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Example of the optimal transfer

Background
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Trajectory Design and Optimization

• Leveraging the dynamical structure

1. Tube dynamics : Transported by the manifolds of libration point orbits

2. Lobe dynamics : Transported by the manifolds of resonant orbits

• Spacecraft dynamics: highly nonlinear and chaotic
• Desiging a fuel-optimal trajectory



Tube dynamics

Background
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Tube dynamics vs. Lobe dynamics

Lobe dynamics

• Large transport structure
• Developed well in the literature

• Transport structure in chaotic sea
• Numerical difficulty in calculation



Research Purpose
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Lobe dynamics 3

Lobe dynamics 2

Lobe dynamics 1

Design low-energy chaotic transfer trajectories
based on lobe dynamics

• Lobe dynamics reveals the structure of 
chaotic transport in the CR3BP

• Effectively combine lobe dynamics of 
various periodic orbits

• Construct low-energy transfer to deep space



Standard mapPoincaré map in CR3BP

Methodology
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Overview

• Chaos in the hamiltonian system
• Complex structure

• Discrete system
• Simple example of chaos



Dynamics
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!!"# = !! + $ sin (!
(!"# = (! + !!"#

(mod 2*)

Fixed point: (!, !! = 0, 0
(!, !! = *, 0

Unstable

Stable

• A two-dimensional discrete map
• Basic model for chaotic dynamics

Standard Map

When ! = 1.2



Dynamics
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• Focus on three periodic orbits and 
their stable and unstable manifolds

Standard Map

Unstable manifold

Stable manifold
Fixed point

Unstable manifold

Stable manifold
Period 3

Unstable manifold

Stable manifold
Period 2

When ! = 1.2



: Stable manifold

: Unstable manifold

Dynamics
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Definition of lobe
• Lobe : Region bounded by the manifolds of resonant orbits

           on the Poincaré map

!$: Fixed point (resonant orbit)

!# !%
Poincaré map



Dynamics
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Definition of lobe
• Lobe : Region bounded by the manifolds of resonant orbits

           on the Poincaré map

!$: Fixed point (resonant orbit)

!# !%
Poincaré map

: Stable manifold

: Unstable manifold



Dynamics
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Definition of lobe
• Lobe : Region bounded by the manifolds of resonant orbits

           on the Poincaré map

!$: Fixed point (resonant orbit)

• Primary intersection point : A heteroclinic point -$ 
Primary intersection point : if . !#, -$  and / !%, -$  intersects only in -$

-$: Primary intersection point

Poincaré map

!# !%

-$

. !#, -$ / !%, -$

Segment of 

stable manifold

Segment of 

unstable manifold



Dynamics
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Definition of lobe
• Lobe : Region bounded by the manifolds of resonant orbits

           on the Poincaré map

!$: Fixed point (resonant orbit)

• Primary intersection point : A heteroclinic point -$ 
Primary intersection point : if . !#, -$  and / !%, -$  intersects only in -$

!# !%

-$: Primary intersection point

-&
-#

0: Mapping function

0 -&0'# -&

0'# -#

Poincaré map



Dynamics
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• Lobe : Region bounded by the manifolds of resonant orbits
           on the Poincaré map

!$: Fixed point (resonant orbit)

• Primary intersection point : A heteroclinic point -$ 
Primary intersection point : if . !#, -$  and / !%, -$  intersects only in -$

!# !%

-$: Primary intersection point

-&
-#

0: Mapping function

0 -&0'# -&

0'# -#

1$: Lobe

1#

0 -#

0 1#

0'# 1#

Definition of lobe

Poincaré map



Dynamics
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• Lobe : Region bounded by the manifolds of resonant orbits
           on the Poincaré map

!$: Fixed point (resonant orbit)

• Primary intersection point : A heteroclinic point -$ 
Primary intersection point : if . !#, -$  and / !%, -$  intersects only in -$

!# !%

-$: Primary intersection point

0: Mapping function

1$: Lobe

1# 0 1#

0'# 1#

Definition of lobe

1%

0 1%

0'# 1%

Poincaré map



Dynamics

13When ! = 1.2

• Each periodic orbit has 4 lobe sequences

Lobe Dynamics

• Transfer occurs along the direction of 
unstable manifolds

Period 2

Fixed point

Period 3



Problem settings
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• Lobes are represented by their center of
gravity for the preliminaly design

Selected Lobe Sequences

• For excluding explicit solutions,
control input 2 should be small enough

× : center of gravity

2 : control input vector

2  : the norm of 2
        = the distance between lobes

2 ≤ 5∗



Problem settings

15When ! = 1.2, &∗ = 0.01

Selected Lobe Sequences

• Large lobes are better for manuvers 

6 : minimum distance from the center
     to the border 

6 ≥ 6∗

• In this case, 0.01 ≤ 6∗ ≤ 0.03

Difficult to find

lobes with &∗ < 0.01
No good solutions

when &∗ ≥ 0.03



Problem settings

16When ! = 1.2, &∗ = 0.03

Selected Lobe Sequences

• Large lobes are better for manuvers 

6 : minimum distance from the center
     to the border 

6 ≥ 6∗

• In this case, 0.01 ≤ 6∗ ≤ 0.03

Difficult to find

lobes with &∗ < 0.01
No good solutions

when &∗ ≥ 0.03



Problem settings
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Transfer Problem

• Design transfers between stable periodic
orbits using lobe sequences

▲ : Departure orbit (period 8)

★ : Arrival orbit (period 5)



Problem settings
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Transfer Problem

• Design transfers between stable periodic
orbits using lobe sequences

▲ : Departure orbit (period 8)

★ : Arrival orbit (period 5)

Period 2Fixed point Period 3

• The order of lobe sequences is designed



Problem settings
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Formulation

• Problem: minimize

subject to

; = ∑ 2)  

2) ≤ 5∗ 
6 ≥ 6∗ 

Use lobe sequences properly
+

×
×

2)

2)"#
×

×

2)

2)"#

When ! = 1.2, &∗ = 0.01



Problem settings
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Formulation

• Problem: 

When ! = 1.2, &∗ = 0.01

Graph analysis

Use lobe sequences properly
+

• Pick up low-cost paths from the graph
and find the optimal transfer

minimize

subject to

; = ∑ 2)  

2) ≤ 5∗ 
6 ≥ 6∗ 



Results
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Graph Analysis

• Example: 5∗ = 0.88, 6∗ = 0.025

• Nodes: lobes

• Edges: Transfers



Results
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Graph Analysis

• Example: 5∗ = 0.88, 6∗ = 0.025

• Nodes: lobes

• Edges: Transfers
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Graph Analysis

• Example: 5∗ = 0.88, 6∗ = 0.025

• Nodes: lobes

• Edges: Transfers

• Length of edges ∝ 2)



Results
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Graph Analysis

• Example: 5∗ = 0.88, 6∗ = 0.02

• Nodes: lobes

• Edges: Transfers

Small 6∗ → More edges

• Length of edges ∝ 2)



Results
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Graph Analysis

• Example: 5∗ = 0.52, 6∗ = 0.02

• Nodes: lobes

• Edges: Transfers

• Length of edges ∝ 2)

Small 5∗ → Less edges



Results

26

Graph Analysis

• Example: 5∗ = 0.52, 6∗ = 0.02



Results
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Graph Analysis

• Example: 5∗ = 0.52, 6∗ = 0.02

minimize

subject to

; = ∑ 2)  

2) ≤ 5∗ 
6 ≥ 6∗ 

Use lobe sequences properly
+

→ Paths with lobe sequences



Results
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Graph Analysis

• Example: 5∗ = 0.52, 6∗ = 0.02

Optimal transfer ( ; = 2.1673 ) Optimal transfer with lobes ( ; = 2.1712 )



Results
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Graph Analysis

• Example: 5∗ = 0.52, 6∗ = 0.02

Optimal transfer ( ; = 2.1673 ) Optimal transfer with lobes
( ; = 2.1712 )
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Considerations
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Graph Analysis

• Betweenness: Measure how often each graph node appears on a shortest path
between two nodes



Considerations
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Graph Analysis

• Example: 5∗ = 0.52, 6∗ = 0.02



Considerations
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Graph Analysis

• Betweenness: Measure how often each graph node appears on a shortest path
between two nodes



Considerations
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Relation to CR3BP

Optimal transfer with lobes
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• The proposed method can be applied to Poincaré map in the CR3BP

• Standard map → Poincaré map

• 2 is yield by solving the two-point 
boundary value problem

Poincaré map

Lobe 1
Lobe 2



Summary
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Conclusion

minimize

subject to

; = ∑ 2)  

2) ≤ 5∗ 
6 ≥ 6∗ 

Use lobe sequences properly
+

×
×

2)

2)"#
×

×

2)

2)"#

• Developed the method to find the optimal transfer
using lobe sequences in the standard map

Future Work

• Apply our method to desinging transfers 
in the CR3BP

• Confirm that tranfers obtained by our method 
become a good initial guess




