

Equilibria and Dynamical Structures with Quadratic Optimal Control

Tsuruta Ayano¹⁾, Mai Bando¹⁾, Daniel J. Scheeres²⁾, and Shinji Hokamoto¹⁾ 1) Department of Aeronautics and Astronautics, Kyushu University, Japan 2) Department of Aerospace Engineering Sciences, University of Colorado Boulder, U.S.

33rd Workshop on JAXA Astrodynamics Symposium and Flight Mechanics ASTRO-2023-C001(010)

Background (1/2)

Current trajectory design

Limited fuel

Equilibrium points ・ Invariant manifolds

Equilibrium points and invariant manifolds are used

Equilibrium points :

- The gravity and centrifugal force are balanced in the rotational coordinate system
- In CR3BP \rightarrow Lagrangian points

Invariant manifolds :

- Dynamical structure around unstable equilibrium points
- Transition trajectories using invariant manifolds do not require inputs

Background (2/2)

Problem

- Lagrangian points are not always in the best position for the mission.
- Invariant manifolds used as transport structures are limited.

Previous Research 1)

Artificial equilibrium points with Low-thrust continuous inputs

This research

- Artificial equilibrium points with continuous optimal control inputs
- Research including analysis of invariant manifolds around the artificial equilibrium point

1) Morimoto, M. Y., Yamakawa, H. and Uesugi, K.: Artificial equilibrium points in the low-thrust restricted three-body problem, Journal of Guidance, Control, and Dynamics, 30(5) (2007), pp. 1563-1568. This document is provided by JAXA.

Method : Optimal control problem (1/3)

Deal with continuous optimal control inputs

Optimal Control Problem⁷: The problem of minimizing the cost function $J = \vert$ t_{0} t_f $L(x(t), u(t), t) dt$ $f(x)$: natural dynamics Subject to $\dot{x} = f(x) + Bu$ $\begin{cases} (x) \cdot$ indicate dynamics u : control inputs 2)

2) Ohtsuka, T.: Introduction to Nonlinear Optimal Control, Corona Publishing, Tokyo, 2011 (in Japanese).

Method : Optimal control problem (2/3) 5

Cost function
$$
J = \int_{t_0}^{t_f} L(x(t), u(t), t) dt
$$
 Subject to $\dot{x} = f(x) + Bu$

 $H(x, p, u) = L(x, u) + p^Tf(x)$ Hamilton function

Euler Lagrange equation

$$
\hat{\boldsymbol{\mu}} = \left(\frac{\partial H}{\partial \boldsymbol{p}}\right)^T, \ \boldsymbol{x}(t_0) = \boldsymbol{x}_0
$$
\n
$$
\hat{\boldsymbol{p}} = -\left(\frac{\partial H}{\partial \boldsymbol{x}}\right)^T
$$
\n
$$
\frac{\partial H}{\partial \boldsymbol{u}} = 0
$$

Regard as the equations of motion of a dynamical system with optimal control input

Method : Optimal control problem (3/3) 6

Euler Lagrange equation

$$
\dot{\boldsymbol{x}}\bigg] = \left[\begin{array}{c} \left(\frac{\partial H(\boldsymbol{x}, \boldsymbol{p})}{\partial \boldsymbol{p}}\right)^T\\ -\left(\frac{\partial H(\boldsymbol{x}, \boldsymbol{p})}{\partial \boldsymbol{x}}\right)^T\end{array}\right]
$$

$$
(2n-dim)
$$

- ➢ Can analyze the dynamical structure around the equilibrium point with optimal control inputs using conventional methods of trajectory design for systems with no added inputs,
- ➢ Can explain optimal control in terms of dynamics

Research objective

Investigate the equilibrium point with continuous optimal control inputs and its dynamical structures

Research flow

- 1. Derive the equations of motion of a dynamical system with optimal control inputs
- 2. Derive the conditions for the equilibrium points
- 3. Analyze the stability of equilibrium points
- 4. Investigate the dynamical structure around the equilibrium points

Dynamical model 8

Hill three-body problem (Hill3BP) 3)

Equations of motion of natural dynamics

$$
\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \frac{\partial U}{\partial x} + 2\dot{y} \\ \frac{\partial U}{\partial y} - 2\dot{x} \\ \frac{\partial U}{\partial z} \end{bmatrix} = \begin{bmatrix} v \\ v_{r} + 2J_{a}v \end{bmatrix} = f(x)
$$

 $U=$

 $J_a =$

 $|r|$

 $+$

2

0 1 0

−1 0 0

0 0 0

 $(3x^2 - z^2)$

3) Scheeres, D. J.: Orbital motion in strongly perturbed environments: applications to asteroid, comet and planetary satellite orbiters, Springer, 2016.

Dynamical model ⁹

Hill three-body problem (Hill3BP)

Equations of motion of natural dynamics

$$
\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \frac{\partial U}{\partial x} + 2\dot{y} \\ \frac{\partial U}{\partial y} - 2\dot{x} \\ \frac{\partial U}{\partial z} \end{bmatrix} = \begin{bmatrix} v \\ v_{r} + 2J_{a}v \end{bmatrix} = f(x)
$$

$$
U = \frac{1}{|\mathbf{r}|} + \frac{1}{2} (3x^2 - z^2)
$$

$$
J_a = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

There are two natural equilibrium points on the x -axis.

Optimal control problem 10

Deal with continuous optimal control inputs

Optimal Control Problem :
The problem of minimizing the cost function

$$
J = \int_{t_0}^{t_f} L(x(t), u(t), t) dt
$$

Subject to $\dot{x} = f(x) + Bu$ $\frac{f(x)}{u}$: natural dynamics
 \dot{u} : control inputs

In this study

Quadratic cost function
$$
J = \int_{t_0}^{t_f} \left(\frac{1}{2} x^T Q x + \frac{1}{2} u^T R u \right) dt
$$

 $Q(\geq 0)$: weight on state $R(> 0)$: weight on control inputs

Derivation of the equations of motion with optimal control inputs (1/2) 11

Quadratic cost function
$$
J = \int_{t_0}^{t_f} \left(\frac{1}{2} x^T Q x + \frac{1}{2} u^T R u \right) dt
$$
 Q: weight on state weight on contr

: weight on control inputs

 $H(x, \boldsymbol{p}, \boldsymbol{u}) =$ 1 2 $x^T Q x +$ 1 2 $u^TRu + p^T(f(x) + Bu)$ Hamilton function H

Euler Lagrange equation

$$
\begin{cases}\n\dot{\mathbf{x}} = \left(\frac{\partial H}{\partial \mathbf{p}}\right)^T = \mathbf{f}(\mathbf{x}) + \mathbf{B}\mathbf{u}, \ \mathbf{x}(t_0) = \mathbf{x}_0 \\
\dot{\mathbf{p}} = -\left(\frac{\partial H}{\partial \mathbf{x}}\right)^T \\
\mathbf{u} = -\mathbf{R}^{-1} \mathbf{B}^T \mathbf{p}\n\end{cases}
$$

Derivation of the equations of motion with optimal control inputs (1/2) 12

Quadratic cost function
$$
J = \int_{t_0}^{t_f} \left(\frac{1}{2} x^T Q x + \frac{1}{2} u^T R u \right) dt
$$
 Q weight on state *R* weight on contron

: weight on control inputs

 $H(x, \boldsymbol{p}, \boldsymbol{u}) =$ 1 2 $x^T Q x +$ 1 2 $u^TRu + p^T(f(x) + Bu)$ Hamilton function H

Euler Lagrange equation

$$
\begin{cases}\n\dot{\mathbf{x}} = \left(\frac{\partial H}{\partial \mathbf{p}}\right)^T = \mathbf{f}(\mathbf{x}) + \mathbf{B}\mathbf{u}, \ \mathbf{x}(t_0) = \mathbf{x}_0 \\
\dot{\mathbf{p}} = -\left(\frac{\partial H}{\partial \mathbf{x}}\right)^T \\
\mathbf{u} = -\mathbf{R}^{-1} \mathbf{B}^T \mathbf{p}\n\end{cases}
$$

13 Derivation of the equations of motion with optimal control inputs (2/2)

Euler Lagrange equation

$$
\begin{bmatrix}\n\dot{x} = \left(\frac{\partial H(x, \mathbf{p})}{\partial \mathbf{p}}\right)^T \\
\dot{\mathbf{p}} = -\left(\frac{\partial H(x, \mathbf{p})}{\partial x}\right)^T\n\end{bmatrix}
$$

$$
\begin{bmatrix} x = \begin{bmatrix} r \\ v \end{bmatrix} \\ p = \begin{bmatrix} p_r \\ p_v \end{bmatrix}
$$

Equations of motion with optimal control inputs

$$
\begin{bmatrix} \dot{r} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ 2J_a v + U_r - R p_v \end{bmatrix}
$$

$$
\begin{bmatrix} \dot{p}_r \\ p_v \end{bmatrix} = \begin{bmatrix} -Q_{1:3}x - U_{rr}p_v \\ -Q_{4:6}x - p_r + 2J_a p_v \end{bmatrix}
$$

Conditions for equilibrium point 14

$$
\begin{bmatrix} \boldsymbol{v} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} 2\boldsymbol{J}_a \boldsymbol{v} + \boldsymbol{U}_r - R\boldsymbol{p}_v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} \boldsymbol{p}_r \\ \boldsymbol{p}_v \end{bmatrix} = \begin{bmatrix} -\boldsymbol{Q}_{1:3} \boldsymbol{x} - \boldsymbol{U}_{rr} \boldsymbol{p}_v \\ -\boldsymbol{Q}_{4:6} \boldsymbol{x} - \boldsymbol{p}_r + 2\boldsymbol{J}_a \boldsymbol{p}_v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Conditions for equilibrium point ($x_0 =$ \bm{r}_0 v_{0} **,** $p_0 =$ \boldsymbol{p}_{r0} $\boldsymbol{p}_{\nu 0}$) $v_0=0$ $\boldsymbol{p}_{\boldsymbol{\mathcal{v}} 0} = \boldsymbol{R}^{-1} \boldsymbol{U}_r$ $-Q_{1:3}x_0-U_{rr}R^{-1}U_r=0$ $\bm{p}_{r0} = -\bm{Q}_{4:6} \bm{x_0} + 2 \bm{J}_a \bm{R}^{-1} \bm{U}_r$

Conditions for equilibrium point 15

Conditions for equilibrium point ($x_0 =$ \bm{r}_0 v_{0} **,** $p_0 =$ \boldsymbol{p}_{r0} $\boldsymbol{p}_{\nu 0}$) $\boldsymbol{p}_{\boldsymbol{\mathcal{v}} 0} = \boldsymbol{R}^{-1} \boldsymbol{U}_r$ $-Q_{1:3}x_0 - U_{rr}R^{-1}U_r = 0$ $\bm{p}_{r0} = -\bm{Q}_{4:6} \bm{x_0} + 2 \bm{J}_a \bm{R}^{-1} \bm{U}_r$ $v_0=0$

Conditions for equilibrium point 16

 \overline{p}_v

$$
\begin{aligned}\n&= \left[2J_a v + U_r - R p_v \right] = \left[0 \right] \\
&= \left[-Q_{1:3} x - U_{rr} p_v \right] = \left[0 \right] \\
&= \left[-Q_{4:6} x - p_r + 2J_a p_v \right] = \left[0 \right]\n\end{aligned}
$$

Conditions for equilibrium point ($x_0 =$ \bm{r}_0 v_{0} **,** $p_0 =$ \boldsymbol{p}_{r0} $\boldsymbol{p}_{\nu 0}$) $\boldsymbol{p}_{\boldsymbol{\mathcal{v}} 0} = \boldsymbol{R}^{-1} \boldsymbol{U}_r$ $-Q_{1:3}x_0-U_{rr}R^{-1}U_r=0$ $\bm{p}_{r0} = -\bm{Q}_{4:6} \bm{x_0} + 2 \bm{J}_a \bm{R}^{-1} \bm{U}_r$ $v_0=0$

Equilibrium point with optimal control inputs ¹⁷

Equilibrium point on x-axis in Hill3BP

 $v_0=0$ $\boldsymbol{p}_{\boldsymbol{\mathcal{v}} 0} = \boldsymbol{R}^{-1} \boldsymbol{U}_r$ $-{\bm Q}_{1:3} - {\bm U}_{rr}{\bm R}^{-1}{\bm U}_r = 0$ $\bm{p}_{r0} = -\bm{Q}_{4:6} + 2 \bm{J}_a \bm{R}^{-1} \bm{U}_r$

If Q and R are diagonal matrices

$$
\qquad \qquad \longrightarrow
$$

$$
r_0 = \pm \left(\frac{-3R_{11} + \sqrt{81R_{11}^2 + 8R_{11}Q_{11}}}{2(Q_{11} + 9R_{11})} \right)^{\frac{1}{6}}
$$

$$
p_{v0} = -2x_0 \left(\frac{1}{|x_0|^3} - 3 \right) \left[-\frac{0}{R_{11}} \right]
$$

$$
p_{v0} = -x_0 \left(\frac{1}{|x_0|^3} - 3 \right) \left[\frac{R_{11}}{0} \right]
$$

Equilibrium point with optimal control problem ¹⁸

Required optimal control inputs

Linearization ²⁰

Do not exist in natural dynamics

Equilibrium points in Hill3BP ($Q = 0, R = I$)

Artificial Equilibrium Point for minimum energy problem in Hill3BP (AEP)

Natural equilibrium points

xy-plane $(z = 0)$

L

Equilibrium points in Hill3BP ($Q = 0, R = I$)

Artificial Equilibrium Point *xy*-plane $(z = 0)$ **for minimum energy problem in Hill3BP (AEP)** 15 $\frac{10}{3} \frac{1}{2} \frac$ 20 **place coordinates[x, y, z]** $A = P_X$ Í \overline{C} 10 **Natural** AEP_x x -axis 1 equilibrium 1 3 AEP_xy \pm , 0, 0 3 points -2 -2 $z[-]$ $\overline{2}$ $\mathsf{AEP_z}$ z-axis $\left[\begin{smallmatrix} 0, 0, \pm 2^{\frac{1}{3}} \end{smallmatrix} \right]$ x [-] 3 xz -plane $(y = 0)$ 1 1 AEP_{xy} xy -1 2 3 2 2 3 , \pm , 0 plane 3 3 3 3 13.75 AEP_xz xzvalue of $\cal C$ 1 5 , $0, \pm$ 20 plane O 7.5 6 6 \bigcirc $\frac{1}{\zeta}$ 10 AEP_xz 1.25 AEP_z θ Ω -2 $|z|$ x [-

This document is provided by JAXA.

Equilibrium points in Hill3BP ($Q = 0, R = I$)

28

The stability of equilibrium points in Hill3BP 29

The stability of equilibrium points in Hill3BP 30

$$
\dot{x} = A|_{x_0} x
$$

\n
$$
\rightarrow x(t) = e^{At} x(0)
$$

$$
\dot{x} = A|_{x_0} x
$$

\n
$$
\rightarrow x(t) = e^{At} x(0)
$$

\n
$$
A = VJV^{-1}
$$

∶ Jordan normal form

Diagonal matrix of eigenvalues **Fig. 1** September 10 Jordan normal form

$$
\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}
$$

$$
J = \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}
$$

Diagonal matrix of eigenvalues **Fig. 1** Fig. 3 Jordan normal form

$$
\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}
$$

$$
E = \begin{bmatrix} v_1 & v_1 & v_2 \end{bmatrix}
$$

$$
J = \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}
$$

Eigenvector **Generalized eigenvector (GE)**

$$
E = \begin{bmatrix} v_1 & v_1 & v_2 \end{bmatrix} \qquad \qquad V = \begin{bmatrix} v_1 & v_{1_GE} & v_2 \end{bmatrix}
$$

 $\dot{x} = A|_{x_0}x$ $A = VJV^{-1}$ f : Jordan normal form $\rightarrow x(t) = e^{At}x(0)$ $x(t) = e^{VJV^{-1}t}x(0)$ $\qquad \qquad \Gamma \qquad D = diag(\lambda_1, \lambda_2, \cdots, \lambda_{12}) \; (\lambda_{2i-1} = \lambda_{2i})$ $N =$ 0 1 0 0 0 1 0 0 0 \ddots ⋱ 0 $J = D + N$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 0

$$
\dot{x} = A|_{x_0} x
$$

\n
$$
\rightarrow x(t) = e^{At} x(0)
$$

\n
$$
A = VJV^{-1}
$$

\n
$$
J : Jordan normal form
$$

\n
$$
x(t) = e^{VJV^{-1}t} x(0)
$$

\n
$$
J = D + N
$$

\n
$$
N = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
x(t) = e^{V(D+N)V^{-1}t} x(0)
$$

\n
$$
= e^{VDV^{-1}t} e^{VNV^{-1}t} x(0)
$$

Because
$$
e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots
$$

$$
\begin{cases} e^{VDV^{-1}t} = Ve^{Dt}V^{-1} \\ e^{VNV^{-1}t} = V(I + Nt)V^{-1} (\because N^2 = 0) \end{cases}
$$

Because
$$
e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots
$$

\n
$$
\begin{cases}\ne^{VDV^{-1}t} = Ve^{Dt}V^{-1} \\
e^{VNV^{-1}t} = V(I + Nt)V^{-1} (\because N^2 = 0) \\
x(t) = e^{VDV^{-1}t}e^{VNV^{-1}t}x(0) \\
= Ve^{Dt}(I + Nt)V^{-1}x(0)\n\end{cases}
$$

Because
$$
e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots
$$

\n
$$
\begin{cases}\ne^{VDV^{-1}t} = Ve^{Dt}V^{-1} \\
e^{VNV^{-1}t} = V(I + Nt)V^{-1} (\because N^2 = 0) \\
x(t) = e^{VDV^{-1}t}e^{VNV^{-1}t}x(0)\n\end{cases}
$$
\nUsually solution
\n
$$
= Ve^{Dt}(I + Nt)V^{-1}x(0)
$$
\n
$$
x(t) = Ee^{Dt}E^{-1}x(0)
$$

Because
$$
e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots
$$

\n
$$
\begin{cases}\ne^{VDV^{-1}t} = Ve^{Dt}V^{-1} & \text{where } \{v_{2i-1} : \text{eigenvector}\ne^{VDV^{-1}t} = V(I + Nt)V^{-1} (\because N^2 = 0) \} \\
x(t) = e^{VDV^{-1}t}e^{VNV^{-1}t}x(0) \\
= Ve^{Dt}(I + Nt)V^{-1}x(0) \\
= [e^{\lambda_1 t}v_1 \quad e^{\lambda_1 t}(tv_1 + v_2) \quad e^{\lambda_3 t}v_3 \quad \dots]V^{-1}x(0) \\
= \sum_{i=1}^{6} \{C_{2i-1}e^{\lambda_{2i-1}t}v_{2i-1} + C_{2i}e^{\lambda_{2i}t}(tv_{2i-1} + v_{2i})\} \quad (e^{\lambda_{2i-1}t} = e^{\lambda_{2i}t}) \\
\text{natural manifold} & \text{non-natural manifold}\n\end{cases}
$$

42 Invariant manifold around the equilibrium point with no input (1/2)

 \cdot Invariant manifolds on $p_x p_y p_z$ -space stay at the origin

- ・Invariant manifolds with no control inputs
- Invariant manifolds have (x, y, p_x, p_y) elements, or (z, p_z) elements

Invariant manifold around the equilibrium point with no input $(2/2)$ 43

12-dim invariant manifold around AEP_x using GE

The stability of equilibrium points in Hill3BP 44

12-dim invariant manifold around AEP_z

• Invariant manifolds have (x, y, p_x, p_y) elements, or (z, p_z) elements ・Invariant manifolds with optimal control inputs

 $\bm{Q}=0\rightarrow$ cannot stabilize

LQR optimal control

initial : arbitrary point on the xy-plane

initial : arbitrary point on the xyz -space

47

 $\bm{Q}=0\rightarrow$ cannot stabilize

LQR optimal control -

initial: arbitrary point on the xy-plane initial: arbitrary point on the xyz-space

What is center manifold in optimal control theory? 53

 $\boldsymbol{Q}= 0 \rightarrow$ cannot stabilize

LQR optimal control

$$
Q>0\rightarrow\text{can stabilize}
$$

There exists a stabilizing solution of Riccati equation. $(Q > 0)$

There are 6 stable eigenvectors, we can always find a corresponding 12-dim trajectory on stable manifold.

There is **no stabilizing solution** ($Q = 0$)

There are *6-n* stable eigenvectors, the trajectory converges to the *n*-dim center manifold.

The number of stable manifolds when $\boldsymbol{Q} = \boldsymbol{0}$

The number of eigenvectors required to stabilize xy -plane \rightarrow 4 z -direction \rightarrow 2 xyz -space $\rightarrow 6$ 54

The number of stable manifolds when $\boldsymbol{Q} = \boldsymbol{0}$

The number of eigenvectors required to stabilize xy -plane \rightarrow 4 z -direction \rightarrow 2 xyz -space $\rightarrow 6$ 55

For $\mathbf{Q} > 0$, we can confirm the 12-dim dynamical system has 6-dim stable manifold from the root locus.

The change of the eigenvalue at the equilibrium point on the x-axis when \bm{Q} changed...

Conclusion

Conclusion

Investigated the equilibrium point with continuous optimal control inputs and its dynamical structures

- \checkmark Equations of motion for the dynamical system with optimal control inputs that minimize the quadratic cost function are derived.
- ✓Conditions for equilibrium points in Hill3BP were derived.
- \checkmark The stability of certain unstable equilibrium points in Hill3BP were investigated and the dynamical structures around them were investigated.

 \checkmark Compare the solution of LQR and dynamical structure with optimal control inputs