Experimental study on the scattering of regolith due to thruster pulse injection to celestial surface

TOKUOKA Taiga Shizuoka University

YAMAKAWA Maiko*, BABA Mitsuhisa**, MORI Osamu**, MARU Yusuke**, SAWAI Shujiro**, NOMI Masahiro***

*The Graduate University for Advanced Studies, **JAXA, ***Shizuoka University

Background

- Touchdown on the surface of celestial bodies
 - Regolith scattering by thrusters was observed
 - Deterioration of the spacecraft's optical system performance
 - Decrease in solar cell power generation

The scene of the landing on asteroid Ryugu in 2019

The scene of the landing on asteroid Bennu in 2020

Need to study the regolith scattering caused by thruster injection

Previous research

3

• Gas jetting into a container filled with sand

- Focusing on the crater wall and scattered particles
 - ✓ Regolith scatters along the wall angles Crater cross-section visualization experiment[1]

- However, in actual operation...
 - Adjusting thrust through pulse injection
 - Pulsed jetting method with alternating jetting and stopping

Need to study regolith scattering by pulse injection

Objective

Proposing pulse injection conditions to suppress scattering counts

Contents for this time

- The investigation of regolith scattering phenomenon during pulse injection
 - Comparative experiment between pulse injection with equalized momentum per cycle and continuous injection. (Experiment I)
 - ✓ Additional experiments based on the findings from Experiment I (Experiment II ∼)
- Proposing optimal pulse injection conditions for each celestial body based on the identified characteristics
 - \checkmark Moon, Mars, and microgravity celestial bodies

Equipment and Method

Condition - Expt. I

Expt. I-I Result - Nozzle is changed Momentum is equaled

Continuous	Pulsed	© counts Pulsed
1.0 mm	1.5 mm	2.0 mm
1	1/1.5²≅0.44	1/4=0.25
		a construction of the section
	Sector Sector and the sector se	R. C. L. L. C. L. R. L. C. L. F. S.
No	Complete	Complete
	Continuous 1.0 mm 1	ContinuousPulsed1.0 mm1.5 mm11/1.5²≅0.44NoComplete

Scattering counts : Continuous > Pulsed

This document is provided by JAXA.

Expt. I-I ResultNozzle is changed
Momentum is equaled9MethodContinuousPulsed000 ms
0 countsPulsedNozzle1.0 mm1.5 mm2.0 mm

Reversal phenomenon between the red line and the blue line

 $\succ Crater growth stage : Longer injection time \rightarrow deeper \rightarrow Scatters more$

Expt. I-I Result - Nozzle is changed Momentum is equaled

-nozzle1.5mm -nozzle2.0mm

- Reversal phenomenon between the red line and the blue line
- $\succ \text{ Crater growth stage }: \text{Longer injection time} \rightarrow \text{deeper} \rightarrow \text{Scatters more}$
- \succ Crater stagnation stage : Size of the inner crater is larger \rightarrow Scatters more

● Scattering counts : Continuous ≅ Pulsed

Decause the backfilling process is incomplete
 ②Experimental error → Bright under certain condition

Experiment II

- Experiment $I \rightarrow Backfilling$ has a significant impact on the results
- > The following parameters are considered to influence backfilling
 - 1 The valve opening/closing time

② Gravity

In Experiment II, the focus is on the valve opening/closing time

Conditions

- Change only the valve opening/closing time
- Period = 200 ms

Expt. II Result - Duty is changed

- The time required for backfilling is approximately <u>100 ms</u>
- Scattering counts : <u>Duty3/4 > Duty1</u> > Duty1/2 ≅ Duty1/4
 - During the unstable phase of backfilling in progress
 - \rightarrow Next injection \rightarrow Scatters more

Expt. II Result - Duty is changed

• Scattering counts : $Duty1/2 \cong Duty1/4$

 \succ Crater growth stage : Longer injection time \rightarrow deeper \rightarrow Scatters more

Expt. II Result - Duty is changed

• Scattering counts : $Duty1/2 \cong Duty1/4$

- \succ Crater growth stage : Longer injection time \rightarrow deeper \rightarrow Scatters more
- \succ Crater stagnation stage : Size of the inner crater is equal \rightarrow Scatter same

What condition is better?

To reduce scattering...

Required condition

✓ <u>Valve closure time</u> \ge The time for completion of backfilling

• Conditions based on different situations

- If continuing to jet in the same location...
 - $\checkmark \quad \text{Yes} \rightarrow \text{Small } \underline{\text{nozzle}}$
 - ✓ No \rightarrow Short valve opening time
- If you want to match the same flow rate as continuous injection (Manifold pressure or Nozzle diameter)
 - ✓ <u>Nozzle diameter</u> is changed

Conclusion

Experiment I

- Experiment I-I
 - ✓ Condition : Nozzle is changed & Momentum is equaled
 - ✓ Results of Scattering counts : Continuous > Pulsed
- Experiment I-II
 - ✓ Condition : Manifold pressure is changed & Momentum is equaled
 - ✓ Results of Scattering counts : Continuous \cong Pulsed
- Discussion
 - \checkmark Backfilling has a significant impact on the results

Experiment II

- The time required for backfilling is approximately <u>100 ms</u>
- Scattering counts : Duty3/4 > Duty1 > Duty1/2 ≅ Duty1/4
- Discussion
 - ✓ During the unstable phase of backfilling in progress
 → Next injection → Scatters more
 - $\checkmark \quad \text{Crater growth stage} \quad : \text{Longer injection time} \rightarrow \text{deeper} \rightarrow \text{Scatters more}$
 - \checkmark Crater stagnation stage : Size of the inner crater is equal \rightarrow Scatter same

Future works

Ensuring reproducibility

- Improvement of experimental apparatus
 - ✓ Sheet laser
- Performing multiple experiments
- Consideration of microgravity experiments
 - Investigating the relationship between backfilling and gravity
- Quantitative evaluation of crater morphology
 - Measurement of maximum wall slope angle and crater size

