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Background (1/2) 2

Equilibrium points ・ Invariant manifolds

Limited fuel

Equilibrium

point

Invariant 

manifolds

Current trajectory design

Equilibrium points and 

invariant manifolds are used

Equilibrium points :

• The gravity and centrifugal force are 

balanced in the rotational coordinate system

• In CR3BP → Lagrangian points

Invariant manifolds :

• Dynamical structure around unstable 

equilibrium points

• Transition trajectories using invariant 

manifolds do not require inputs

This document is provided by JAXA.This document is provided by JAXA.
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• Lagrangian points are not always in the 

best position for the mission.

• Invariant manifolds used as transport 

structures are limited.

Problem

Lagrangian points and 

zero-velocity curve of CR3BP

L1L2L3

L4

L5Artificial equilibrium points with Low-thrust 

continuous inputs

Previous Research

• Artificial equilibrium points with continuous optimal control inputs

• Research including analysis of invariant manifolds around the artificial equilibrium point 

This research
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1) Morimoto, M. Y., Yamakawa, H. and Uesugi, K.: Artificial equilibrium points in the low-thrust restricted three-body problem, Journal of 

Guidance, Control, and Dynamics, 30(5) (2007), pp. 1563-1568. This document is provided by JAXA.This document is provided by JAXA.



Method : Optimal control problem (1/3) 4

Optimal Control Problem ：
The problem of minimizing the cost function

𝐽 = න
𝑡0

𝑡𝑓

𝐿(𝒙 𝑡 , 𝒖 𝑡 , 𝑡) 𝑑𝑡

Deal with continuous optimal control inputs

𝑓 𝒙 : natural dynamics

𝒖 : control inputs
Subject to ሶ𝒙 = 𝑓 𝒙 + 𝑩𝒖

2)

2) Ohtsuka, T.: Introduction to Nonlinear Optimal Control, Corona Publishing, Tokyo, 2011 (in Japanese). This document is provided by JAXA.This document is provided by JAXA.



Method : Optimal control problem (2/3) 5

Euler Lagrange equation

𝐻 𝒙, 𝒑, 𝒖 = 𝐿(𝒙, 𝒖) + 𝒑𝑇𝒇 𝒙

ሶ𝒙 =
𝜕𝐻

𝜕𝒑

𝑇

, 𝒙 𝑡0 = 𝒙0

ሶ𝒑 = −
𝜕𝐻

𝜕𝒙

𝑇

𝜕𝐻

𝜕𝒖
= 0

Hamilton function

Subject to ሶ𝒙 = 𝑓 𝒙 + 𝑩𝒖𝐽 = න
𝑡0

𝑡𝑓

𝐿(𝒙 𝑡 , 𝒖 𝑡 , 𝑡) 𝑑𝑡
Cost function  

Regard as the equations of 

motion of a dynamical system 

with optimal control input

This document is provided by JAXA.This document is provided by JAXA.



Method : Optimal control problem (3/3) 6

ሶ𝒙 = 𝑓 𝒙 + 𝑩𝒖 ሶ𝒙
𝒑

=

𝜕𝐻(𝒙, 𝒑)

𝜕𝒑

𝑇

−
𝜕𝐻(𝒙, 𝒑)

𝜕𝒙

𝑇

Euler Lagrange equation

(n – dim)
(2n – dim)

➢ Can analyze the dynamical structure around the 

equilibrium point with optimal control inputs using 

conventional methods of trajectory design for systems 

with no added inputs, 

➢ Can explain optimal control in terms of dynamics

This document is provided by JAXA.This document is provided by JAXA.



Research objective 7

Research flow

Investigate the equilibrium point with continuous optimal control inputs 

and its dynamical structures

Research objective

1. Derive the equations of motion of a dynamical system with optimal control inputs

2. Derive the conditions for the equilibrium points

3. Analyze the stability of equilibrium points

4. Investigate the dynamical structure around the equilibrium points

This document is provided by JAXA.This document is provided by JAXA.



Dynamical model 8

Equations of motion of natural dynamics

Hill three-body problem (Hill3BP)

ሶ𝒓
ሶ𝒗
=

ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜕𝑈

𝜕𝑥
+ 2 ሶ𝑦

𝜕𝑈

𝜕𝑦
− 2 ሶ𝑥

𝜕𝑈

𝜕𝑧

=
𝒗

𝑼𝒓 + 2𝑱𝒂𝒗
= 𝒇(𝒙)

𝑈 =
1

|𝒓|
+
1

2
(3𝑥2 − 𝑧2)

𝑱𝑎 =
0 1 0
−1 0 0
0 0 0

3)

3) Scheeres, D. J.: Orbital motion in strongly perturbed environments: 

applications to asteroid, comet and planetary satellite orbiters, Springer, 2016.This document is provided by JAXA.This document is provided by JAXA.



Dynamical model 9

Equations of motion of natural dynamics

ሶ𝒓
ሶ𝒗
=

ሶ𝑥
ሶ𝑦
ሶ𝑧

𝜕𝑈

𝜕𝑥
+ 2 ሶ𝑦

𝜕𝑈

𝜕𝑦
− 2 ሶ𝑥

𝜕𝑈

𝜕𝑧

=
𝒗

𝑼𝒓 + 2𝑱𝒂𝒗
= 𝒇(𝒙)

𝑈 =
1

|𝒓|
+
1

2
(3𝑥2 − 𝑧2)

Hill three-body problem (Hill3BP)

𝑱𝑎 =
0 1 0
−1 0 0
0 0 0

There are two natural equilibrium points 

on the 𝑥-axis.

This document is provided by JAXA.This document is provided by JAXA.



Optimal control problem 10

Optimal Control Problem ：
The problem of minimizing the cost function

𝐽 = න
𝑡0

𝑡𝑓

𝐿(𝒙 𝑡 , 𝒖 𝑡 , 𝑡) 𝑑𝑡

Deal with continuous optimal control inputs

𝑓 𝒙 : natural dynamics

𝒖 : control inputs
Subject to ሶ𝒙 = 𝑓 𝒙 + 𝑩𝒖

In this study

𝐽 = න
𝑡0

𝑡𝑓 1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖 𝑑𝑡

Quadratic cost function 𝑸(≥ 𝟎) : weight on state

𝑹(> 𝟎) : weight on control inputs

This document is provided by JAXA.This document is provided by JAXA.



Derivation of the equations of motion with optimal control inputs (1/2) 11

ሶ𝒑 = −
𝜕𝐻

𝜕𝒙

𝑇

𝒖 = −𝑹−1𝑩𝑇𝒑

ሶ𝒙 =
𝜕𝐻

𝜕𝒑

𝑇

= 𝒇 𝒙 + 𝑩𝒖 , 𝒙 𝑡0 = 𝒙0

Euler Lagrange equation

𝐽 = න
𝑡0

𝑡𝑓 1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖 𝑑𝑡

Quadratic cost function 𝑸 : weight on state

𝑹 : weight on control inputs

𝐻 𝒙, 𝒑, 𝒖 =
1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖 + 𝒑𝑇(𝒇 𝒙 + 𝑩𝒖)

Hamilton function 𝐻

This document is provided by JAXA.This document is provided by JAXA.



Derivation of the equations of motion with optimal control inputs (1/2) 12

𝐽 = න
𝑡0

𝑡𝑓 1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖 𝑑𝑡

Quadratic cost function 𝑸 : weight on state

𝑹 : weight on control inputs

𝐻 𝒙, 𝒑, 𝒖 =
1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖 + 𝒑𝑇(𝒇 𝒙 + 𝑩𝒖)

Hamilton function 𝐻

ሶ𝒑 = −
𝜕𝐻

𝜕𝒙

𝑇

𝒖 = −𝑹−1𝑩𝑇𝒑

ሶ𝒙 =
𝜕𝐻

𝜕𝒑

𝑇

= 𝒇 𝒙 + 𝑩𝒖 , 𝒙 𝑡0 = 𝒙0

Euler Lagrange equation

This document is provided by JAXA.This document is provided by JAXA.
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Equations of motion with optimal control inputs

Derivation of the equations of motion with optimal control inputs (2/2) 

ሶ𝒑 = −
𝜕𝐻(𝒙, 𝒑)

𝜕𝒙

𝑇

ሶ𝒙 =
𝜕𝐻(𝒙, 𝒑)

𝜕𝒑

𝑇

Euler Lagrange equation

𝒙 =
𝒓
𝒗

𝒑 =
𝒑𝑟
𝒑𝑣

ሶ𝒑𝒓
𝒑𝒗

=
−𝑸𝟏:𝟑𝒙 − 𝑼𝒓𝒓𝒑𝒗

−𝑸𝟒:𝟔𝒙 − 𝒑𝒓 + 2𝑱𝒂𝒑𝒗

ሶ𝒓
ሶ𝒗
=

𝒗
2𝑱𝒂𝒗 + 𝑼𝒓 − 𝑹𝒑𝒗

This document is provided by JAXA.This document is provided by JAXA.



Conditions for equilibrium point 14

Conditions for equilibrium point

（ 𝒙0 =
𝒓0
𝒗𝟎

, 𝒑0 =
𝒑𝑟0
𝒑𝑣0

）

𝒗𝟎 = 𝟎

𝒑𝑣0 = 𝑹−1𝑼𝑟

−𝑸1:3𝒙𝟎 − 𝑼𝑟𝑟𝑹
−1𝑼𝑟 = 0

𝒑𝑟0 = −𝑸4:6𝒙𝟎 + 2𝑱𝑎𝑹
−1𝑼𝑟

ሶ𝒑𝒓
𝒑𝒗

=
−𝑸𝟏:𝟑𝒙 − 𝑼𝒓𝒓𝒑𝒗

−𝑸𝟒:𝟔𝒙 − 𝒑𝒓 + 2𝑱𝒂𝒑𝒗
=

0
0

ሶ𝒓
ሶ𝒗
=

𝒗
2𝑱𝒂𝒗 + 𝑼𝒓 − 𝑹𝒑𝒗

=
0
0

12-dim stationary conditions

This document is provided by JAXA.This document is provided by JAXA.



Conditions for equilibrium point 15

Conditions for equilibrium point

（ 𝒙0 =
𝒓0
𝒗𝟎

, 𝒑0 =
𝒑𝑟0
𝒑𝑣0

）

𝒑𝑣0 = 𝑹−1𝑼𝑟

−𝑸1:3𝒙𝟎 − 𝑼𝑟𝑟𝑹
−1𝑼𝑟 = 0

𝒑𝑟0 = −𝑸4:6𝒙𝟎 + 2𝑱𝑎𝑹
−1𝑼𝑟

ሶ𝒑𝒓
𝒑𝒗

=
−𝑸𝟏:𝟑𝒙 − 𝑼𝒓𝒓𝒑𝒗

−𝑸𝟒:𝟔𝒙 − 𝒑𝒓 + 2𝑱𝒂𝒑𝒗
=

0
0

ሶ𝒓
ሶ𝒗
=

𝒗
2𝑱𝒂𝒗 + 𝑼𝒓 − 𝑹𝒑𝒗

=
0
0

12-dim stationary conditions

𝒗𝟎 = 𝟎

This document is provided by JAXA.This document is provided by JAXA.



Conditions for equilibrium point 16

Conditions for equilibrium point

（ 𝒙0 =
𝒓0
𝒗𝟎

, 𝒑0 =
𝒑𝑟0
𝒑𝑣0

）

𝒑𝑣0 = 𝑹−1𝑼𝑟

−𝑸1:3𝒙𝟎 − 𝑼𝑟𝑟𝑹
−1𝑼𝑟 = 0

𝒑𝑟0 = −𝑸4:6𝒙𝟎 + 2𝑱𝑎𝑹
−1𝑼𝑟

ሶ𝒑𝒓
𝒑𝒗

=
−𝑸𝟏:𝟑𝒙 − 𝑼𝒓𝒓𝒑𝒗

−𝑸𝟒:𝟔𝒙 − 𝒑𝒓 + 2𝑱𝒂𝒑𝒗
=

0
0

ሶ𝒓
ሶ𝒗
=

𝒗
2𝑱𝒂𝒗 + 𝑼𝒓 − 𝑹𝒑𝒗

=
0
0

12-dim stationary conditions

𝒗𝟎 = 𝟎

This document is provided by JAXA.This document is provided by JAXA.



Equilibrium point with optimal control inputs 17

If 𝑸 and 𝑹 are 

diagonal matrices

𝒗𝟎 = 𝟎

𝒑𝑣0 = 𝑹−1𝑼𝑟

−𝑸1:3 −𝑼𝑟𝑟𝑹
−1𝑼𝑟 = 0

𝒑𝑟0 = −𝑸4:6 + 2𝑱𝑎𝑹
−1𝑼𝑟

Equilibrium point on x-axis in Hill3BP

𝒑𝑣0 = −𝑥0
1

|𝑥0|
3 − 3

𝑅11
0
0

𝑥0 = ±
−3𝑅11 + 81𝑅11

2 + 8𝑅11𝑄11

2(𝑄11 + 9𝑅11)

1
6

𝒑𝑣0 = −2𝑥0
1

|𝑥0|
3 − 3

0
−𝑅11
0

This document is provided by JAXA.This document is provided by JAXA.



Equilibrium point with optimal control problem 18

Required optimal control inputs

𝒖𝟎 is only the function of position 𝒓𝟎

𝒖0 = 𝑥0
1

|𝑥0|
3
− 3

1
0
0

Natural equilibrium point

This document is provided by JAXA.This document is provided by JAXA.
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ሶ𝒙
ሶ𝒑
=

𝑟0

𝒙
𝒑

𝒙
𝒑 =

𝑖=1

12

𝐶𝑖 𝒗𝑖𝑒
λ𝑖𝑡

λ𝑖 : eigenvalue

𝒗𝑖 : eigenvector

𝐶𝑖 : constant

Im

Re

unstablestable

𝑨

Linearization

This document is provided by JAXA.This document is provided by JAXA.



Linearization 20

ሶ𝒙
ሶ𝒑
=

𝑟0

𝒙
𝒑

𝒙
𝒑 =

𝑖=1

12

𝐶𝑖 𝒗𝑖𝑒
λ𝑖𝑡

λ𝑖 : eigenvalue

𝒗𝑖 : eigenvector

𝐶𝑖 : constant

𝑨

This document is provided by JAXA.This document is provided by JAXA.



Types of invariant manifolds 21

Eigenvalue ±𝜆 ±𝑖𝜔 ±(𝜆 ± 𝑖𝜔)

Dynamical

structure

Saddle

(stable & unstable

Manifold)
Center manifold Complex saddle

This document is provided by JAXA.This document is provided by JAXA.
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Eigenvalue ±𝜆 ±𝑖𝜔 ±(𝜆 ± 𝑖𝜔)

Dynamical

structure

Saddle

(stable & unstable

Manifold)
Center manifold Complex saddle

This document is provided by JAXA.This document is provided by JAXA.
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Eigenvalue ±𝜆 ±𝑖𝜔 ±(𝜆 ± 𝑖𝜔)

Dynamical

structure

Saddle

(stable & unstable

Manifold)
Center manifold Complex saddle

This document is provided by JAXA.This document is provided by JAXA.
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Eigenvalue ±𝜆 ±𝑖𝜔 ±(𝜆 ± 𝑖𝜔)

Dynamical

structure

Saddle

(stable & unstable

Manifold)
Center manifold Complex saddle

This document is provided by JAXA.This document is provided by JAXA.
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Do not exist 

in natural dynamics

Eigenvalue ±𝜆 ±𝑖𝜔 ±(𝜆 ± 𝑖𝜔)

Dynamical

structure

Saddle

(stable & unstable

Manifold)
Center manifold Complex saddle

This document is provided by JAXA.This document is provided by JAXA.
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𝑥𝑦-plane (𝑧 = 0)

𝑥𝑧-plane (𝑦 = 0)

AEP_x

AEP_xy

AEP_x

AEP_xz
AEP_z

place coordinates[x, y, z]

AEP_x 𝑥-axis
±

1

3

1
3

, 0, 0

AEP_z 𝑧-axis 0, 0, ±2
1
3

AEP_xy 𝑥𝑦-

plane
±

1

3

2

3

1
3

, ±
2

3

2

3

1
3

, 0

AEP_xz 𝑥𝑧-

plane
±

1

6
, 0, ±

5

6

Artificial Equilibrium Point 

for minimum energy problem in Hill3BP (AEP)

Equilibrium points in Hill3BP (𝑸 = 𝟎, 𝑹 = 𝑰)

Natural 

equilibrium 

points

This document is provided by JAXA.This document is provided by JAXA.
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𝑥𝑦-plane (𝑧 = 0)

𝑥𝑧-plane (𝑦 = 0)

AEP_x

AEP_xy

AEP_x

AEP_xz
AEP_z

place coordinates[x, y, z]

AEP_x 𝑥-axis
±

1

3

1
3

, 0, 0

AEP_z 𝑧-axis 0, 0, ±2
1
3

AEP_xy 𝑥𝑦-

plane
±

1

3

2

3

1
3

, ±
2

3

2

3

1
3

, 0

AEP_xz 𝑥𝑧-

plane
±

1

6
, 0, ±

5

6

Artificial Equilibrium Point 

for minimum energy problem in Hill3BP (AEP)

Equilibrium points in Hill3BP (𝑸 = 𝟎, 𝑹 = 𝑰)

Natural 

equilibrium 

points

This document is provided by JAXA.This document is provided by JAXA.
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𝑥𝑦-plane (𝑧 = 0)

𝑥𝑧-plane (𝑦 = 0)

AEP_x

AEP_xy

AEP_x

AEP_xz
AEP_z

New 

equilibrium 

point with 

optimal 

control inputs

place coordinates[x, y, z]

AEP_x 𝑥-axis
±

1

3

1
3

, 0, 0

AEP_z 𝑧-axis 0, 0, ±2
1
3

AEP_xy 𝑥𝑦-

plane
±

1

3

2

3

1
3

, ±
2

3

2

3

1
3

, 0

AEP_xz 𝑥𝑧-

plane
±

1

6
, 0, ±

5

6

Artificial Equilibrium Point 

for minimum energy problem in Hill3BP (AEP)

Natural 

equilibrium 

points

Equilibrium points in Hill3BP (𝑸 = 𝟎, 𝑹 = 𝑰)

This document is provided by JAXA.This document is provided by JAXA.



Equilibrium

point

The number of set of eigenvalue

±𝜆 ±𝑖𝜔 ±(𝜆 ± 𝑖𝜔)

Natural 1 2 0

AEP_x 1(double) 2(double) 0

AEP_z 1 1 2

AEP_xy 1 3 1

AEP_xz 0 2 2

Dynamical

structure

29The stability of equilibrium points in Hill3BP

Saddle Center Complex saddle
This document is provided by JAXA.This document is provided by JAXA.



Equilibrium

point

The number of set of eigenvalue

±𝜆 ±𝑖𝜔 ±(𝜆 ± 𝑖𝜔)

Natural 1 2 0

AEP_x 1(double) 2(double) 0

AEP_z 1 1 2

AEP_xy 1 3 1

AEP_xz 0 2 2

Dynamical

structure

30The stability of equilibrium points in Hill3BP

Saddle Center Complex saddle
This document is provided by JAXA.This document is provided by JAXA.



Generalized eigenvector (GE) 31

ሶ𝒙 = 𝑨|𝒙0𝒙

→ 𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0)

This document is provided by JAXA.This document is provided by JAXA.



Generalized eigenvector (GE) 32

ሶ𝒙 = 𝑨|𝒙0𝒙

𝑨 = 𝑽𝑱𝑽−1

→ 𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0)

𝑱 ∶ Jordan normal form

This document is provided by JAXA.This document is provided by JAXA.



33Generalized eigenvector (GE)

𝑫 =

𝜆1 0 0
0 𝜆1 0
0 0 𝜆2

𝑱 =

𝜆1 1 0
0 𝜆1 0
0 0 𝜆2

Diagonal matrix of eigenvalues Jordan normal form

This document is provided by JAXA.This document is provided by JAXA.



34Generalized eigenvector (GE)

𝑫 =

𝜆1 0 0
0 𝜆1 0
0 0 𝜆2

𝑱 =

𝜆1 1 0
0 𝜆1 0
0 0 𝜆2

Diagonal matrix of eigenvalues Jordan normal form

Eigenvector Generalized eigenvector (GE)

𝑬 = 𝒗1 𝒗1 𝒗2 𝑽 = 𝒗1 𝒗1_𝐺𝐸 𝑣2

This document is provided by JAXA.This document is provided by JAXA.



Generalized eigenvector (GE) 35

ሶ𝒙 = 𝑨|𝒙0𝒙

𝑨 = 𝑽𝑱𝑽−1

→ 𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0)

𝒙(𝑡) = 𝑒𝑽𝑱𝑽
−1𝑡𝒙(0)

𝑫 = 𝑑𝑖𝑎𝑔 𝜆1, 𝜆2, ⋯ , 𝜆12 (𝜆2𝑖−1 = 𝜆2𝑖)

𝑵 =

0 1
0 0

0 1
0 0

0 ⋱
⋱

𝑱 ∶ Jordan normal form

0

0𝑱 = 𝑫 +𝑵
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Generalized eigenvector (GE) 36

ሶ𝒙 = 𝑨|𝒙0𝒙

𝑨 = 𝑽𝑱𝑽−1

→ 𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0)

𝒙(𝑡) = 𝑒𝑽𝑱𝑽
−1𝑡𝒙(0)

𝑱 = 𝑫 +𝑵

𝒙 𝑡 = 𝑒𝑽 𝑫+𝑵 𝑽−1𝑡𝒙 0

= 𝑒𝑽𝑫𝑽
−1𝑡𝑒𝑽𝑵𝑽

−1𝑡𝒙 0

𝑫 = 𝑑𝑖𝑎𝑔 𝜆1, 𝜆2, ⋯ , 𝜆12 (𝜆2𝑖−1 = 𝜆2𝑖)

𝑵 =

0 1
0 0

0 1
0 0

0 ⋱
⋱

𝑱 ∶ Jordan normal form

0

0
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Generalized eigenvector (GE) 37

Because 𝑒𝑨𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴2𝑡2 +⋯

𝑒𝑽𝑫𝑽
−1𝑡 = 𝑽𝒆𝑫𝑡𝑽−1

𝑒𝑽𝑵𝑽
−1𝑡 = 𝑽 𝑰 + 𝑵𝑡 𝑽−1 (∵ 𝑵2 = 0)
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Generalized eigenvector (GE) 38

Because 𝑒𝑨𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴2𝑡2 +⋯

𝑒𝑽𝑫𝑽
−1𝑡 = 𝑽𝒆𝑫𝑡𝑽−1

𝒙(𝑡) = 𝑒𝑽𝑫𝑽
−1𝑡𝑒𝑽𝑵𝑽

−1𝑡𝒙 0

𝑒𝑽𝑵𝑽
−1𝑡 = 𝑽 𝑰 + 𝑵𝑡 𝑽−1 (∵ 𝑵2 = 0)

= 𝑽𝒆𝑫𝑡 𝑰 + 𝑵𝑡 𝑽−1𝒙 0
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Generalized eigenvector (GE) 39

Because 𝑒𝑨𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴2𝑡2 +⋯

𝑒𝑽𝑫𝑽
−1𝑡 = 𝑽𝒆𝑫𝑡𝑽−1

𝒙(𝑡) = 𝑒𝑽𝑫𝑽
−1𝑡𝑒𝑽𝑵𝑽

−1𝑡𝒙 0

𝑒𝑽𝑵𝑽
−1𝑡 = 𝑽 𝑰 + 𝑵𝑡 𝑽−1 (∵ 𝑵2 = 0)

= 𝑽𝒆𝑫𝑡 𝑰 + 𝑵𝑡 𝑽−1𝒙 0 𝒙(𝑡) = 𝑬𝒆𝑫𝑡𝑬−1𝒙 0

Usual solution
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Generalized eigenvector (GE) 40

Because 𝑒𝑨𝑡 = 𝐼 + 𝐴𝑡 +
1

2!
𝐴2𝑡2 +⋯

𝑒𝑽𝑫𝑽
−1𝑡 = 𝑽𝒆𝑫𝑡𝑽−1

𝒙(𝑡) = 𝑒𝑽𝑫𝑽
−1𝑡𝑒𝑽𝑵𝑽

−1𝑡𝒙 0

𝑒𝑽𝑵𝑽
−1𝑡 = 𝑽 𝑰 + 𝑵𝑡 𝑽−1 (∵ 𝑵2 = 0)

= 𝑽𝒆𝑫𝑡 𝑰 + 𝑵𝑡 𝑽−1𝒙 0

= 𝑒𝜆1𝑡𝒗1 𝑒𝜆1𝑡 𝑡𝒗1 + 𝒗2 𝑒𝜆3𝑡𝒗3 … 𝑽−1𝒙 0

=

𝑖=1

6

𝐶2𝑖−1𝑒
𝜆2𝑖−1𝑡𝒗2𝑖−1 + 𝐶2𝑖𝑒

𝜆2𝑖𝑡 𝑡𝒗2𝑖−1 + 𝒗2𝑖 (𝑒𝜆2𝑖−1𝑡 = 𝑒𝜆2𝑖𝑡)

natural manifold non-natural manifold

𝒗2𝑖−1 : eigenvector

𝒗2𝑖 : general eigenvector
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Generalized eigenvector (GE) 41

Difference of the solution using eigenvector and GE

Using GE (𝑽) → 𝒙(𝑡) = 𝑽𝒆𝑫𝑡 𝑰 + 𝑵𝑡 𝑽−1𝒙 0

Using Eigenvector (𝑬) → 𝒙(𝑡) = 𝑬𝒆𝑫𝑡𝑬−1𝒙 0

Unstable manifold

Stable manifoldCenter manifold 1

Center

manifold 2

Equilibrium

point

>

New center

manifold 1

New center

manifold 2

New unstable 

manifold

New stable manifold
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・Invariant manifolds on 𝑝𝑥𝑝𝑦𝑝𝑧-space stay at the origin

・Invariant manifolds with no control inputs

・Invariant manifolds have (𝑥, 𝑦, 𝑝𝑥 , 𝑝𝑦) elements, or (𝑧, 𝑝𝑧) elements

Invariant manifold around the equilibrium point with no input (1/2)

12-dim invariant manifold around AEP_x using eigenvector

𝑝𝑥𝑝𝑦𝑝𝑧-space

Unstable manifold

Stable manifoldCenter manifold 1

Center

manifold 2

Equilibrium

point

>

𝑥𝑦𝑧-space
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43Invariant manifold around the equilibrium point with no input (2/2)

12-dim invariant manifold around AEP_x using GE

𝑝𝑥𝑝𝑦𝑝𝑧-space𝑥𝑦𝑧-space

・There are invariant manifolds on 𝑝𝑥𝑝𝑦𝑝𝑧-space

・Invariant manifolds with optimal control inputs

・Invariant manifolds have (𝑥, 𝑦, 𝑝𝑥 , 𝑝𝑦) elements, or (𝑧, 𝑝𝑧) elements
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Equilibrium

point

The number of set of eigenvalue

±𝜆 ±𝑖𝜔 ±(𝜆 ± 𝑖𝜔)

Natural 1 2 0

AEP_x 1(double) 2(double) 0

AEP_z 1 1 2

AEP_xy 1 3 1

AEP_xz 0 2 2

Dynamical

structure

44The stability of equilibrium points in Hill3BP

Saddle Center Complex saddle
This document is provided by JAXA.This document is provided by JAXA.



45Invariant manifold around an equilibrium point with optimal control inputs

12-dim invariant manifold around AEP_z

・Invariant manifolds have (𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦) elements, or (𝑧, 𝑝𝑧) elements

𝑥𝑦𝑧-space 𝑝𝑥𝑝𝑦𝑝𝑧-space

・Invariant manifolds with optimal control inputs
This document is provided by JAXA.This document is provided by JAXA.



Relationship with stabilization by LQR optimal control 46

LQR optimal control
𝑸 = 𝟎 → cannot stabilize

𝑸 > 𝟎 → can stabilize 

Riccati equation : 

𝑷𝑨 + 𝑨𝑻𝑷 − 𝑷𝑩𝑹−𝟏𝑩𝑻𝑷 + 𝑸 = 𝟎

𝑸 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ 𝑰
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LQR optimal control
𝑸 = 0 → cannot stabilize

𝑸 > 0 → can stabilize 

Manifold around AEP_x (𝑸 = 10−16𝑰)

initial : arbitrary point on the xy-plane

Relationship with stabilization by LQR optimal control

initial : arbitrary point on the xyz-space
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48

Manifold around equilibrium point when 𝑸 = 𝑰

initial : arbitrary point on the xy-plane initial : arbitrary point on the xyz-space

LQR optimal control
𝑸 = 0 → cannot stabilize

𝑸 > 0 → can stabilize

Relationship with stabilization by LQR optimal control

This document is provided by JAXA.This document is provided by JAXA.



49

𝑥1

𝑥2

𝑝1, 𝑝2

𝑥1𝑥2-plane

Relationship with stabilization by LQR optimal control
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𝑥1

𝑥2

𝑝1, 𝑝2

𝒗𝑠1

𝒗𝑠2

𝑥1𝑥2-plane

𝑊𝑠

𝑊𝑠 : Plane of stable manifold

𝒗𝑠 : stable eigenvector

Relationship with stabilization by LQR optimal control
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𝑥1

𝑥2

𝒗𝑠1

𝒗𝑠2

𝑥1𝑥2-plane

𝑊𝑠

𝑊𝑠 : Plane of stable manifold

𝒗𝑠 : stable eigenvector

Relationship with stabilization by LQR optimal control

𝑝1, 𝑝2

LQR optimal control12-dim dynamical system

Trajectory on stable manifold Optimal control trajectory

𝒑 = 𝑿𝒙Restriction
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𝑥1

𝑥2

𝑥1𝑥2-plane

𝑊𝑠

𝑊𝑠 : Plane of stable manifold

𝒗𝑠 : stable eigenvector

Relationship with stabilization by LQR optimal control

𝑝1, 𝑝2

LQR optimal control12-dim dynamical system

Trajectory on stable manifold Optimal control trajectory

𝒑 = 𝑿𝒙Restriction

𝒗𝑠1
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What is center manifold in optimal control theory? 53

There are 6 stable eigenvectors, we can always find a

corresponding 12-dim trajectory on stable manifold.

There are 6-n stable eigenvectors, the trajectory 

converges to the n-dim center manifold.

There exists a stabilizing solution of Riccati equation. (𝑸 > 𝟎)

There is no stabilizing solution (𝑸 = 𝟎)

LQR optimal control
𝑸 = 0 → cannot stabilize

𝑸 > 0 → can stabilize 
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Equilibrium point
The number of eigenvector

Stable Unstable Center

AEP_x (natural)
2 (𝑥𝑦-plane)

0 (𝑧-direction)

2 (𝑥𝑦-plane)

0 (z-direction)

4 (𝑥𝑦-plane)

4 (𝑧-direction)

AEP_z
3 (𝑥𝑦-plane)

2 (𝑧-direction)

3 (𝑥𝑦-plane)

2 (𝑧-direction)

2 (𝑥𝑦-plane)

0 (𝑧-direction)

AEP_xy
3 (𝑥𝑦-plane)

0 (𝑧-direction)

3 (𝑥𝑦-plane)

0 (𝑧-direction)

2 (𝑥𝑦-plane)

4 (𝑧-direction)

AEP_xz 4 (𝑥𝑦𝑧-space) 4 (𝑥𝑦𝑧-space) 4 (𝑥𝑦𝑧-space)

54

The number of stable manifolds when 𝑸 = 𝟎

The number of eigenvectors required to stabilize 

𝑥𝑦-plane → 4
𝑧-direction → 2

𝑥𝑦𝑧-space → 6

Relationship with stabilization by LQR optimal control
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The number of stable manifolds when 𝑸 = 𝟎

Equilibrium point
The number of eigenvector

Stable Unstable Center

AEP_x (natural)
2 (𝑥𝑦-plane)

0 (𝑧-direction)

2 (𝑥𝑦-plane)

0 (z-direction)

4 (𝑥𝑦-plane)

4 (𝑧-direction)

AEP_z
3 (𝑥𝑦-plane)

2 (𝑧-direction)

3 (𝑥𝑦-plane)

2 (𝑧-direction)

2 (𝑥𝑦-plane)

0 (𝑧-direction)

AEP_xy
3 (𝑥𝑦-plane)

0 (𝑧-direction)

3 (𝑥𝑦-plane)

0 (𝑧-direction)

2 (𝑥𝑦-plane)

4 (𝑧-direction)

AEP_xz 4 (𝑥𝑦𝑧-space) 4 (𝑥𝑦𝑧-space) 4 (𝑥𝑦𝑧-space)

The number of eigenvectors required to stabilize 

𝑥𝑦-plane → 4
𝑧-direction → 2

𝑥𝑦𝑧-space → 6

Relationship with stabilization by LQR optimal control
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Relationship to stabilization by LQR optimal control 56

The change of the eigenvalue at the equilibrium point on the x-axis when 𝑸 changed.

𝑸 = 0

𝑸 = 0

𝑸 = 0
𝑸 = 0

For 𝑸 > 0, we can confirm the 12-dim dynamical system has 6-dim stable manifold

from the root locus.
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Conclusion

✓Equations of motion for the dynamical system with optimal control inputs that minimize the 

quadratic cost function are derived.

✓Conditions for equilibrium points in Hill3BP were derived.

✓The stability of certain unstable equilibrium points in Hill3BP were investigated and the 

dynamical structures around them were investigated.

✓Compare the solution of LQR and dynamical structure with optimal control inputs

57

Investigated the equilibrium point with continuous optimal control inputs 

and its dynamical structures

Conclusion
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