Development and Cruising Science of the PVDF－based

in－situ dust sensor for the next solar power sail

（ソーラー電力セイル搭載用 PVDF ダストセンサの
開発とクルージングサイエンス）

Takayuki Hirai ${ }^{1}$ ，Hajime Yano ${ }^{2}$
${ }^{1}$ Research and Development Directorate（RDD），Japan Aerospace Exploration Agency（JAXA） 7－44－1 Higashimachi，Jindaiji，Chofu，Tokyo，182－8522，Japan
${ }^{2}$ Institute of Space and Astronautical Science（ISAS），Japan Aerospace Exploration Agency （JAXA）3－1－1 Yoshinodai，Sagamihara，Chuo－ku，Kanagawa，252－5210，Japan

Abstract

The Arrayed Large－Area Dust Detector in INterplanetary Space （ALADDIN）onboard the JAXA＇s solar sail demonstrator，IKAROS， observed the distribution of >10－micron－sized dust particles between

 $0.7-1 \mathrm{AU}$ with higher time－space precision than the past dust detectors， utilizing its light weight and large area characteristics of PVDF－film sensor． For the next solar power sail mission bound for the Jupiter－Trojan system， we are developing the ALADDIN－2 to reveal the distribution of large dust particles at $1-5.2 \mathrm{AU}$ which provides reference data about the formation and evolution of dust disks observed in the exo－solar systems．In this presentation，we review the results from IKAROS－ALADDIN observation and explain the expected cruising science by the ALADDIN－2．ソーラー電カセイル

原子力に依存せず太陽系外惑星領域を探査する能力を獲得する

PVDF ダストセンサ：ALADDIN

Arrayed Large－Area Dust Detectors in INterplanetary space PVDF フィルム圧電センサ

センサ面積： 0.54 m²

重量：センサ 37 g，エレキ 280 g

消費電力： 1 W
検出ダストサイズ：
直径 5－26 $\mu \mathrm{m}$（センサ温度に依存）

技術実証機 IKAROS

PVDF ダストセンサ：ALADDIN

大面積センサにより直径 $10 \mu \mathrm{~m}$ 以上の大径ダストの分布を観測可能
－＞散乱光•赤外輻射光を捉える光学観則と同じサイズレンジの直接観測が可能に。
衝突検出：局所分布•線の観測光学観測：広域分布•面の観測

木星圈探査セイルでは，赤外線望遠鏡 EXZIT との同時観測を計画。

惑星間ダスト分布

太陽系のダスト分布を
知ることて

惑星間ダスト分布

IKAROS／ALADDIN 0．72－1．1 AU
$0.54 \mathrm{~m}^{2}$
Galileo／DDS
0．7－5．2 AU
$0.1 \mathrm{~m}^{2}$
Helios
0．3－1 AU
$0.012 \mathrm{~m}^{2}$

惑星間ダスト分布

過去の同領域における観測結果よりも高い精度で $10 \mu \mathrm{~m}$ ダストの分布を観測．
平均運動共鳴による非対称構造

ダストが惑星との平均運動共鳴に捕薙されることでRing\＆Blob 構造を形成。
太陽系で形成メカニズムを調べ，系外ダスト円签内に隠れた惑星の力学侍性を知る。

平均運動共鳴による非対称構造

IKAROS は地球軌道の構造内を 2 度通過。
現時点では顕著なフラックス増加は確認できず，

平均運動共鳴による非対称構造＠金星

光学観測により金星軌道にもリング構造が確認されている惑星前方 \＆後方の Blob，Gap 構造は観測できていない。

平均運動共鳴による非対称構造＠金星

金星最接近時に ALADDIN が観測したダストフラックス。

最接近前後でフラックスの増加，かつ後方の方が高いことを確認。 －＞地球での観測＋モデルと調和的．

木星圏探㮛ソーラー電力セイル

木星圏探㮅ソーラー電力セイル

木星トロヤ群探査のサイエンス

太陽系形成論
ガス惑星移動はあったのか？
Grand tack 仮説，Nice モデルの検証．

トロヤ群小惑星
＝メインベルト小惑星に近い
－＞惑星移動はなかった
＝瑇星に近い
－＞惑星移動はあった

ALADDIN－2

\square
反太陽面
$250 \mathrm{~mm} \times 1000 \mathrm{~mm} / \mathrm{ch}$計 $16 \mathrm{ch} 4.0 \mathrm{~m}^{2}$

太陽面

$250 \mathrm{~mm} \times 100 \mathrm{~mm} / \mathrm{ch}$計 $4 \mathrm{ch} 0.1 \mathrm{~m}^{2}$

20 ch 信号処理回路質量：＜ 1 kg （ S 込み）消費電力：＜5 W検出ダストサイズ：＞10 $\mu \mathrm{m}$

木星圏探查ソーラー電力セイル

クルージングサイエンス

宇宙赤外線背景放射＋黄道光観測

ガンマ線バースト偏光観測

ダストフラックス観測

小惑星帯フライバイ観測

ALADDIN－2
EXZIT との黄道ダスト同時観測

赤外背景放射を精度良く観測する には，黄道光成分を正しく排除す る必要．

同じサイズレンジ（ $10-100 \mu \mathrm{~m}$ ） で光学＋その場ダスト観測を行う ことで，従来よりも正確な分布が わかる．

惑星間ダスト分布＠1－5．2 AU
Pioneer10 による $>10 \mu \mathrm{~m}$ ダスト分布のその場襍㙟

センサ面積： $0.573 \mathrm{~m}^{2}$
フラックス 1σ エラー：ファクター2

Pioneer10 での検出数を，ALADDIN－2 とのセンサ面積比て補正すると，
ALADDIN－2 では同観測時間•領域で
フラックスエラーがファクター 1.2
まで減少．

平均運動共㨶＠炏星 \＆木星

\section*{COBE／DIRBEによる赤外観則

火星，木星ともに平均運制共鳰による局所構造は発見されていない。黄道ダスト分布モテルの精度を上げる＝正しくバックグラウンドを引くことで巀測できる可能性あり。
$\frac{k}{d=} d y$

IKAROS／ALDDIN では，大面積 PVDF ダストセンサを惑星間で実証し，0．7－1 AU における～10 $\mu \mathrm{m}$ ダストの分布を高精度て観剆した。

木星圏探査セイル／ALADDIN－2 では，1－5．2 AU における
$10 \mu \mathrm{~m}$ ダストの分布を高精度で観測し，系外惑星系の描像を理解するためのリファレンスデータを得る

