

Lobe dynamicsにもとづく カオス的遷移軌道の設計

Design of Chaotic Transfers Based on Lobe Dynamics

平岩 尚樹, 坂東 麻衣, 外本 伸治(九州大学)

Naoki Hiraiwa, Mai Bando, Shinji Hokamoto (Kyushu University, Japan)

33rd Workshop on JAXA Astrodynamics and Flight Mechanics ASTRO-2023-A014

Background

Trajectory Design and Optimization

- Spacecraft dynamics: highly nonlinear and chaotic
- Desiging a fuel-optimal trajectory

Leveraging the dynamical structure

- . Tube dynamics : Transported by the manifolds of libration point orbits
- 2. Lobe dynamics : Transported by the manifolds of resonant orbits

Background

Tube dynamics vs. Lobe dynamics

Tube dynamics

- Large transport structure
- Developed well in the literature

Lobe dynamics

- Transport structure in chaotic sea
- Numerical difficulty in calculation

Research Purpose

Design low-energy chaotic transfer trajectories based on lobe dynamics

- Lobe dynamics reveals the structure of chaotic transport in the CR3BP
- Effectively combine lobe dynamics of various periodic orbits
- Construct low-energy transfer to deep space

Methodology

Overview

Poincaré map in CR3BP

- Chaos in the hamiltonian system
- Complex structure

Standard map

- Discrete system
- Simple example of chaos

Standard Map

- A two-dimensional discrete map
- Basic model for chaotic dynamics

$$\begin{cases} \theta_{n+1} = \theta_n + p_{n+1} \\ p_{n+1} = p_n + K \sin \theta_n \end{cases} \pmod{2\pi}$$

Fixed point: $(\theta_n, p_n) = (0, 0)$ Unstable

 $(\theta_n, p_n) = (\pi, 0)$ Stable

Standard Map

• Focus on three periodic orbits and their stable and unstable manifolds

Period 3

Definition of lobe

Lobe : Region bounded by the manifolds of resonant orbits
on the Poincaré map

 p_i : Fixed point (resonant orbit)

E : Stable manifold

: Unstable manifold

Definition of lobe

Lobe : Region bounded by the manifolds of resonant orbits
on the Poincaré map

 p_i : Fixed point (resonant orbit)

E : Stable manifold

: Unstable manifold

Definition of lobe

- Lobe : Region bounded by the manifolds of resonant orbits on the Poincaré map
- Primary intersection point : A heteroclinic point q_i

if $U[p_1, q_i]$ and $S[p_2, q_i]$ intersects only in q_i

 p_i : Fixed point (resonant orbit)

 q_i : Primary intersection point

9

Definition of lobe

- Lobe : Region bounded by the manifolds of resonant orbits on the Poincaré map
- Primary intersection point : A heteroclinic point q_i

if $U[p_1, q_i]$ and $S[p_2, q_i]$ intersects only in q_i

 p_i : Fixed point (resonant orbit)

 q_i : Primary intersection point

f : Mapping function

Definition of lobe

- Lobe : Region bounded by the manifolds of resonant orbits on the Poincaré map
- Primary intersection point : A heteroclinic point q_i

if $U[p_1, q_i]$ and $S[p_2, q_i]$ intersects only in q_i

 p_i : Fixed point (resonant orbit)

 q_i : Primary intersection point

f: Mapping function

 L_i : Lobe

Poincaré map

Definition of lobe

- Lobe : Region bounded by the manifolds of resonant orbits on the Poincaré map
- Primary intersection point : A heteroclinic point q_i

if $U[p_1, q_i]$ and $S[p_2, q_i]$ intersects only in q_i

 p_i : Fixed point (resonant orbit)

 q_i : Primary intersection point

f: Mapping function

 L_i : Lobe

Poincaré map

Lobe Dynamics

- Each periodic orbit has 4 lobe sequences
- Transfer occurs along the direction of unstable manifolds

Selected Lobe Sequences

 Lobes are represented by their center of gravity for the preliminaly design

 \times : center of gravity

 For excluding explicit solutions, control input *u* should be small enough

 $\|\boldsymbol{u}\| \leq u^*$

- $\|\boldsymbol{u}\|$: the norm of \boldsymbol{u}
 - = the distance between lobes
- *u* : control input vector

Selected Lobe Sequences

Large lobes are better for manuvers

 $r \ge r^*$

r : minimum distance from the center to the border

• In this case, $0.01 \le r^* (\le 0.03)$

Difficult to find lobes with $r^* < 0.01$

No good solutions when $r^* \ge 0.03$

Selected Lobe Sequences

Large lobes are better for manuvers

 $r \ge r^*$

r : minimum distance from the center to the border

• In this case, $0.01 \le r^* (\le 0.03)$

Difficult to find lobes with $r^* < 0.01$

No good solutions when $r^* \ge 0.03$

Transfer Problem

- Design transfers between stable periodic orbits using lobe sequences
 - ▲ : Departure orbit (period 8)
 - ★ : Arrival orbit (period 5)

Transfer Problem

- Design transfers between stable periodic orbits using lobe sequences
 - ▲ : Departure orbit (period 8)
 - \star : Arrival orbit (period 5)

• The order of lobe sequences is designed

Formulation

• Problem:

Formulation

• Pick up low-cost paths from the graph and find the optimal transfer

Graph Analysis

Graph Analysis

Graph Analysis

Graph Analysis

Example: $u^* = 0.88$, $r^* = 0.02$

Graph Analysis

Graph Analysis

Graph Analysis

Graph Analysis

Graph Analysis

• Example: $u^* = 0.52$, $r^* = 0.02$

Optimal transfer (J = 2.1673)

Graph Analysis

 Betweenness: Measure how often each graph node appears on a shortest path between two nodes

Graph Analysis

Graph Analysis

 Betweenness: Measure how often each graph node appears on a shortest path between two nodes

Relation to CR3BP

• The proposed method can be applied to Poincaré map in the CR3BP

Optimal transfer with lobes

- Standard map → Poincaré map
- *u* is yield by solving the two-point boundary value problem

Summary

Conclusion

 Developed the method to find the optimal transfer using lobe sequences in the standard map

Future Work

- Apply our method to desinging transfers in the CR3BP
- Confirm that transfers obtained by our method become a good initial guess

 u_{k+1}