

Equilibria and Dynamical Structures with Quadratic Optimal Control

Tsuruta Ayano¹⁾, Mai Bando¹⁾, Daniel J. Scheeres²⁾, and Shinji Hokamoto¹⁾
1) Department of Aeronautics and Astronautics, Kyushu University, Japan
2) Department of Aerospace Engineering Sciences, University of Colorado Boulder, U.S.

33rd Workshop on JAXA Astrodynamics Symposium and Flight Mechanics ASTRO-2023-C001(010)

Background (1/2)

Limited fuel

Equilibrium points • Invariant manifolds

Equilibrium points and invariant manifolds are used

Equilibrium points :

- The gravity and centrifugal force are balanced in the rotational coordinate system
- In CR3BP \rightarrow Lagrangian points

Invariant manifolds :

- Dynamical structure around unstable equilibrium points
- Transition trajectories using invariant manifolds do not require inputs

Background (2/2)

Problem

- Lagrangian points are not always in the best position for the mission.
- Invariant manifolds used as transport structures are limited.

Previous Research¹⁾

Artificial equilibrium points with Low-thrust continuous inputs

This research

- Artificial equilibrium points with continuous optimal control inputs
- Research including analysis of invariant manifolds around the artificial equilibrium point

1) Morimoto, M. Y., Yamakawa, H. and Uesugi, K.: Artificial equilibrium points in the low-thrust restricted three-body problem, Journal of Guidance, Control, and Dynamics, 30(5) (2007), pp. 1563-1568.

Method : Optimal control problem (1/3)

Deal with continuous optimal control inputs

Optimal Control Problem²⁾: The problem of minimizing the cost function $J = \int_{t_0}^{t_f} L(\mathbf{x}(t), \mathbf{u}(t), t) dt$ Subject to $\dot{\mathbf{x}} = f(\mathbf{x}) + B\mathbf{u}$ $\begin{cases} f(\mathbf{x}) : \text{ natural dynamics} \\ \mathbf{u} : \text{ control inputs} \end{cases}$

2) Ohtsuka, T.: Introduction to Nonlinear Optimal Control, Corona Publishing, Tokyo, 2011 (in Japanese).

Method : Optimal control problem (2/3)

Cost function
$$J = \int_{t_0}^{t_f} L(\mathbf{x}(t), \mathbf{u}(t), t) dt \qquad \text{Subject to } \dot{\mathbf{x}} = f(\mathbf{x}) + \mathbf{B}\mathbf{u}$$

Hamilton function $H(\mathbf{x}, \mathbf{p}, \mathbf{u}) = L(\mathbf{x}, \mathbf{u}) + \mathbf{p}^T \mathbf{f}(\mathbf{x})$

Euler Lagrange equation

$$\begin{cases} \dot{\boldsymbol{x}} = \left(\frac{\partial H}{\partial \boldsymbol{p}}\right)^T, \, \boldsymbol{x}(t_0) = \boldsymbol{x}_0 \\ \dot{\boldsymbol{p}} = -\left(\frac{\partial H}{\partial \boldsymbol{x}}\right)^T \\ \frac{\partial H}{\partial \boldsymbol{u}} = 0 \end{cases}$$

Regard as the equations of motion of a dynamical system with optimal control input

Method : Optimal control problem (3/3)

Euler Lagrange equation

$$\begin{bmatrix} \mathbf{x} \\ \partial \mathbf{p} \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial H(\mathbf{x}, \mathbf{p})}{\partial \mathbf{p}} \right)^T \\ -\left(\frac{\partial H(\mathbf{x}, \mathbf{p})}{\partial \mathbf{x}} \right)^T \end{bmatrix}$$

- Can analyze the dynamical structure around the equilibrium point with optimal control inputs using conventional methods of trajectory design for systems with no added inputs,
- Can explain optimal control in terms of dynamics

Research objective

Investigate the equilibrium point with continuous optimal control inputs and its dynamical structures

Research flow

- 1. Derive the equations of motion of a dynamical system with optimal control inputs
- 2. Derive the conditions for the equilibrium points
- 3. Analyze the stability of equilibrium points
- 4. Investigate the dynamical structure around the equilibrium points

Dynamical model

Hill three-body problem (Hill3BP)³⁾

Equations of motion of natural dynamics

$$\begin{bmatrix} \dot{\mathbf{r}} \\ \dot{\mathbf{v}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \\ \frac{\partial U}{\partial x} + 2\dot{\mathbf{y}} \\ \frac{\partial U}{\partial y} - 2\dot{x} \\ \frac{\partial U}{\partial z} \end{bmatrix} = \begin{bmatrix} v \\ U_r + 2J_a v \end{bmatrix} = f(x)$$

 $U = \frac{1}{|\mathbf{r}|} + \frac{1}{2}(3x^2 - z^2)$

 $J_a = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

3) Scheeres, D. J.: Orbital motion in strongly perturbed environments: applications to asteroid, comet and planetary satellite orbiters, Springer, 2016.

Dynamical model

Hill three-body problem (Hill3BP)

Equations of motion of natural dynamics

$$\begin{bmatrix} \dot{\mathbf{r}} \\ \dot{\mathbf{v}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \\ \frac{\partial U}{\partial x} + 2\dot{\mathbf{y}} \\ \frac{\partial U}{\partial y} - 2\dot{x} \\ \frac{\partial U}{\partial y} - 2\dot{x} \\ \frac{\partial U}{\partial z} \end{bmatrix} = \begin{bmatrix} v \\ U_r + 2J_a v \end{bmatrix} = f(x)$$

$$U = \frac{1}{|\mathbf{r}|} + \frac{1}{2}(3x^2 - z^2)$$
$$J_a = \begin{bmatrix} 0 & 1 & 0\\ -1 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

There are two natural equilibrium points on the x-axis.

Optimal control problem

Deal with continuous optimal control inputs

Optimal Control Problem :
The problem of minimizing the cost function
$$J = \int_{t_0}^{t_f} L(x(t), u(t), t) dt$$
Subject to $\dot{x} = f(x) + Bu$ $f(x)$: natural dynamics
 u : control inputs

In this study

Quadratic cost function
$$J = \int_{t_0}^{t_f} \left(\frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u}\right) dt$$

 (≥ 0) : weight on state (> 0): weight on control inputs

Derivation of the equations of motion with optimal control inputs (1/2) 11

Quadratic cost function

$$I = \int_{t_0}^{t_f} \left(\frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \frac{1}{2} \boldsymbol{u}^T \boldsymbol{R} \boldsymbol{u} \right) dt$$

Q: weight on state*R*: weight on control inputs

Hamilton function *H*

$$H(x, p, u) = \left(\frac{1}{2}x^T Q x + \frac{1}{2}u^T R u\right) + p^T(f(x) + Bu)$$

Euler Lagrange equation

$$\begin{bmatrix} \dot{x} = \left(\frac{\partial H}{\partial p}\right)^T = f(x) + Bu, x(t_0) = x_0 \\ \dot{p} = -\left(\frac{\partial H}{\partial x}\right)^T \\ u = -R^{-1}B^Tp$$

Derivation of the equations of motion with optimal control inputs (1/2) 12

Quadratic cost function

$$J = \int_{t_0}^{t_f} \left(\frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \frac{1}{2} \boldsymbol{u}^T \boldsymbol{R} \boldsymbol{u} \right) dt$$

Q: weight on state*R*: weight on control inputs

Hamilton function *H* $H(x, p, u) = \left(\frac{1}{2}x^T Q x + \frac{1}{2}u^T R u\right) + p^T(f(x) + Bu)$

Euler Lagrange equation

$$\begin{bmatrix} \dot{x} = \left(\frac{\partial H}{\partial p}\right)^T = f(x) + Bu, x(t_0) = x_0 \\ \dot{p} = -\left(\frac{\partial H}{\partial x}\right)^T \\ u = -R^{-1}B^Tp$$

Derivation of the equations of motion with optimal control inputs (2/2) 13

Euler Lagrange equation

$$\begin{bmatrix} \dot{\boldsymbol{x}} = \left(\frac{\partial H(\boldsymbol{x}, \boldsymbol{p})}{\partial \boldsymbol{p}}\right)^T \\ \dot{\boldsymbol{p}} = -\left(\frac{\partial H(\boldsymbol{x}, \boldsymbol{p})}{\partial \boldsymbol{x}}\right)^T \end{bmatrix}$$

$$x = \begin{bmatrix} r \\ v \end{bmatrix}$$
$$p = \begin{bmatrix} p_r \\ p_v \end{bmatrix}$$

Equations of motion with optimal control inputs

$$\begin{bmatrix} \dot{r} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ 2J_a v + U_r - Rp_v \end{bmatrix}$$
$$\begin{bmatrix} \dot{p}_r \\ p_v \end{bmatrix} = \begin{bmatrix} -Q_{1:3}x - U_{rr}p_v \\ -Q_{4:6}x - p_r + 2J_ap_v \end{bmatrix}$$

Conditions for equilibrium point

Conditions for equilibrium point $(x_0 = \begin{bmatrix} r_0 \\ v_0 \end{bmatrix}, p_0 = \begin{bmatrix} p_{r0} \\ p_{v0} \end{bmatrix})$ $v_0 = 0$ $p_{v0} = R^{-1}U_r$ $-Q_{1:3}x_0 - U_{rr}R^{-1}U_r = 0$ $p_{r0} = -Q_{4:6}x_0 + 2J_aR^{-1}U_r$

Conditions for equilibrium point

Conditions for equilibrium point $(x_0 = \begin{bmatrix} r_0 \\ v_0 \end{bmatrix}, p_0 = \begin{bmatrix} p_{r0} \\ p_{v0} \end{bmatrix})$ $v_0 = 0$ $p_{v0} = R^{-1}U_r$ $-Q_{1:3}x_0 - U_{rr}R^{-1}U_r = 0$ $p_{r0} = -Q_{4:6}x_0 + 2J_aR^{-1}U_r$

Conditions for equilibrium point

Conditions for equilibrium point $(x_0 = \begin{bmatrix} r_0 \\ v_0 \end{bmatrix}, p_0 = \begin{bmatrix} p_{r0} \\ p_{v0} \end{bmatrix})$ $v_0 = 0$ $p_{v0} = R^{-1}U_r$ $-Q_{1:3}x_0 - U_{rr}R^{-1}U_r = 0$ $p_{r0} = -Q_{4:6}x_0 + 2J_aR^{-1}U_r$

Equilibrium point with optimal control inputs

Equilibrium point on x-axis in Hill3BP

 $v_0 = 0$ $p_{v0} = R^{-1}U_r$ $-Q_{1:3} - U_{rr}R^{-1}U_r = 0$ $p_{r0} = -Q_{4:6} + 2J_aR^{-1}U_r$

If **Q** and **R** are diagonal matrices

$$x_{0} = \pm \left(\frac{-3R_{11} + \sqrt{81R_{11}^{2} + 8R_{11}Q_{11}}}{2(Q_{11} + 9R_{11})} \right)^{\frac{1}{6}}$$

$$p_{\nu 0} = -2x_{0} \left(\frac{1}{|x_{0}|^{3}} - 3 \right) \begin{bmatrix} 0 \\ -R_{11} \\ 0 \end{bmatrix}$$

$$p_{\nu 0} = -x_{0} \left(\frac{1}{|x_{0}|^{3}} - 3 \right) \begin{bmatrix} R_{11} \\ 0 \\ 0 \end{bmatrix}$$

17

Equilibrium point with optimal control problem

Required optimal control inputs

18

Linearization

Do not exist in natural dynamics

Equilibrium points in Hill3BP (Q = 0, R = I)

Artificial Equilibrium Point for minimum energy problem in Hill3BP (AEP)

Natural equilibrium points

J		, ,	20 - 15 C J I S J J S J S J S S S S S S S S S S S
	place	coordinates[x, y, z]	
AEP_x	<i>x</i> -axis	$\left[\pm\left(\frac{1}{3}\right)^{\frac{1}{3}},0,0\right]$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
AEP_z	z-axis	$\left[0, 0, \pm 2^{\frac{1}{3}}\right]$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AEP_xy	<i>xy-</i> plane	$\left[\pm\frac{1}{\sqrt{3}}\left(\frac{2}{3}\right)^{\frac{1}{3}},\pm\sqrt{\frac{2}{3}}\left(\frac{2}{3}\right)^{\frac{1}{3}},0\right]$	<i>xz</i> -plane ($y = 0$) 20
AEP_xz	<i>xz-</i> plane	$\left[\pm\frac{1}{\sqrt{6}}, 0, \pm\sqrt{\frac{5}{6}}\right]$	20 - 7.5 Signature of Contract
			$\begin{bmatrix} -2 & -1 & 0 \\ x[-] \end{bmatrix} + \begin{bmatrix} -2 & -1 \\ x[-] \end{bmatrix} + \begin{bmatrix} -2 & -1 \\ x[-] \end{bmatrix} + \begin{bmatrix} -2 & -2 \\ x[-] \end{bmatrix} + \begin{bmatrix} -$
			L J This document is provided by JAXA.

xy-plane (z = 0)

Equilibrium points in Hill3BP (Q = 0, R = I)

Artificial Equilibrium Point xy-plane (z = 0) for minimum energy problem in Hill3BP (AEP) 15 01 value of C 20 coordinates[x, y, z] AEP_x place * $\frac{1}{0}$ 10 Natural $\left[\pm\left(\frac{1}{3}\right)^{\frac{1}{3}},0,0\right]$ AEP x x-axis equilibrium AEP points -2 z[-]-2 2 x[-]AEP_z $\left[0, 0, \pm 2^{\frac{1}{3}}\right]$ z-axis xz-plane (y = 0) AEP_xy $\pm \frac{1}{\sqrt{3}} \left(\frac{2}{3}\right)^{\frac{1}{3}}, \pm \sqrt{\frac{2}{3}} \left(\frac{2}{3}\right)^{\frac{1}{3}}, 0$ xy-20 plane 13.75 AEP_xz χZ - $\pm \frac{1}{\sqrt{6}}, 0, \pm \sqrt{\frac{5}{6}}$ value of C 20 plane 7.5 AEP_x ()AFP 1.25 AEP z 0 0 -2 x[-

27

Equilibrium points in Hill3BP (Q = 0, R = I)

The stability of equilibrium points in Hill3BP

Equilibrium	The number of set of eigenvalue				
point	$\pm\lambda$	$\pm i\omega$	$\pm (\lambda \pm i\omega)$		
Natural	1	2	0		
AEP_x	1(double)	2(double)	0		
AEP_z	1	1	2		
AEP_xy	1	3	1		
AEP_xz	0	2	2		
Dynamical structure	0.71327548 0.713275475 0.713275465 0.713275465 0.713275465 0.713275465 0.713275465 0.713275465 0.713275445 0.713275445 0.713275445 0.713275445 0.713275445 0.713275445 0.50436191 0.50436192 0.50436192 0.50436193	$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $	$rac{1}{5}$ $rac{1}{6}$ $rac{1}{5}$ $rac{$		
	Saddle	Center	Complex saddle		
			This docum		

The stability of equilibrium points in Hill3BP

Equilibrium	The number of set of eigenvalue				
point	$\pm\lambda$	$\pm i\omega$	$\pm (\lambda \pm i\omega)$		
Natural	1	2	0		
AEP_x	1(double)	2(double)	0		
AEP_z	1	1	2		
AEP_xy	1	3	1		
AEP_xz	0	2	2		
Dynamical structure	0.71327548 0.713275475 0.713275465 0.713275465 0.713275465 0.713275465 0.713275465 0.713275445 0.713275445 0.713275445 0.713275445 0.50436191 0.50436192 0.50436192 0.50436193	$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$	$rac{1}{10^{8}}$		
	Saddle	Center	Complex saddle		

$$\dot{\boldsymbol{x}} = \boldsymbol{A}|_{\boldsymbol{x}_0} \boldsymbol{x}$$
$$\rightarrow \boldsymbol{x}(t) = e^{At} \boldsymbol{x}(0)$$

$$\dot{x} = A|_{x_0} x$$

$$\rightarrow x(t) = e^{At} x(0)$$

$$A = VJV^{-1}$$

J: Jordan normal form

Diagonal matrix of eigenvalues

$$\boldsymbol{D} = \begin{bmatrix} \lambda_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \lambda_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \lambda_2 \end{bmatrix}$$

Jordan normal form

$$\boldsymbol{J} = \begin{bmatrix} \lambda_1 & \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \lambda_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \lambda_2 \end{bmatrix}$$

Diagonal matrix of eigenvalues

$$\boldsymbol{D} = \begin{bmatrix} \lambda_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \lambda_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \lambda_2 \end{bmatrix}$$

Eigenvector

$$\boldsymbol{E} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix}$$

Jordan normal form

$$\boldsymbol{J} = \begin{bmatrix} \lambda_1 & \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \lambda_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \lambda_2 \end{bmatrix}$$

Generalized eigenvector (GE)

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_{1_GE} & \boldsymbol{v}_2 \end{bmatrix}$$

 $\dot{x} = A|_{x_0} x$ $\rightarrow x(t) = e^{At} x(0)$ $A = VJV^{-1}$ J : Jordan normal form

 $\dot{x} = A|_{x_0} x$ $\rightarrow x(t) = e^{At} x(0)$ $A = VJV^{-1}$ J : Jordan normal form $\boldsymbol{x}(t) = e^{\boldsymbol{V}(\boldsymbol{D}+\boldsymbol{N})\boldsymbol{V}^{-1}t}\boldsymbol{x}(0)$ $=e^{VDV^{-1}t}e^{VNV^{-1}t}\mathbf{x}(0)$

Because
$$e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots$$

$$\begin{cases} e^{VDV^{-1}t} = Ve^{Dt}V^{-1}\\ e^{VNV^{-1}t} = V(I + Nt)V^{-1} (\because N^2 = 0) \end{cases}$$

Because
$$e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots$$

$$\begin{cases} e^{VDV^{-1}t} = Ve^{Dt}V^{-1} \\ e^{VNV^{-1}t} = V(I + Nt)V^{-1} (\because N^2 = 0) \end{cases}$$

$$x(t) = e^{VDV^{-1}t}e^{VNV^{-1}t}x(0) \\ = Ve^{Dt}(I + Nt)V^{-1}x(0)$$

Because
$$e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots$$

 $\begin{cases} e^{VDV^{-1}t} = Ve^{Dt}V^{-1} \\ e^{VNV^{-1}t} = V(I + Nt)V^{-1} (\because N^2 = 0) \end{cases}$
 $x(t) = e^{VDV^{-1}t}e^{VNV^{-1}t}x(0)$
 $= Ve^{Dt}(I + Nt)V^{-1}x(0)$
 $usual solution$
 $x(t) = Ee^{Dt}E^{-1}x(0)$

Because
$$e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots$$

$$\begin{cases} e^{VDV^{-1}t} = Ve^{Dt}V^{-1} \\ e^{VNV^{-1}t} = V(I + Nt)V^{-1} (\because N^2 = 0) \end{cases}$$

$$x(t) = e^{VDV^{-1}t}e^{VNV^{-1}t}x(0) \\ = Ve^{Dt}(I + Nt)V^{-1}x(0) \\ = [e^{\lambda_1 t}v_1 - e^{\lambda_1 t}(tv_1 + v_2) - e^{\lambda_3 t}v_3 - \dots]V^{-1}x(0) \\ = \sum_{i=1}^{6} \{C_{2i-1}e^{\lambda_{2i-1}t}v_{2i-1} + C_{2i}e^{\lambda_{2i}t}(tv_{2i-1} + v_{2i})\} (e^{\lambda_{2i-1}t} = e^{\lambda_{2i}t}) \\ natural manifold \qquad non-natural manifold \qquad no$$

Invariant manifold around the equilibrium point with no input (1/2) 42

Invariant manifolds on p_xp_yp_z-space stay at the origin
Invariant manifolds with no control inputs
Invariant manifolds have (x, y, p_x, p_y) elements, or (z, p_z) elements

This document is provided by JAXA.

Invariant manifold around the equilibrium point with no input (2/2) 43

12-dim invariant manifold around AEP_x using GE

The stability of equilibrium points in Hill3BP

Equilibrium	The number of set of eigenvalue			
point	$\pm\lambda$	$\pm i\omega$	$\pm (\lambda \pm i\omega)$	
Natural	1	2	0	
AEP_x	1(double)	2(double)	0	
AEP_z	1	1	2	
AEP_xy	1	3	1	
AEP_xz	0	2	2	
Dynamical structure	0.71327548 0.713275475 0.713275465 0.713275465 0.713275465 0.713275465 0.713275465 0.713275455 0.713275455 0.713275445 0.50436191 0.50436192 0.50436193	$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $	$\overline{z}_{B} = \begin{pmatrix} 10^{8} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
	Saddle	Center	Complex saddle	
			This docum	

12-dim invariant manifold around AEP_z

• Invariant manifolds have (x, y, p_x, p_y) elements, or (z, p_z) elements • Invariant manifolds with optimal control inputs

LQR optimal control

initial : arbitrary point on the xy-plane

initial : arbitrary point on the xyz-space

LQR optimal control

Manifold around equilibrium point when Q = I

initial : arbitrary point on the xy-plane

initial : arbitrary point on the xyz-space

This document is provided by JAXA.

What is center manifold in optimal control theory? 53

LQR optimal control $\begin{cases} \mathbf{Q} = 0 \rightarrow \text{cannot stabilize} \\ \mathbf{Q} > 0 \rightarrow \text{can stabilize} \end{cases}$

There exists a stabilizing solution of Riccati equation. (Q > 0)

There are 6 stable eigenvectors, we can always find a corresponding 12-dim trajectory on stable manifold.

There is no stabilizing solution (Q = 0)

There are 6-*n* stable eigenvectors, the trajectory converges to the *n*-dim center manifold.

The number of stable manifolds when Q = 0

Equilibrium point	The number of eigenvector			
Equilibrium point	Stable	Unstable	Center	
AEP_x (natural)	2 (<i>xy</i> -plane)	2 (<i>xy</i> -plane)	4 (<i>xy</i> -plane)	
	0 (<i>z</i> -direction)	0 (z-direction)	4 (<i>z</i> -direction)	
AEP_z	3 (<i>xy</i> -plane)	3 (<i>xy</i> -plane)	2 (<i>xy</i> -plane)	
	2 (<i>z</i> -direction)	2 (<i>z</i> -direction)	0 (<i>z</i> -direction)	
AEP_xy	3 (<i>xy</i> -plane)	3 (<i>xy</i> -plane)	2 (<i>xy</i> -plane)	
	0 (<i>z</i> -direction)	0 (<i>z</i> -direction)	4 (<i>z</i> -direction)	
AEP_xz	4 (xyz-space)	4 (xyz-space)	4 (xyz-space)	

The number of eigenvectors required to stabilize xy-plane $\rightarrow 4$ z-direction $\rightarrow 2$ xyz-space $\rightarrow 6$

The number of stable manifolds when Q = 0

Equilibrium point	The number of eigenvector			
Equilibrium point	Stable	Unstable	Center	
AEP_x (natural)	2 (<i>xy</i> -plane)	2 (<i>xy</i> -plane)	4 (<i>xy</i> -plane)	
	0 (<i>z</i> -direction)	0 (z-direction)	4 (<i>z</i> -direction)	
AEP_z	3 (<i>xy</i> -plane)	3 (<i>xy</i> -plane)	2 (<i>xy</i> -plane)	
	2 (<i>z</i> -direction)	2 (<i>z</i> -direction)	0 (<i>z</i> -direction)	
AEP_xy	3 (<i>xy</i> -plane)	3 (<i>xy</i> -plane)	2 (<i>xy</i> -plane)	
	0 (<i>z</i> -direction)	0 (<i>z</i> -direction)	4 (<i>z</i> -direction)	
AEP_xz	4 (xyz-space)	4 (xyz-space)	4 (xyz-space)	

The number of eigenvectors required to stabilize xy-plane $\rightarrow 4$ z-direction $\rightarrow 2$ xyz-space $\rightarrow 6$

For Q > 0, we can confirm the 12-dim dynamical system has 6-dim stable manifold from the root locus.

The change of the eigenvalue at the equilibrium point on the x-axis when Q changed.

Conclusion

Conclusion

Investigated the equilibrium point with continuous optimal control inputs and its dynamical structures

- ✓ Equations of motion for the dynamical system with optimal control inputs that minimize the quadratic cost function are derived.
- Conditions for equilibrium points in Hill3BP were derived.
- ✓ The stability of certain unstable equilibrium points in Hill3BP were investigated and the dynamical structures around them were investigated.

✓ Compare the solution of LQR and dynamical structure with optimal control inputs