Satellite Specification Research for Distributed Antennas Using Electromagnetic Formation Flight

磁気フォーメーションフライトによる分散アンテナの衛星仕様検討

O沈 彗央 Seang Shim (総合研究大学院大学・<u>院</u>) 高橋 勇多 Yuta Takahashi (東京工業大学・院) 柴田 拓馬 Takuma Shibata (室蘭工業大学) 坂井 真一郎 Shin-ichiro Sakai (ISAS) 2023/07/24 第33回 アストロダイナミクスシンポジウム

Various Formation Flight Missions

- Formation Flight(FF) enables missions of a scale that cannot be achieved with a monolithic satellite.
- FF is more robust than a monolithic satellite.

This research focuses a large distributed antenna.

Large Antenna by Small Satellites

lames Webb	Space	Telescope
------------	-------	-----------

[1]野田篤司, "超々小型衛星群のフォーメーションフライト制御と応用"宇宙科学技術連合講演会, 第63回, 2019.

	Wavelength	Electromagnetic waves
	<0.01 nm	γ-rays
Δ	0.01 – 10 nm	X-rays
is	10 – 300 nm	ultra-violet
	0.3 – 0.8 μm	visible light
	1 – 1000 μm	infrared
ŀ	0.001 – 30 m	radio waves

A large antenna is required.

Distance between satellites is determined by wavelength[1].

L/4Ex) 1.2GHz $\rightarrow L = 25$ cm **Distance** ≤ 6.25 cm

Distributed antennas with low cost and short distance between satellite are required.

The Problem of Large Distributed Antennas Using Thrusters

A method different from conventional formation flying with thrusters is required.

Electromagnetic Formation Flight (EMFF)

First Demonstration of EMFF in a 6-DOF (Porter, A. K. et al., 2014)

Merit of EMFF

- No plume
- Continuous control
- No fuel
- Simple structure

Alternating Current Control

The amplitude of the alternating current is controlled for satellites with the same frequency.

$$\omega_{i}$$

$$\omega_{i} = \omega_{j}$$

$$\omega_{j} \neq \omega_{k}$$

$$\omega_{k}$$

EMFF is suitable for a large distributed antenna.

Optimization of EMFF

5/17

- What shape is the formation?
- What are the specifications of the electromagnetic coils?
- In a previous study[1]
 - J = rotation rate
 - Superconducting coil is used because of the long distance(s=75m).
 - The max number of satellite is five.

These are determined by **optimizing the evaluation function** *J*.

Large distributed antenna

- Normal-conducting coil is sufficient due to the close distance.
- The number of satellite is not defined, but it is expected to be very large.
- ✓ Is it possible to maintain the formation with normal-conducting coils?
- ✓ What is the optimal formation for a given size of distributed antenna?

[1]Edmund M. C. Kong, et al" Electromagnetic Formation Flight for Multisatellite Arrays" Journal of Spacecraft and Rockets, Vol. 41, No. 4, p.659-666, July-August 2004.

- 6/17
- Design optimal satellite specifications for distributed antennas.
- Provide the general methodology of optimal formation design for a variety of purposes.

the evaluation function JJ = n

The number of satellites is optimized with the formation size determined.

The specifications of the electromagnetic coils and the distance between satellites are investigated to determine if they are feasible.

Satellite Specifications of Electromagnetic Formation Flight_

Constraints 1/3 : J2 Disturbance

- J2 disturbance is caused by the Earth's equatorial bulge
 - It is the largest disturbance in LEO[1].

Constraints 2/3 : Maximum Current

Formation shape is assumed to be square.

 $=2\sqrt{2}c_{h-m}$

The satellite at the center of the formation cancels disturbances in four directions.

• The current of (0, 0) satellite is required $c_{h-m(0,0)} = c_{h-m} \sin(\omega_1 t) + c_{h-m} \cos(\omega_1 t) + c_{h-m} \sin(\omega_2 t) + c_{h-m} \cos(\omega_2 t)$

 c_{h-m} : Maximum current to suppress disturbance in one direction

Constraints 3/3 : The Mass of One Satellite

[1]Edmund M. C. Kong, et al" Electromagnetic Formation Flight for Multisatellite Arrays" Journal of Spacecraft and Rockets, Vol. 41, No. 4, p.659-666, July-August 2004.

Analysis Conditions

- The power system is based on BIRDS[1].
- The power of satellites is only supplied by solar panels. (No battery)
- The payload mass is more than 50% of the total mass of a satellite.

Constraint Conditions

Magnetic Force

$$f_{c(0,0)} = \frac{3\mu_0}{4\pi} \frac{(N_t \pi a^2)^2 c_{h-m}^2}{d^4} = \sum_{i=0}^n f_{id}$$

• Maximum Current

 $2\sqrt{2}c_{h-m} \leq Maximum$ output current of solar panels

• The Mass of Satellite

$$m_{tot} = m_0 + m_{coil} + m_{sa}$$

• The Size of Satellite

Height of Coil $L \le 0.03$ or 0.1 [m]

Results of Optimization

13/17

Magnetic moment : $\mu = N_{tr} \pi a_{s}^{2} C_{j} \mu_{s}$

In Case of Core Coil

Most of the previous studies using EMFF assumed an air core coil.
 Whether core coils are more advantageous was examined.

Results of Optimization (Case1 100g Sat)

Results of Optimization (Case2 1kg Sat)

Conclusion and Future Works

Research object

Design optimal satellite configuration for distributed antennas.
Provide the general methodology of optimal formation design for a variety of purposes.

In this presentation

 A case study of maintaining the formation of a communication antenna using a normal-conducting coil was performed.

- ✓ Optimization calculations were performed for the number of satellites.
- Comparisons were made between air coils and core coils

Future works

A feasibility study of the parameters obtained by optimization.
 Identification of the cause of the small magnetic moment of the core coil.
 To simulate under nominal conditions.

D To consider a formation that is not a grid.