S5 IR) A A AL I ZE TR S S L — s a il AR L SR 121

Elements of Modern Computing
Hardware for Computational Fluid
Dynamics

F.D. Witherden

Department of Ocean Engineering
Texas A&M University

Introduction

This document is provided by JAXA.

122 FHAIZERTTEB SRR 5B JAXA-SP-23-009

Introduction

» Computational fluid dynamics (CFD) is the
bedrock of several high-tech industries.

Introduction

* However, over the last decade—on a cost basis—the
performance of many industrial CFD codes has plateaued.

* In this presentation we will investigate the root cause of
this and review alternative coding paradigms and hardware
that can get solver performance back on track.

This document is provided by JAXA.

BEB5IIHEIR) PR = BB AL A T BB S =2 L — S a s BT AR D AR SR 123

®@ ¢ O O O O

Introduction How a CPU The Memory Cache Blocking GPUs Conclusion
Works Wall

How a CPU Works

» CPUs perform work by executing a series of simple
instructions.

* These instructions manipulate data stored in registers.

* A register is a small region of ultra-fast memory located on
the chip itself.

This document is provided by JAXA.

124 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

How a CPU Works

* The data itself can be broken up into two categories:

42 3.14159
-1912 -0.88
Integers Floating point numbers
(32- or 64-bit) (32- or 64-bit)

How a CPU Works

* The rate at which a processor can execute instructions is
determined by its clock speed.

* This is usually somewhere between 2 and 5 GHz.

* We remark here that power consumption scales with
approximately the cube of the clock speed.

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR 125

How a CPU Works

* This relationship places practical limits on how high a chip
can be clocked and still be power efficient.

e The solution here is to increase the amount of work we do
per clock cycle.

How a CPU Works

* One issue is that many instructions, especially those
operating on floating point data, take multiple cycles to
return a result.

* A solution to this is pipelining which enables a new

instruction to start execution before the current one has
finished.

This document is provided by JAXA.

126 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

How a CPU Works

 Consider evaluatingf=a+ b+ c+d as:

add f, a, b
add f, f, c
add f, f, d

* Now, let us assume add takes two cycles to complete:

. . 6 cycles total

How a CPU Works

* As our code is currently structured it does not matter if our
processor is pipelined or not: execution will always take 6
cycles.

» However, this can be resolved by rearranging our
operations.

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR

127

How a CPU Works

s Letstry f=(a+ b)+ (c +d) as:

add f, a, b
add t, ¢, d
add f, f, t

* Again assuming add takes two cycles to complete:

Without pipelining: .

With pipelining: .

6 cycles total

5 cycles total

How a CPU Works

» Going beyond pipelining another a second strategy is that
of superscalar execution.

 Here, we duplicate functional units enabling us to execute

multiple independent instructions per cycle.

This document is provided by JAXA.

128 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

How a CPU Works

* If our processor can simultaneously issue independent add
instructions then things get even better still:

add f, a, b
add t, ¢, d
add f, f, t

Pipelined superscalar: H:H: 4 cycles total

How a CPU Works

* Decoding and scheduling a large number of instructions
however is a power intensive operation.

* As such the practical limit for modern high-end processors
is around eight instructions per cycle.

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR 129

How a CPU Works

Issue Width Max Clock Speed

Processor Instruction Set (Instructions / Cycle) (GH2)

Intel Golden Cove

AMD Zen 4

Apple Firestorm AARCH64

Fujitsu A64FX AARCH64 4 2.2

How a CPU Works

* For numerical applications the key operation is the floating
point operation or FLOP (+ or — or *).

» To improve efficiency most architectures support a fused
multiply-add instruction (FMA) which computes:

c—a-b+c (two FLOPs).

This document is provided by JAXA.

130 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

How a CPU Works

* The best means of further improving performance is to
increase the amount of work done by each instruction.

* This can be accomplished by having the instructions
operate on small vectors in lieu of simple scalars.

How a CPU Works

* Also known as single instruction multiple data (SIMD)
typical vector lengths are between 128- and 512-bits.

* SIMD capabilities are a core part of all recent processor
architectures.

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR 131

How a CPU Works

* Increasing the vector length is a simple means of improving

peak performance.
» However, not all codes can fully utilise large vectors.

* As such general purpose processors are yet to go beyond
512-bits.

How a CPU Works

Multiply-Add Rate Max DP FLOPs
(Per Cycle) (Per Cycle)

Processor Vector Width

Intel Golden Cove 512-bit

1 MADD

AMD Zen 4 512-bit 1 ADD 24
Apple Firestorm 128-bit 4 MADD 16
Fujitsu A64FX 512-bit 2 MADD 32

This document is provided by JAXA.

132 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

How a CPU Works

» Having reached the practical limit of what is possible for a
single general purpose core, the simplest means of
improving performance is to replicate them.

* This leads us to multi-core chips with the number of cores
on a single package being between 8 and 128.

How a CPU Works

* A typical processor has either 16 or 32 general purpose
integer registers and either 16 or 32 vector registers.

* Clearly, this is not sufficient to contain all of the data
needed for any non-trivial problem.

This document is provided by JAXA.

FE55IEIRAR) e B A ZE Al S o L — v a HT U AR U LR SR 133

How a CPU Works

* The solution here is to attach some memory to our
processor.

* This is usually some kind of dynamic memory which is
cheap and has reasonable densities.

How a CPU Works

* Memory is usually connected to the CPU through traces
(wires) on a circuit board.

Processor
Memory — — Memory

Memory — — Memory

This document is provided by JAXA.

134 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

How a CPU Works

» This places practical limits on the latency and bandwidth of
main memory.

» Specifically latency is usually ~50 ns and bandwidth for an
eight channel DDR4 configuration is ~250 GiB/s.

The Memory
Wall

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR 135

The Memory Wall

* To put these numbers into perspective a six-issue core
running at 3 GHz can execute almost 1,000 instructions in
50 ns!

* If we can dual-issue 512-bit FMA’s this is about the same
amount of time as is needed to perform 4,800 double
precision floating point operations.

The Memory Wall

* Now, let us consider bandwidth.

* Consider a function to perform the following ‘AXPY’
operation:

y «<ax+Yy,

where X and y are vectors and « is a scalar.

This document is provided by JAXA.

136 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

The Memory Wall

» This simple vector addition operation is a building-block of
many linear algebra kernels.

* Running through our vectors each loop iteration requires us

to load a component of X and y and write a component of

y.

The Memory Wall

* On a 2 GHz core with 512-bit vectors that can sustain two
loads and one store per cycle our bandwidth requirements
are:

512 512 . |
2X ==+ == X2 107 = 358 Gibs

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR 137

The Memory Wall

* A single core hence needs one and a half times more
bandwidth than our entire memory setup can provide.

* This memory bandwidth, however, is shared amongst all of
the cores on the chip.

The Memory Wall

1E+07
Intel CPU performance

1E+06

1E+05

1E+04

1E+03

T1E+02

1E+01

1994 1997 2000 2003 2006 2009 2012 2015 2018 2021

< CPU MB/S O CPU MFLOP/S

This document is provided by JAXA.

138 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

The Memory Wall

* Although it is possible to increase memory bandwidth it is
not economical at scale.

* Most general purpose (non-HPC) applications are not
bandwidth limited and thus it is not worth the extra
expense and power.

Cache Blocking

This document is provided by JAXA.

FE55IEIRAR) e B A ZE Al S o L — v a HT U AR U LR SR 139

Cache Blocking

* The standard approach for reducing the bandwidth
requirements for a scheme is kernel fusion.

for (int i = 0; 1 < n; i++)
alil += blil; for (int i = 0; i < n; i++)
for (int i = 0; 1 < n; i++) alil += blil + clil;
alil += clil;

Bandwidth ~ 6n Bandwidth ~ 4n

Cache Blocking

* Fusion is not a panacea however.
» Kernels become more difficult to write, test and maintain.

* Also requires access to the source since one can’t fuse

across library calls.

This document is provided by JAXA.

140 FHTALZEAFSE B TR A ERE JAXA-SP-23-009

Cache Blocking

* An alternative to fusion on CPUs is cache blocking.

* Idea is to break up our loops into small blocks b such that
the outputs remain resident in cache.
for (int j = 0; j <n; j +=b) {

for (int i = j; 1 < j + b; i++)
alil += blil;

for (int i = j; i < j + b; i++)
alil += clil;

Cache Blocking

* Key advantage is that it enables existing tried, tested, and
optimised kernels to be used—only now we call them
more frequently with different starting offsets and smaller

element counts.

» Not a new idea; has been used by BLAS for decades.

This document is provided by JAXA.

BEB5IIHEIR) PR = BB AL A T BB S =2 L — S a s BT AR D AR SR 141

Cache Blocking

Intel Sapphire
Rapids Xeon
2 Ghz / 56 cores

Capacity Latency Bandwidth Net Bandwidth
(KiB) (Cycles) (Bytes / cycle) (GiB/s)

L1
(Private per core)

L2

(Private per core) 2,048

L3 1,920 (per core)

(Shared) 107,968 (56 cores) 88 <32 < 1,000

Cache Blocking

* Effectiveness depends on the working set of the application
relative to the size of the cache being blocked for.

* When solving the Euler equations using DG on a p = 4
hexahedra storing U and F(U) for eight elements requires
160 KB.

This document is provided by JAXA.

142 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

Cache Blocking

* Baseline arrangement | s Ut ——EE— v

for evaluating

oU=-V-FU. - e

Matrix multiplication

Pointwise operation 5 ——u (W)
. - yRW _m (4)
Pointwise operation (indirect) 6 R R

Cache Blocking

* Scheduling designed to maximise overlapping of MPI
communication with computation.

» Net main memory bandwidth for one RHS eval:
* ~59 KiB / curved p = 3 hex;

* ~107 KiB / curved p = 4 hex.

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR 143

Cache Blocking

« Net main memory bandwidth , S N

for one RHS eval:

U)@ F)
* ~29 KiB / curved p = 3 hex; S — IR
; :
e ~49 KiB / Curved p = 4 heX. —— yt) —ftdivicont— R} - - - N
R0 o -

Cache Blocking

» This represents a twofold reduction in bandwidth!

* For Navier-Stokes the reduction is closer to threefold due
to additional opportunities for data reuse.

This document is provided by JAXA.

144 FHAIZERTTEB SRR 5B JAXA-SP-23-009

O ¢ ¢ 6 o O

Introduction ~ How a CPU The Memory Cache Blocking GPUs Conclusion
Works Wall

GPUs

 All of the cache, wide issue width, and advanced execution
capabilities in CPUs consume large amounts of power and
area.

» GPUs remove this functionality in lieu of more execution
resources enabling super peak performance per Watt.

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR 145

GPUs

* This makes them more efficient, but also more difficult to
program, as the hardware is doing less work for you.

* Moreover, the minimum problem size required to fully
utilise a GPU is typically much larger than is required by a
CPU.

GPUs

» Examples GPUs for high-performance computing include:

AMD MI250X Intel Max NVIDIA H100

This document is provided by JAXA.

146 FHHZERF TR E, TAXA-SP-23-009

GPUs

Clock Speed DP TFLOP/s Ratio
(GHz) (Vector/Matrix) (W per TFLOP/s)

Intel Sapphire Rapids
(56 cores)

NVIDIA H100
(132 cores)

AMD Mi250X
(2 x 110 cores)

GPUs

* GPUs also typically come with high bandwidth memory.

» However, this comes at the cost of capacity, which can be
a problem for some (typically implicit) solvers.

* Furthermore, as cache blocking is not practical on GPUs
they often make less efficient use of bandwidth.

This document is provided by JAXA.

OSBRI IR FTEE / BB A ML 22 T Al S R = L — S a i S L AR DT LGiw SR 147

GPUs

Memory Capacity =~ Memory Bandwidth
(GiB) (TiB /s)

Memory Type

Intel Sapphire Rapids
(One Socket)

NVIDIA H100

AMD Mi250X

GPUs

* At the moment GPU memory is usually managed
separately to that of the host.

:::::::I, HAEENE

PCle 5 DDR5
~63 GiB/s ~250 GiB/s

This document is provided by JAXA.

148 FHT ML ZEITTE PR TE RS R L JAXA-SP-23-009

GPUs

* Thankfully, there is a strong trend towards fully unified
memory which will eliminate this issue.

* The first such HPC GPU doing this is the upcoming AMD
MI300A, but we can expect other vendors to follow suit.

* The transfer problem is solved!

GPUs

* Practically, the biggest downside of GPUs is the use of
vendor-specific programming languages:

* NVIDIA: CUDA.
 AMD: HIP.

* Intel: OpenCL and oneAPI.

This document is provided by JAXA.

S5 IR) A A AL I ZE TR S S L — s a il AR L SR 149

GPUs

* This makes it difficult to achieve performance portability
and can lead to vendor lock-in.

* Irrespective of which environment one uses there is one
common problem: kernel launch latency.

* This makes it difficult to port codes function-by-function
even if memory is unified.

GPUs

* As such porting a code to GPUs is a substantial undertaking
and a lot of work is often required before observing any
performance gains.

 Often it is easier to rewrite a code from scratch, e.g.,
Nek5000 to nekRS.

This document is provided by JAXA.

150 FHAIZERTTEB SRR 5B JAXA-SP-23-009

Introduction How a CPU The Memory Cache Blocking GPUs Conclusion
Works Wall

« Computing hardware for CFD—and HPC in general—is at
an inflection point.

* Performance per Watt requirements means that GPUs are
probably here to stay...

* ...but you'll probably need to rewrite your code.

This document is provided by JAXA.

