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Background

Trajectory Design and Optimization
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« Spacecraft dynamics: highly nonlinear and chaotic
* Desiging a fuel-optimal trajectory
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« Leveraging the dynamical structure Example of the optimal transfer
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1. Tube dynamics : Transported by the manifolds of libration point orbits
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Background

Tube dynamics vs. Lobe dynamics

Tube dynamics

« Large transport structure
* Developed well in the literature

Lobe dynamics

« Transport structure in chaotic sea
* Numerical difficulty in calculation




Research Purpose

0.7
Design low-energy chaotic transfer trajectories .|

based on lobe dynamics 0.6

0.55}

0.5
« Lobe dynamics reveals the structure of

chaotic transport in the CR3BP

5045
0.4}

0.35
« Effectively combine lobe dynamics of

various_periodic orbits

—_— —_— I _— —_— — _— — —_— 0.25

0.3

« Construct low-energy transfer to deep space | 0/m



Methodology

Overview

Poincare map in CR3BP

* Chaos in the hamiltonian system

 Complex structure
0.7

0.6

-1 -0.5 0 0.5 1

Standard map

* Discrete system
« Simple example of chaos
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0, /m ‘ 4



Standard Map

* Atwo-dimensional discrete map
« Basic model for chaotic dynamics

f On+1 = On + Pnta
: (mod 2m)

i Pn+1 = Pn + Ksinb,

Fixed point: (6, pn) = (0, 0) Unstable
(6n, pn) =(m, 0) Stable

0.5 1

-1 -0.5

0
0, /m

When K = 1.2 ‘ 5



Standard Map

* Focus on three periodic orbits and
their stable and unstable manifolds

mmm Stable manifold

Period 2
—— Unstable manifold
_ —= Stable manifold
Period 3
mmm Unstable manifold
mmm Stable manifold = B
Fixed point -1 -0.5 0 0.5 1

mmm Unstable manifold O0n/m

When K = 1.2 ‘ 6



Definition of lobe

« Lobe : Region bounded by the manifolds of resonant orbits
on the Poincare map

p;: Fixed point (resonant orbit)

== ;. Stable manifold

== . Unstable manifold
Y A

\ ~ | Poincaré map
. y ‘ V4




Definition of lobe

« Lobe : Region bounded by the manifolds of resonant orbits
on the Poincare map

4 N
p;: Fixed point (resonant orbit)
== ; Stable manifold
== . Unstable manifold
>4
P1 ,Ok p‘xpz
K = ¥ s Poincaré map ‘
. J 8




Definition of lobe

« Lobe : Region bounded by the manifolds of resonant orbits

on the Poincare map

* Primary intersection point : A heteroclinic point g;

if Ulpy,q;] and S|p,, g;] intersects only in g;

4 )
q.
Segment of l Segment of
unstable manifold stable manifold
Ulp1, qil Sp2, q;]

b4
PI‘,‘ ‘sz
¥ X VERAN

p;: Fixed point (resonant orbit)

q;: Primary intersection point

Poincare map

3



Definition of lobe

« Lobe : Region bounded by the manifolds of resonant orbits
on the Poincare map

* Primary intersection point : A heteroclinic point g;
if Ulpy, q;] and S|p,, q;] intersects only in g;

( )

p;: Fixed point (resonant orbit)
q;: Primary intersection point

f: Mapping function

Poincare map ‘ 10




Definition of lobe

« Lobe : Region bounded by the manifolds of resonant orbits
on the Poincare map

* Primary intersection point : A heteroclinic point g;
if Ulpy, q;] and S|p,, q;] intersects only in g;

p;: Fixed point (resonant orbit)
q;: Primary intersection point
f: Mapping function

L;: Lobe

Poincare map ‘ 11




Definition of lobe

« Lobe : Region bounded by the manifolds of resonant orbits
on the Poincare map

* Primary intersection point : A heteroclinic point g;
if Ulpy, q;] and S|p,, q;] intersects only in g;

p;: Fixed point (resonant orbit)
q;: Primary intersection point
f: Mapping function

L;: Lobe

Poincare map ‘ 12




Lobe Dynamics

« Each periodic orbit has 4 lobe sequences

« Transfer occurs along the direction of

unstable manifolds

- Period 2 -
B
N

- Fixed point -
B [ |
B

Period 3
B [
B [ ]

-0.5

0
0, /m
When K = 1.2
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Problem settings

Selected Lobe Sequences

« Lobes are represented by their center of
gravity for the preliminaly design

X : center of gravity

* For excluding explicit solutions,
control input u should be small enough

lul| < u’

|ul| : the norm of u
= the distance between lobes -1 .5

0.5 1

0
. O,
u : control input vector /™

When K = 1.2 ‘ 14



Problem settings

Selected Lobe Sequences

« Large lobes are better for manuvers

r>r*

r : minimum distance from the center
to the border

* |In this case, 0.01 < r*(< 0.03)

e

Difficult to find No good solutions
lobes withr* < 0.01  when r* > 0.03

-0.5 | 0
0, /m

When K =1.2,r"




Problem settings

Selected Lobe Sequences

« Large lobes are better for manuvers

r>r*

r : minimum distance from the center
to the border

 |In this case, 0.01 < r*(< 0.03

/N

Difficult to find No good solutions
lobes withr* < 0.01  when r* > 0.03

When K = 1.2, r* = 0.03 ‘ 16



Problem settings

Transfer Problem

« Design transfers between stable periodic
orbits using lobe sequences

A : Departure orbit (period 8)
% : Arrival orbit (period 5)

Pn/ T

0.5 1

-1 -0.5

0
0, /m

When K = 1.2 ‘ 17



Problem settings

Transfer Problem

« Design transfers between stable periodic

orbits using lobe sequences

A : Departure orbit (period 8)
% : Arrival orbit (period 5)

« The order of lobe sequences is designed

- Fixed point -

N [
B

)

Period 3
B [
B [ ]

)

Period 2 -
B
N

-0.5

0
0, /m
When K = 1.2
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Problem settings

Formulation
- )
* Problem: | minimize ] = ¥|ju|
subjectto  [Ju|l < u*
r>r*
L )

_|_
Use lobe sequences properly

X O

Uk+1

Uk+1

0.5 1

-1 -0.5

0
0, /m

Uk When K = 1.2, * = 0.01 ‘ 19




Problem settings

Formulation
+ Problem: [ minimize /= leukll\
/ subject to  |Jug|l < u*
Graph analysis | r=zr )

_|_
Use lobe sequences properly

* Pick up low-cost paths from the graph
and find the optimal transfer

0.5 1

-1 -0.5 0
0, /m

When K = 1.2, r* = 0.01 ‘ 20



Graph Analysis
 Example: u* = 0.88, r* = 0.025

 Nodes: lobes

« Edges: Transfers

-0.5 0 0.5 1



Graph Analysis
 Example: u* = 0.88, r* = 0.025

 Nodes: lobes

« Edges: Transfers




Graph Analysis
« Example: u* = 0.88, r* = 0.025

Nodes: lobes

Edges: Transfers

Length of edges o ||u||

-1 -0.5 0 0.5 1



Graph Analysis
« Example: u* =0.88, r" = 0.02

* Nodes: lobes
- Edges: Transfers

. Length of edges « ||uy||

1 05 0 05 1

Small r* - More edges



Graph Analysis

« Example: u™ = 0.52, r* = 0.02

 Nodes: lobes
« Edges: Transfers

. Length of edges « ||uy||

Small u* - Less edges

< 488



Graph Analysis
« Example: u* =0.52, r* = 0.02

300

250

Frequency
p— p— N
o) S D ()
S e S S

e

2.2

-Alll paths
[ Paths with lobe sequences

4S54

2.4 2.6 2.8 3 3.2
Total cost [-]




Graph Analysis

300

250

Frequency
p— p— N
() (e} () (@)
(e} (e} (e} (e}
T [ T

e

« Example: u* =0.52, r* = 0.02

-Alll paths

2.2 2.4 2.6 2.8 3 3.2
Total cost [-]

[ Paths with lobe sequences

e

\
minimize ] = ) ||ugl|

subject to

lugll < u’

r>rt

_|_

Use lobe sequences properly

— Paths with lobe sequences
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Graph Analysis
« Example: u* =0.52, r* = 0.02

AS8 4S8

%—\&

Optimal transfer (] = 2.1673)

T —

Optimal transfer with lobes (/] = 2.1712 )

28



Graph Analysis
« Example: u* = 0.52, r* = 0.02

pn/T

Hn/ﬂ- Hn/ﬂ'
Optimal transfer ( ] = 2.1673 ) Optimal transfer with lobes

(] =2.1712) ‘ 29



Considerations
Graph Analysis

« Betweenness: Measure how often each graph node appears on a shortest path

S4
S8
1?&.: ,
2

between two nodes

S4
A ,

1200
1000
800 -

600

Betweenness

400

200
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Considerations

Graph Analysis
« Example: u* =0.52, r* = 0.02

300 . . | .

-Alll paths
[ Paths with lobe sequences
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Considerations
Graph Analysis

« Betweenness: Measure how often each graph node appears on a shortest path
between two nodes
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Considerations

Relation to CR3BP
« The proposed method can be applied to Poincaré map in the CR3BP

« Standard map — Poincaré map

* u is yield by solving the two-point
boundary value problem
Poincare map

P N\ N
-1 -0.5 0 0.5 1 Lobe 2
0,/m Lobe 1

Optimal transfer with lobes ‘ 33




Summary

Conclusion

* Developed the method to find the optimal transfer
using lobe sequences in the standard map

Future Work

« Apply our method to desinging transfers
in the CR3BP

« Confirm that tranfers obtained by our method
become a good initial guess

7

subject to

.
minimize ] = X|lu||

lugll < u’

r>r*

_|_

Use lobe sequences properly

X

Uk+1

O

Uk+1





