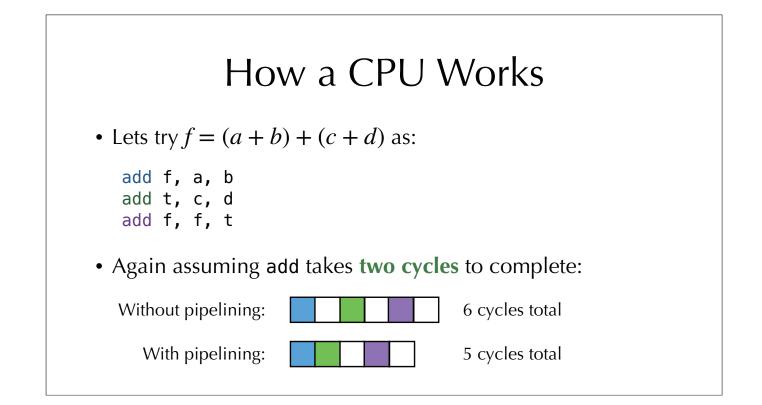


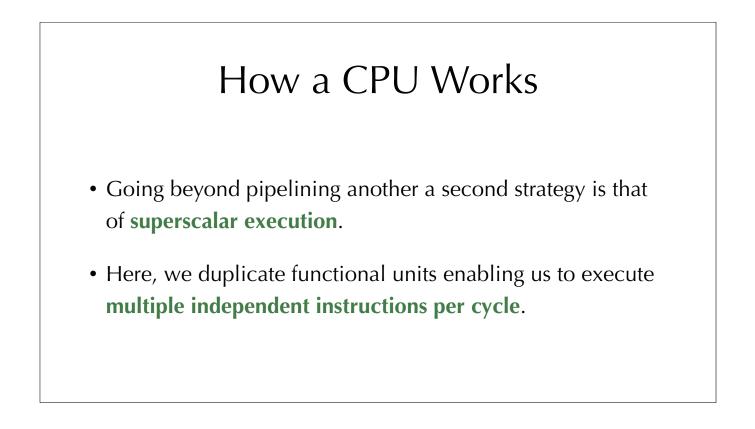
- This relationship places **practical limits** on how high a chip can be clocked and still be power efficient.
- The solution here is to **increase the amount of work** we do per clock cycle.

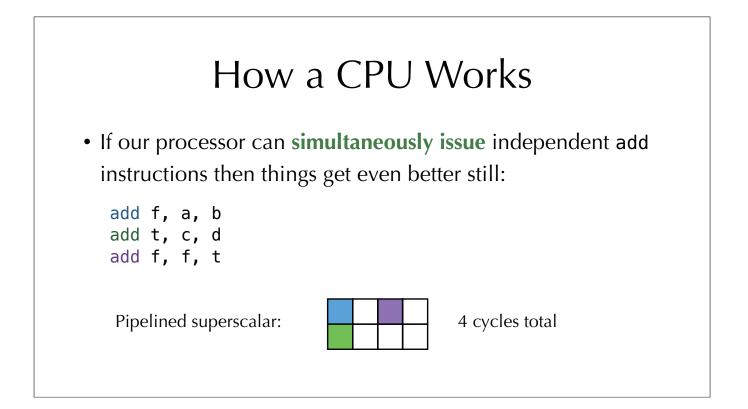
- One issue is that many instructions, especially those operating on floating point data, take **multiple cycles to return a result**.
- A solution to this is **pipelining** which enables a new instruction to start execution before the current one has finished.

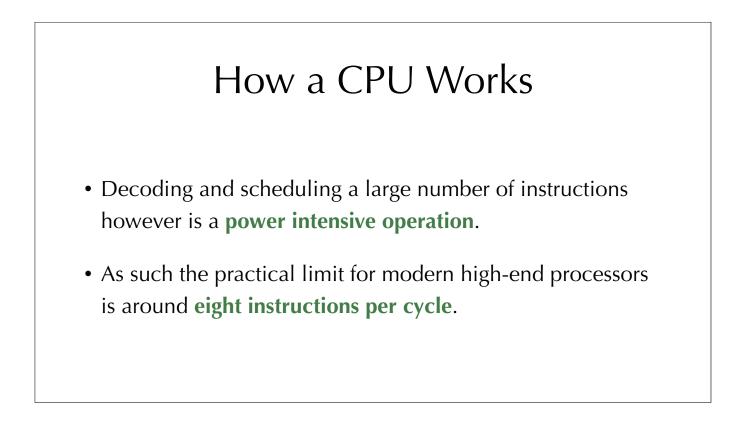












How a CPU Works				
Processor	Instruction Set	Issue Width (Instructions / Cycle)	Max Clock Speed (GHz)	
Intel Golden Cove	x86-64	6	5.8	
AMD Zen 4	x86-64	6	5.4	
Apple Firestorm	AARCH64	8	3.2	
Fujitsu A64FX	AARCH64	4	2.2	

- For numerical applications the key operation is the floating point operation or FLOP (+ or – or *).
- To improve efficiency most architectures support a **fused multiply-add** instruction (FMA) which computes:

 $c \leftarrow a \cdot b + c$ (two FLOPs).

- The best means of further improving performance is to increase the **amount of work done by each instruction**.
- This can be accomplished by having the instructions operate on small vectors in lieu of simple scalars.

- Also known as **single instruction multiple data** (SIMD) typical vector lengths are between 128- and 512-bits.
- SIMD capabilities are a core part of all recent processor architectures.

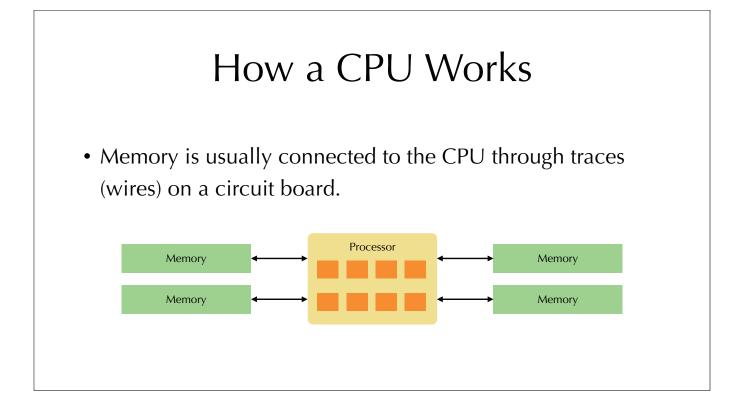
- Increasing the vector length is a simple means of **improving peak performance**.
- However, not all codes can fully utilise large vectors.
- As such general purpose processors are yet to go beyond 512-bits.

Processor	Vector Width	Multiply-Add Rate (Per Cycle)	Max DP FLOPs (Per Cycle)
Intel Golden Cove	512-bit	2 MADD	32
AMD Zen 4	512-bit	1 MADD 1 ADD	24
Apple Firestorm	128-bit	4 MADD	16
Fujitsu A64FX	512-bit	2 MADD	32

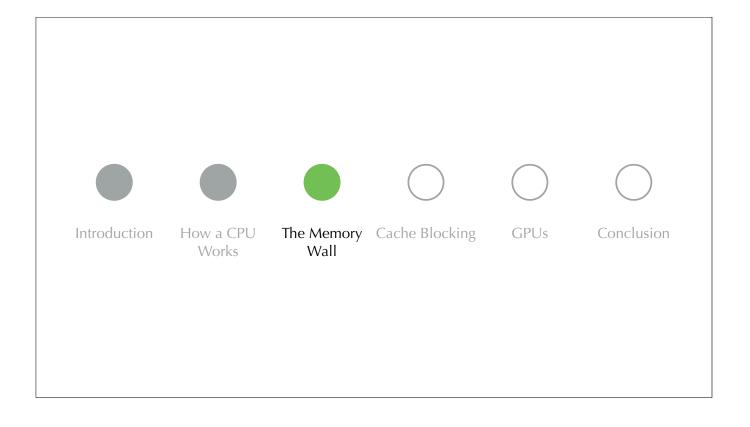
- Having reached the practical limit of what is possible for a single general purpose core, the simplest means of improving performance is to **replicate them**.
- This leads us to multi-core chips with the number of cores on a single package being **between 8 and 128**.

- A typical processor has either 16 or 32 general purpose integer registers and either 16 or 32 vector registers.
- Clearly, this is **not sufficient** to contain all of the data needed for any non-trivial problem.

- The solution here is to attach some memory to our processor.
- This is usually some kind of **dynamic memory** which is **cheap** and has **reasonable densities**.



- This places practical limits on the latency and bandwidth of main memory.
- Specifically latency is usually ~50 ns and bandwidth for an eight channel DDR4 configuration is ~250 GiB/s.



The Memory Wall

- To put these numbers into perspective a six-issue core running at 3 GHz can execute almost 1,000 instructions in 50 ns!
- If we can **dual-issue 512-bit FMA's** this is about the same amount of time as is needed to perform 4,800 double precision floating point operations.

The Memory Wall

- Now, let us consider bandwidth.
- Consider a function to perform the following 'AXPY' operation:

$$\mathbf{y} \leftarrow \alpha \mathbf{x} + \mathbf{y},$$

where **x** and **y** are vectors and α is a scalar.

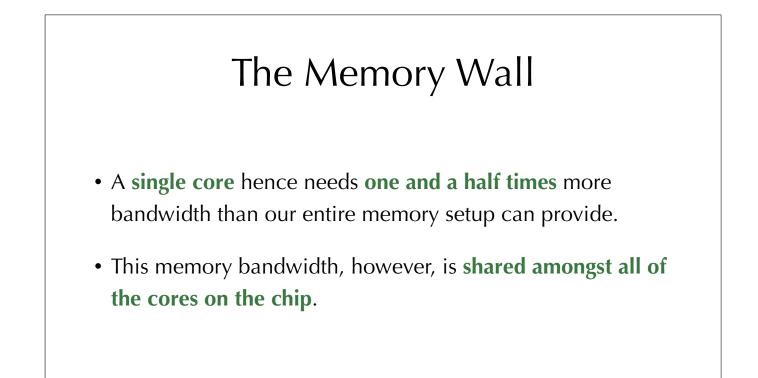
The Memory Wall

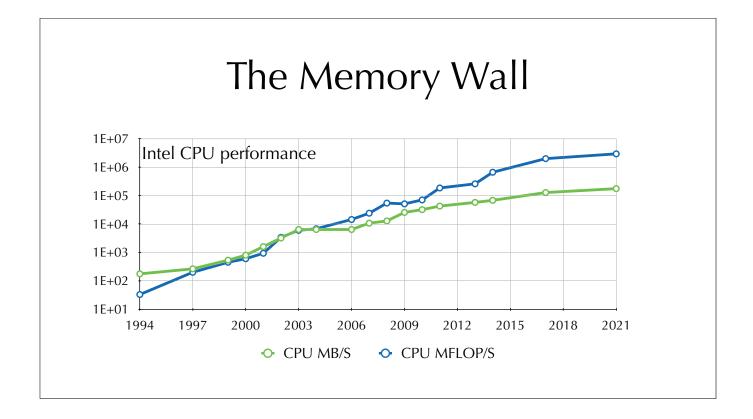
- This simple vector addition operation is a **building-block of many linear algebra kernels**.
- Running through our vectors each loop iteration requires us to load a component of x and y and write a component of y.

The Memory Wall

 On a 2 GHz core with 512-bit vectors that can sustain two loads and one store per cycle our bandwidth requirements are:

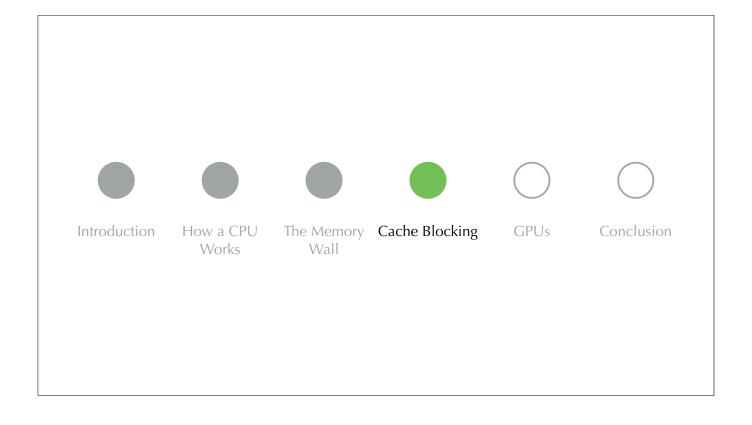
$$\left\{2 \times \frac{512}{8} + \frac{512}{8}\right\} \times 2 \cdot 10^9 = 358 \text{ GiB/s!}$$

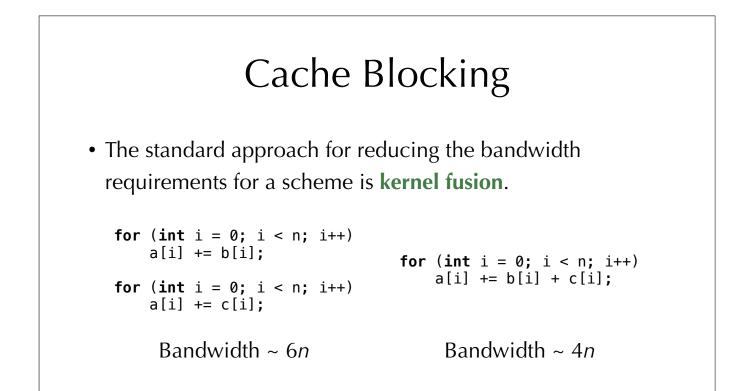


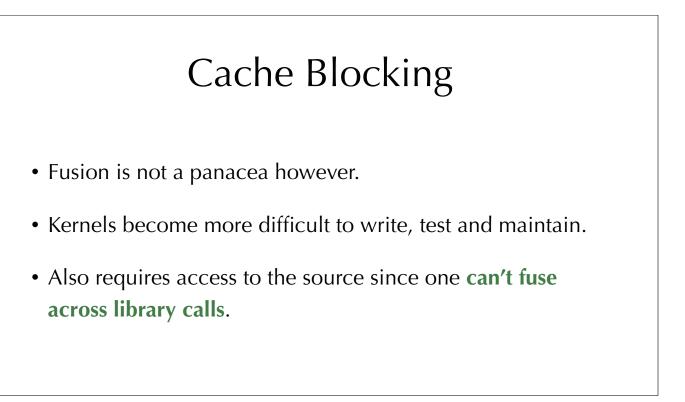


The Memory Wall

- Although it is possible to increase memory bandwidth it is **not economical at scale**.
- Most general purpose (non-HPC) applications are not bandwidth limited and thus it is not worth the extra expense and power.







- An alternative to fusion on CPUs is cache blocking.
- Idea is to break up our loops into small blocks **b** such that the outputs **remain resident in cache**.

```
for (int j = 0; j < n; j += b) {
    for (int i = j; i < j + b; i++)
        a[i] += b[i];
    for (int i = j; i < j + b; i++)
        a[i] += c[i];
}</pre>
```

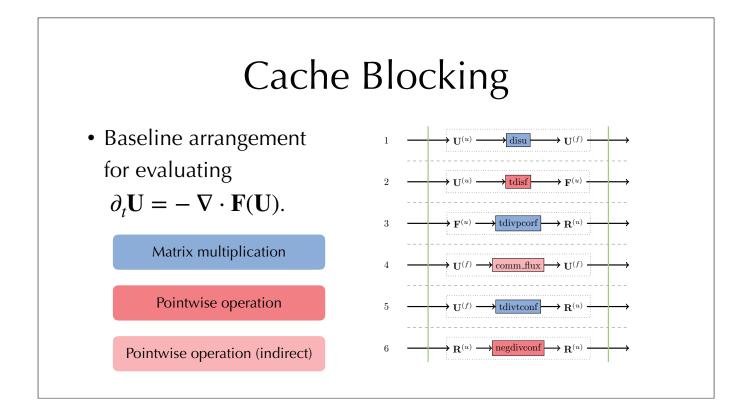
Cache Blocking

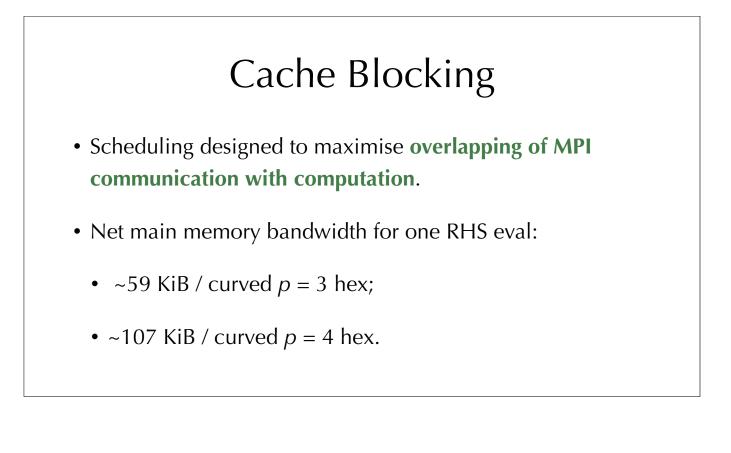
- Key advantage is that it enables existing **tried**, **tested**, **and optimised kernels to be used**—only now we call them more frequently with different starting offsets and smaller element counts.
- Not a new idea; has been used by BLAS for decades.

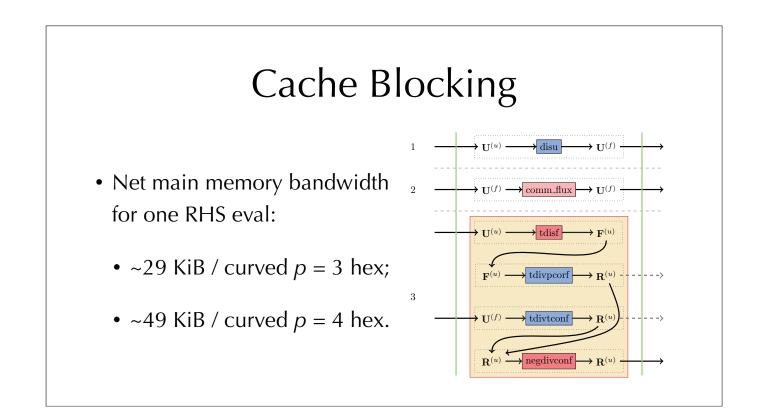
	Cache	e Bloo	cking	
Intel Sapphire Rapids Xeon 2 Ghz / 56 cores	Capacity (KiB)	Latency (Cycles)	Bandwidth (Bytes / cycle)	Net Bandwidth (GiB/s)
L1 (Private per core)	48	5	128	13,351
L2 (Private per core)	2,048	14	~50	5,215
L3 (Shared)	1,920 (per core) 107,968 (56 cores)	88	< 32	< 1,000

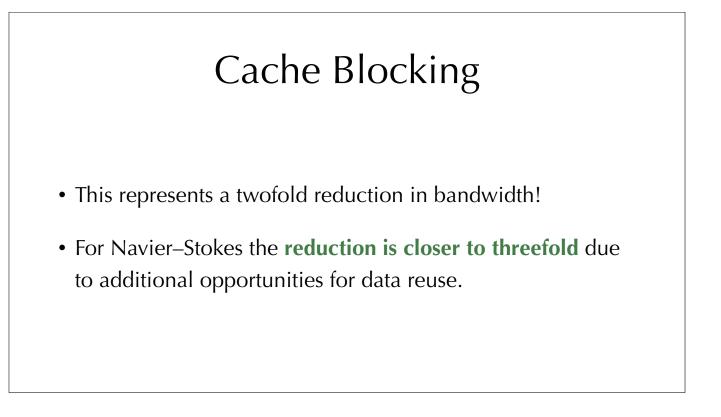
Cache Blocking

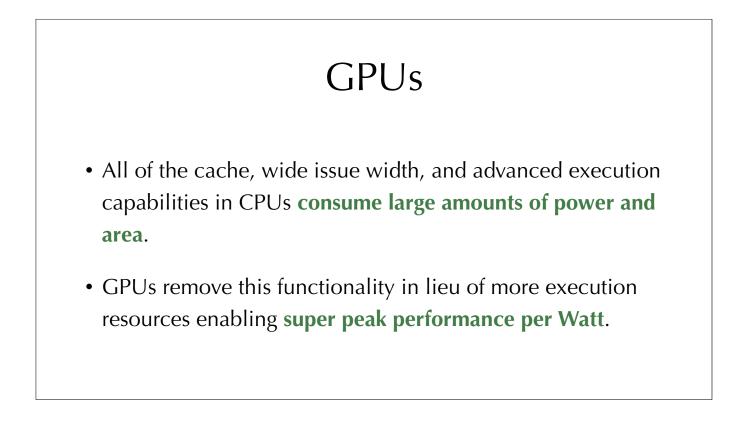
- Effectiveness depends on the working set of the application relative to the size of the cache being blocked for.
- When solving the Euler equations using DG on a p = 4 hexahedra storing U and F(U) for eight elements requires 160 KB.



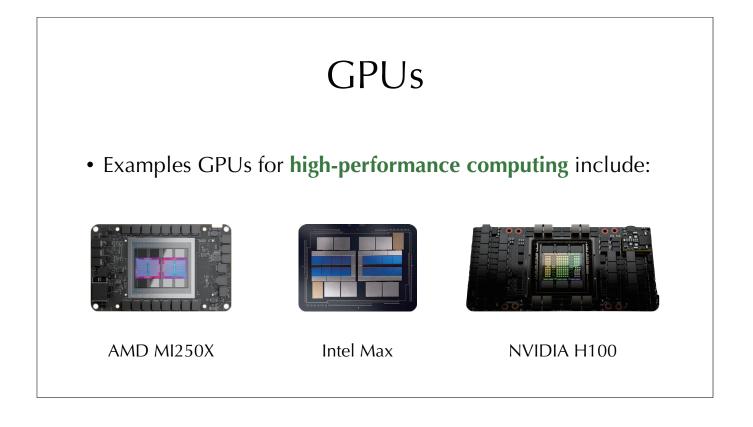








- This makes them more efficient, but also **more difficult to program**, as the hardware is doing less work for you.
- Moreover, the **minimum problem size** required to fully utilise a GPU is typically much larger than is required by a CPU.



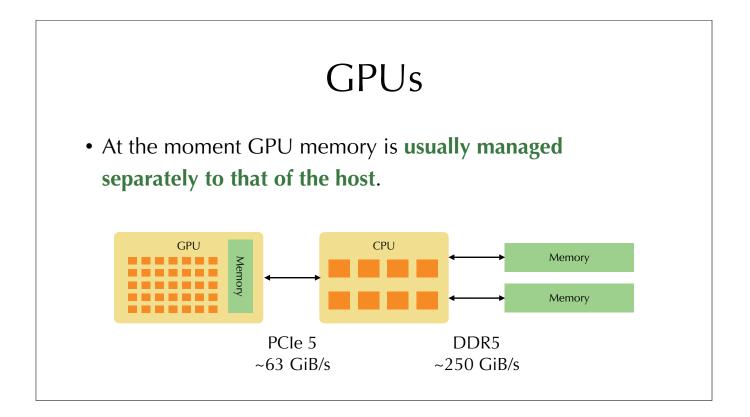
145

	Clock Speed (GHz)	Power (W)	DP TFLOP/s (Vector/Matrix)	Ratio (W per TFLOP/s)
Intel Sapphire Rapids (56 cores)	2.00	350	3.6 3.6	97.7 97.7
NVIDIA H100 (132 cores)	1.98	700	34.0 66.9	20.9 10.5
AMD Mi250X (2 × 110 cores)	1.70	560	47.9 95.7	11.7 5.9

GPUs

- GPUs also typically come with high bandwidth memory.
- However, this **comes at the cost of capacity**, which can be a problem for some (typically implicit) solvers.
- Furthermore, as cache blocking is not practical on GPUs they often make less efficient use of bandwidth.

	GPUs				
	Memory Type	Memory Capacity (GiB)	Memory Bandwidth (TiB /s)		
Intel Sapphire Rapids (One Socket)	DDR5	1,536	0.25		
NVIDIA H100	НВМ3	80	3.0		
AMD Mi250X	HBM2e	128 (2 × 64)	3.2 (2 × 1.6)		



- Thankfully, there is a strong trend towards **fully unified memory** which will eliminate this issue.
- The first such HPC GPU doing this is the upcoming AMD MI300A, but we can expect other vendors to follow suit.
- The transfer problem is solved!

GPUs

- Practically, the biggest downside of GPUs is the use of **vendor-specific programming languages**:
 - NVIDIA: CUDA.
 - AMD: HIP.
 - Intel: OpenCL and oneAPI.

- This makes it difficult to achieve **performance portability** and can lead to **vendor lock-in**.
- Irrespective of which environment one uses there is one common problem: **kernel launch latency**.
- This makes it difficult to port codes **function-by-function** even if memory is unified.

GPUs

- As such porting a code to GPUs is a substantial undertaking and a lot of work is often required before observing any performance gains.
- Often it is easier to **rewrite a code from scratch**, e.g., Nek5000 to nekRS.

