論 文

23

ETS-VII ランデブ・ドッキング実験結果による フォーメーションフライト制御精度評価*¹ Evaluation of Formation Flight Control Accuracy by Flight Data of Rendezvous Docking Experiment of ETS-VII

河 野 功^{*2}· 杢 野 正 明^{*2}· 鈴 木 孝^{*2}

Isao KAWANO, Masaaki MOKUNO and Takashi SUZUKI

Key Words: Formation Flight, Rendezvous Docking, Navigation, Orbit Control

Abstract : Formation flight is a new technology which enables various missions such as high resolution interferometer, virtual antenna instead of huge antenna for a large amount of communication, etc. To realize formation flight, navigation and control of relative position and velocity among related spacecraft are necessary. ETS-VII is a test satellite to perform in-orbit demonstration of autonomous rendezvous docking (RVD) technology. ETS-VII conducted three RVD experiment flights, and flew keeping definite ranges time and again. To evaluate position control accuracy of formation flight, we analyzed flight data of ETS-VII during position keeping flight. Control accuracy depends on navigation accuracy. We present the result in this paper.

1. は じ め に

フォーメーションフライト (Formation Flight: FF)技術は複数の衛星が一定の軌道(位置と速度を含む)関係を保って飛行する技術であり,以下のようにさまざまな利用方法が提案されている¹⁻³⁾.

- 高精度の干渉計やステレオ観測,プラズマや磁場の時間 変動と空間分布の同時観測等の単一衛星では達成不可能 なミッション.
- 超大容量通信用のバーチャルアンテナや超大型宇宙望遠 鏡等,一体では制御が不可能であったり,構造重量が重 くなりすぎたりする物を分割して制御する.
- 高精度観測を行うために観測センサを可動物を持った衛 星バスから切り離したり、1つの衛星が故障しても機能 を維持してミッションを継続するシステム。

複数宇宙機が相互の位置関係を保って飛行する FF 技術 を実現するためには,宇宙機間の相対的な位置や速度を推 定し,制御する必要がある.FF に必要となる宇宙機間の 距離や位置保持制御精度要求はミッションにより異なるが, NASA の ST-3 では100~1000mの距離域で1cmの距離 制御精度を要求している²⁾.このような高精度の FF 技術 が必要なミッションを検討する上で,衛星相互の位置関係 を制御する際の実現可能な精度を知ることが重要である.

1997年11月,宇宙開発事業団(NASDA)は無人宇宙機同士のランデブ・ドッキング(RVD)実験を行うために技

術試験衛星 VII 型(ETS-VII)を打ち上げた.ETS-VII は チェイサ衛星とターゲット衛星から構成されており,1998 年から1999 年にかけてチェイサ衛星がターゲット衛星を 分離し,3回の RVD 実験に成功した.この RVD 実験の期 間中,フェーズの開始/終了点等いくつかの点で,チェイサ 衛星がターゲット衛星に対して一定の距離を保って飛行す る FF を実現した.

本稿は,軌道上宇宙機で実証された技術で達成可能なFF の軌道保持精度を明らかにするために,ETS-VIIのRVD 実験中の軌道保持点での制御精度を解析した結果を報告す るものである.

2. ETS-VII RVD 技術

2.1 ETS-VII RVD 技術と FF 技術 RVD 技術は軌
 道上の2つの宇宙機同士が接近し,結合する技術であるが,
 RVD に関与する宇宙機の種類と役割分担,両宇宙機の軌道
 等により,様々な RVD システムが考えられる.ETS-VII
 で実証したシステムは以下の特徴を有する RVD システム
 である⁴⁾.

- (1) 無人宇宙機による自動・自律 RVD を基本とするシス テム
- (2) 有人宇宙機への RVD を可能とするため,安全性の確 保に重点を置いたセイフ RVD システム
- (3) 能動的なチェイサ宇宙機が受動・協力的なターゲット 宇宙機へ接近する RVD システム
- (4) 秒速1cm 程度で接近し,非接触状態にて捕獲し,結
 合する低衝撃型ドッキング

^{*1} ② 2002 日本航空宇宙学会

平成 14 年 4 月 18 日原稿受理

^{*2} 宇宙開発事業団

第1図 ETS-VII 衛星システム, RVD 実験関連システムの概要

ETS-VII RVD システムは以上の特徴により, FF 技術 の基本をなすものとなっている. すなわち, (1) 自動・自 律 RVD 技術は,高精度の FF を行う上で欠かせないもの である.相互の軌道位置関係に高い精度が要求されない場 合には地上からの軌道決定と軌道保持制御も可能であるが, 数 m オーダー以下の高精度で相対軌道を保持するためには 自動 RVD 技術が欠かせない.(2) セイフ RVD 技術は複数 宇宙機が近い軌道で FF を行う際に必須となる . ETS-VII では,相互の位置関係を自動的に監視し,異常発生時には 自動的に衝突回避措置を行う技術を開発し,実証した.常 時地上との通信回線が確立している保証のない宇宙空間で FF を実現するためには,このような自動安全管理機能が必 要である。(3)能動的なチェイサ衛星が受動・協力的なター ゲット衛星へ接近する RVD システムは, FF を構成する衛 星群のうち, 母衛星に機能を集中し, 娘衛星には受動的な 機能のみを持たせることで全体的にシステムを簡略化する 上で有効である.また,(4)低衝撃型ドッキングは,FF自 体には必須の機能ではないが,推薬補給や機器交換等の軌 道上サービスを行うことで, 母衛星以外の娘衛星の機能を 簡略化することができ有効である.

ETS-VIIは2m~10kmの距離域でチェイサ/ターゲット 間の距離を一定に保つ自動軌道保持を行っており,FFの基 本技術を修得した.ETS-VIIで実施していないFF技術と して以下の技術があり,これらはETS-VIIで実証した技術 を基本にして開発可能と考えられる.

(1) 3 機以上の多数の宇宙機による FF 技術

 (2) GPS が使用できない静止軌道等で1km 以上の距離を 離しての FF 技術

2.2 **RVD** 実験システム⁴⁾ RVD 実験は「おりひめ」 「ひこぼし」両衛星のバスシステム(姿勢軌道制御系,推進 系,通信系等),両衛星に搭載された RVD 実験系機器,地上 局の RVD 実験運用設備と,米国のデータ中継衛星 TDRS を 利用した通信リンク等によって実行される.第1 図に RVD 実験関連システムの概要を示す.

自動 RVD を実現するためには,相手宇宙機との相対的な 位置や速度を高精度で推定する航法機能が重要である.電 波センサと光学センサの精度,到達距離,耐干渉性等を考 え,500 m 以遠の相対接近フェーズでは長距離での使用に 適した GPS 相対航法を,500~2 m の最終接近フェーズで は高精度の三次元レーザ・レーダであるランデブ・レーダ (RVR)を,2 m 以近のドッキングフェーズではターゲット 衛星のドッキング軸の正面から接近するために相対6自由 度(位置/姿勢)の計測を行う必要があり,画像センサであ る近傍センサ(PXS)を選定した.これらの3種類の航法 センサは,CPU上の搭載ソフトウェアによって画像処理や 航法計算,更にはセルフチェック等も行う機能を有してい る.地上から搭載ソフトウェアを書き換えることも可能で あり,パラメータのみならずプログラムも変更可能である.

ETS-VII は安全性の高い RVD を行うために,各フェーズの開始点ごとに一定距離で保持し,正常であることを確認した上で接近を再開する.このため,相対接近フェーズ開始点(TI点:約9km),最終接近フェーズ開始点(TF点:約500m),ドッキングフェーズ開始点(VP点:約2m)等で相対位置保持,すなわち FF を行っている.本論文では,これらの保持点の制御精度を評価し,軌道上宇宙機で実証された技術で実現可能な FF 精度を推定したものである.

RVD 実験による FF 精度評価

3.1 **RVD** 実験結果^{5,6)} ETS-VII は 1997 年 11 月に H-II ロケットにより打ち上げられ, 1998 年から 1999 年に かけて以下の 3 回の RVD 実験を行い, これに成功した.

- (1) 第1回 RVD 実験 1998年7月
- (2) 第2回 RVD 実験 1998 年8月
- (3) 第3回 RVD 実験 1999 年10月

第1回 RVD 実験は 1998 年7月7日に実施し, チェイサ 衛星がターゲット衛星を分離して VP 点(約2mの停止点 で,最終接近フェーズとドッキングフェーズの移行点)ま で離れ,VP点で約15分間一定の距離を保持した後,再び 接近を開始し,自動ドッキングに成功した.

第2回 RVD 実験は8月7日に開始した.当初計画では 520m まで離脱し, そこから V バー接近(同一高度上を前 方から接近)を行って、ドッキングを行う予定であった.し かし,接近中にスラスタが正常に噴射できなくなる現象が 発生し,自動的に接近を中断し,安全確保の措置を行った. このスラスタ噴射異常は1~数秒間隔でパルス噴射を行う 必要がある最終接近フェーズで多発したため,① 接近速度 を遅くし、パルス噴射間隔を広げる.2 GPS 相対航法で可 能な限り接近し最終接近の距離を短くする.③誘導制御計 算機の搭載ソフトウェアを改修し,最小パルス幅を広げス ラスタ噴射回数を低減する、等の対策を施して再接近を試 み,8月27日にドッキングに成功した.第2回 RVD 実験 は当初計画をはるかに上回る 150 パスに渡って RVD 飛行 を行い,当初計画以上の12kmの距離まで離れ,そこから の RVD に成功したため,当初計画以外のさまざまな点で GPS 相対航法に基づいた相対位置保持を行い, FF の技術 データを取得することができた.

第2回 RVD 実験までで自動・自律 RVD 技術やセイフ RVD 技術の大半を実証できたが,遠隔操縦ランデブ技術等 3回目以降の実験で実証する予定の項目が3項目だけ残っ ていたので,これらの実証を1回の実験で行うために第3 回 RVD 実験の飛行計画や軌道設計の見直しを行った.さ らに,スラスタ噴射異常が発生しても接近を継続できるよ うに,異常が発生した場合には異常スラスタを使用せずに, 他の正常なスラスタのみを噴射して所望の力とトルクを発 生できるような制御ロジックを搭載ソフトウェアに組み込 む改修を実施した.

第3回 RVD 実験は, 1999年10月26日から27日にか けて実施した.分離後2m地点から遠隔操縦で離脱を行っ て12m点で相対停止し,続いて6m点まで接近して相対 停止し,地上からの遠隔操縦ランデブに成功した.続いて セイフ RVD に必要な衝突回避マヌーバ機能の確認を行い, 9km 後方まで離脱した.この9km の保持点(TI点)から ターゲットの下方に入り, HTV が ISS に補給する時の接 近方法である R バー接近(下方からの接近)の飛行実証を 行ったが, R バー接近時のスラスタ噴射量を減らすために, TI 点で GPS 相対航法データの平滑化処理を行い,要求仕 様を上回る高精度の位置保持の実験を行いこれに成功した. 最後に,スラスタ噴射異常時の対策の有効性を確認するた めにドッキングを敢行した.35m付近まで接近した時点で スラスタ噴射異常が発生し,姿勢変動の兆候が見られたた め,予定通り地上からコマンドを送信して制御ロジックを 切り換え,異常が発生したスラスタを使用せずに軌道と姿 勢を制御し,接近を継続して,ドッキングに成功した.

以上3回の RVD 実験により,当初計画の技術実証項目 を全て実証できた.また,当初計画での保持点に加え,当 初計画以外の点でも相対位置保持を行ったため,計画以上 の FF の制御技術データを取得することができた.

第2図 第1回 RVD 実験時のレンジ計測値 (PXS vs RVR)

3.2 近傍センサ(**PXS**)による位置保持精度 ETS-VII の RVD シーケンスでは,分離後 VP 点で相対位置保 持を行い,主航法センサを PXS から RVR に切り換えて, 同一高度上を前方に離脱する.接近の際も,VP 点までは RVR を使用して V バー接近を行い,VP 点で相対位置を 保持し,主航法センサを PXS に切り換えて,ドッキング を行う.このため,VP 点では FF を行っている.

VP 点における相対位置保持精度を PXS と RVR の航法 データの比較により行った.第1回 RVD 実験の際の PXS と RVR のレンジ計測値を第2図に示す.両者は 9~13 cm の差で推移しているが, PXS は外部搭載機器, RVR は内 部搭載機器であるため,ドッキング・パネルの厚さに相当 する約5cmの距離差があり、この分を差し引くと両者のレ ンジ計測値は 4~8 cm の精度で一致している. PXS の結合 状態でのレンジ計測値は極めて安定しており,約2年間の 実験期間全体を通じてバイアス変動は 0.3 mm 以下であっ た.結合時と VP 点保持時の PXS と RVR 計測値の差の 変動分が約3cm あるが、この変動の原因がほとんど PXS であったとしても,バイアス誤差は3cm 程度である.VP 点保持はデッドバンドである 5 cm 以内で制御されている. デッドバンドは航法ノイズによる頻繁なスラスタ噴射を避 けるために,航法のランダム誤差にマージンを加えて設定 される.PXSの結合状態におけるランダム誤差は最大でも 0.5 mm 程度であった.また, VP 点保持時でスラスタ噴射 を行っていない期間内の PXS のレンジ計測値を最小自乗 法により一次回帰し,回帰直線との差の標準偏差より求め たランダム誤差(3σ)は $4 \, \mathrm{mm}$ 程度であるので, デッドバ ンドは6mm 程度にすることが可能である.制御誤差はバ イアス誤差+デッドバンド程度となるので, PXS と RVR 計測値の差の主因が PXS であればレンジ制御精度は 4 cm 以下,差の主因が RVR であれば制御精度は 1 cm 以下とす ることができる.

PXS と RVR 航法による Y (面外方向), Z (上下方向) の推定値を第3図に示す(座標系の定義を ETS-VII 衛星 概観とともに第4図に示す.)両者の傾向は良く一致してい る.第1表によれば,差の平均値は最悪値でも3~5mm 程 度である.従って, PXS, RVR ともバイアス誤差は5mm 以下と考えられる.Y, Z 位置はデッドバンドである2cm

第3図 VP 保持時の位置推定値(上図:Y,下図:Z)

第4図 ETS-VII 衛星概観と座標系

第1表 VP保持時のPXS, RVR 航法値の差の平均

	X (mm)	Y (mm)	$Z \ (mm)$
第 1 回 RVD 実験	77*	3.5	4.5
第 2 回 RVD 実験	70^{*}	3.1	1.1
第 3 回 RVD 実験	54^{*}	1.7	1.2
最悪値	77^{*}	3.5	4.5

*ドッキング・パネルの厚さ分を差し引いた値.

以内で制御されている . PXS と RVR 航法値の差の標準偏 差より, ランダム誤差は 1~2mm 程度であるので, デッド バンドは 3mm 程度にすることが可能である.制御誤差は バイアス誤差+デッドバンドとなるので, Y, Z 制御精度 は 1 cm 以下とすることができる.

以上により, PXS を使って 2m 程度の至近域で FF を行 う場合, デッドバンドの調整により, 1~4 cm の精度で位 置保持をすることが可能と考えられる.

3.3 ランデブ・レーダ(RVR)による位置保持精度 VP 点における RVR での相対位置保持精度は,前項と同様 PXS と RVR の航法データの比較により行った.第1回~ 第3回 RVD 実験における VP 保持期間中の RVR と PXS 航法による位置推定値の差の平均を取ったものを第1表に 示す.RVR と PXS による $X (\nu))$ 推定値は,ドッキ ング・パネルの厚さ相当分を補正して 5~8 cm の精度で一 致している.PXS の結合状態でのレンジ計測値は極めて安 定しており,地上試験結果とも良く一致しているため,こ の差の原因がほとんど RVR であったとすると,バイアス 誤差は 8 cm 以下となる.RVR と PXS 航法値の差の標準 偏差より推定すると,ランダム誤差(3σ)は最大で1 cm 程 度であるので,デッドバンドは2 cm 程度にすることが可能 である.制御誤差はバイアス誤差+デッドバンドとなるの で,VP 点保持において RVR で制御した場合のレンジ制 御精度は 10 cm 程度とすることができる.

第1回 RVD 実験における PXS と RVR 航法による Y, Z の推定値は第3図に示した通りである.差の平均は第1 表に示す通り,最大で3~5mm以下であり,PXS,RVR と もバイアス誤差は5mm以下と考えられる.PXSと RVR 航法値の差の標準偏差より,ランダム誤差は最大で3~4cm 程度であるので,デッドバンドは5cm 程度にすることが可 能である.従って,Y,Z制御精度は6cm以下とすること が可能である.

PXS の計測範囲外である 10m 以遠での RVR による保 持精度の評価は GPS 相対航法との比較により行った.第2 回 RVD 実験における RVR と GPS 相対航法による最終接 近中の位置推定結果を第5図に示す.最終接近フェーズに おいては GPS 相対航法にスラスタ噴射情報を与えていな いので,接近開始(9:35)以降は,特にコリオリカの影響 を受ける Z 方向位置の推定誤差が増大する. GPS 相対航 法よりも RVR 航法の方が高精度であるので,スラスタ噴 射を行っていない期間内で GPS 相対航法値を最小自乗法に より一次回帰し,回帰直線とRVR 航法値との比較により, RVR 航法による位置保持時の制御精度を評価した.GPS 相対航法による回帰直線とRVR 航法値の差の平均を第2 表に示す.160m 捕捉中においてはスラスタ噴射を行って いるために保持中よりも差が大きくなっているが, RVR 航 法結果は収束後の GPS 相対航法の平均値と 1~2m 程度の 精度で一致している.また, RVR のランダム誤差は5cm 程度である.GPS 衛星切り換え時にGPS 相対航法値が変 動する現象が見られることやランダム誤差の大きさ等から, 表の RVR 航法と GPS 相対航法の差の主たる原因は GPS 相対航法誤差であることは明らかであるが, RVR 航法が GPS 相対航法と同程度の誤差を持っていたと仮定しても, RVR による相対位置保持精度は1m 程度である.

3.4 GPS 相対航法による位置保持精度 RVR による 相対位置保持時の GPS 相対航法のバイアス誤差は第2表よ り2m 程度である.ランダム誤差は,スラスタ噴射を行っ ていない期間内で RVR 航法値を最小自乗法により一次回 帰し,回帰直線と GPS 相対航法との差を取り,その標準 偏差を取ることにより求めた.このようにして求めた RVR により相対位置保持を行っている期間の GPS 相対航法の

第5図 最終接近中の位置推定値(上図:X,中図:Y,下図:Z)

第2表 RVR による相対位置保持時の RVR, GPS 相対航法値の差の平均

	X (m)	Y(m)	$Z(\mathbf{m})$
120 m 保持中	0.6	0.3	2.3
160 m 捕捉中	1.9	0.6	2.0
520 m 保持中	0.2	0.1	0.6
最悪値	1.9	0.6	2.3

ランダム誤差を第3表に示す.GPS 相対航法のランダム誤 差は方向によって異なるが,Z方向が最も大きく,4m程 度となることもある.また,結合中においても衛星状態に よってはZ方向で8mを超えたケースがあった.以上によ り,GPS 相対航法による位置保持精度は10m程度と考え られる.

GPS 相対航法によって位置保持を行っている 600 m 以 遠では, RVR の計測範囲外であるので, コースティングし ている期間について, GPS 相対航法値を最小自乗法により Hill 方程式の C-W 解⁷⁾ に基づいて伝搬した軌道に回帰さ せて最適推定軌道を作り, これとの差によって精度評価を

第6図 GPS 相対航法値と最適推定軌道の比較(X-Z 平面)

第3表 位置保持時の GPS 相対航法の標準偏差 (3σ)

	X (m)	Y (m)	Z (m)
結合状態(最悪値)	3.8	2.7	8.4
120 m 保持中	1.6	1.1	2.0
520 m 保持中	1.3	0.8	3.3

行った.

GPS 相対航法による推定位置,速度を X_{RGPS} , Y_{RGPS} , Z_{RGPS} , Vx_{RGPS} , Vy_{RGPS} , Vz_{RGPS} とすると,最適推 定軌道は,その位置,速度 X_{REF} , Y_{REF} , Z_{REF} , Vx_{REF} , Vy_{REF} , Vz_{REF} , V

$$\sum \{ (X_{\text{RGPS}} - X_{\text{REF}})^2 + (Y_{\text{RGPS}} - Y_{\text{REF}})^2 + (Z_{\text{RGPS}} - Z_{\text{REF}})^2 + \lambda^2 (V x_{\text{RGPS}} - V x_{\text{REF}})^2 + \lambda^2 (V y_{\text{RGPS}} - V x_{\text{REF}})^2 + \lambda^2 (V z_{\text{RGPS}} - V z_{\text{REF}})^2 \} \rightarrow \min$$

(λは重み係数)となるような軌道である⁸⁾.

最適推定軌道と GPS 相対航法値との比較例を第6 図に 示す.コースティングでフライトしたパス 16 パスについて 最適推定軌道を求め,これと GPS 相対航法値との差を統 計処理した.差の平均を第4表⁸⁾に,標準偏差(3σ)を第 5表⁸⁾に示す.最適軌道との差の平均は最大値でも,Z方 向で1.6mである.また,標準偏差をランダム誤差と見る とその最大値は,Z方向で10m以下である.

X 方向の平均は原理的に 0 となるので, この方法では 精度を評価できない.そこで,最適軌道を求めたパスのう ちで隣接するパスについて,同一時刻(前パスの最終点と 後パスの開始点)での位置,速度の差を求めた結果を第6 表^{s)}に示す.隣接パス間の同一時刻での位置の差の最大値 は,X:6m, Z:5m である.これまでに示した他の評価 方法に比べて X 方向の誤差が大きくでているのは,この方 法では,軌道1周回分の空気抵抗による X 方向の位置,速 度変化の影響を受け易いため,及びスラスタ噴射異常の影 響を受け易いためと考えられる.

以上をまとめると, GPS 相対航法による位置保持精度は, X と Y 方向については10m 程度が可能と判断できるが, Z(上下)方向についてはランダム誤差が10m 近くに達す る場合があり, デッドバンドを15m 程度取る必要があるこ とから, これにバイアス誤差の最大値5m を加えると, 保

28

第4表 GPS 相対航法値と最適推定軌道との差の平均

	X (m)	Y (m)	Z (m)
絶対値の最大	0 (N/A)	0.58	1.58
絶対値の平均	0 (N/A)	0.29	0.68
絶対値の最小	0 (N/A)	0.02	0.00

第5表 GPS 相対航法値と最適推定軌道との差の標準偏差(3σ)

	X (m)	Y (m)	Z (m)
最大	6.55	3.70	9.83
平均	4.23	2.69	6.73
最小	2.56	1.51	2.73

第6表 隣接する最適推定軌道間の位置/速度の差異

	X (m)	Y (m)	Z (m)
絶対値の最大	5.73	1.48	4.71
絶対値の平均	2.04	0.71	1.98
絶対値の最小	0.14	0.00	0.22

持精度は 20m 程度と考えられる.

3.5 **GPS** 相対航法による位置保持精度 第3回 RVD 実験では, Rバー接近時のスラスタ噴射量を減らすために, 約 9 km 後方の点で Z 方向の位置を ±10 m 以内に保つこ とを目標に位置保持を行った.このために, 3.4 項で示し た GPS 相対航法データの平滑化処理による最適推定軌道 を求め,この推定軌道から X-Z 面内の位置/速度を高精度 に推定し,地上からのコマンドにより軌道制御を行った. R バーへの投入開始前の約90分間のX-Z面内位置を第7図 に示す.軌道一周でX方向に30数mドリフトしているこ とから, Z の平均位置は 3~4 m 下方であったと推定され る.GPS 相対航法値から Z 位置は 3m を中心に ±7m 以 内で保持されていることが図よりわかる.3.3項で示した 通り GPS 相対航法単独では Z 方向の位置保持精度は 20 m 程度と考えられることから,最適推定軌道を使うことによ り位置保持精度を向上させることができる.本実験では軌 道一周分の GPS 相対航法データを使用し,最適推定軌道 を求めて軌道保持制御のコマンドを作成し,地上からのコ マンドにより軌道保持を行っているので軌道1周以上の時 間遅れがあり,最適推定軌道の推定誤差を伝搬した分だけ 精度が落ちている.本実験で用いた軌道推定→制御アル ゴリズムをオンボード計算機に入れて自動化すれば,誤差 が伝搬されず,さらに高精度の軌道保持が行えることが期 待される.

3.6 軌道保持精度評価のまとめ ETS-VII RVD 実験 中の PXS, RVR, GPS 相対航法による軌道保持精度の評価 結果をまとめると第7表に示す通りである.PXSを使用す るフェーズでは1cm オーダー, RVR を使用するフェーズ では,近距離で数cm オーダー,遠距離でも数10cm オー ダー, GPS 相対航法を使用するフェーズでは10m オーダー で制御可能と考えられる.また, GPS 相対航法による最適 推定軌道を使用すれば,10m 以下で制御可能と考えられる.

宇宙機の制御精度や航法センサの精度の評価は難しく、

第7図 最適推定軌道を利用した Z 方向位置の保持結果(X-Z 平面)

第7表 各種航法センサによる相対位置保持制御精度

航法センサ	保持点	保持精度
PXS	$2\mathrm{m}$	$X: 1 \sim 4 \text{ cm}$
		Y , Z : 1 cm 以下
RVR	$2\mathrm{m}$	X:10 cm 以下
		Y,Z:6cm以下
	$120{\sim}520\mathrm{m}$	X , Z : 1 m 程度
		Y: 60 cm 以下
GPS 相対航法	${\sim}600\mathrm{m}$	X , Z : 10 m 程度
		Y:5m程度
	$600\mathrm{m}\sim$	X,Y:10m程度
		Z:20m程度
GPS 相対航法	$\sim \! 10 \mathrm{km}$	X,Z:10m 程度
(最適軌道)		Y:5m 程度

本論文でも複数の航法センサの推定値の比較によっている が,どちらの航法センサの誤差かを決定する手段がないた めに,他の傍証から推定している.このため,精度の良い 航法センサの誤差が,精度の劣る航法センサの誤差の影響 を受けて,大きめに評価されていると考えられる.しかし, 10km以内の距離域において,使用する航法センサにより, 1 cm~20mの精度で相対軌道保持,すなわちFFの制御が 可能であることが確認できた.

4. 今後の課題

ETS-VII は 2 m~10 km の距離域でチェイサ/ターゲット 間の距離を一定に保つ自動軌道保持を行っており, FF の基 本技術を修得した.ETS-VII で未実施の FF 技術としては 以下の技術がある.

- (1) 3 機以上の多数の宇宙機による FF 技術
- (2) GPS が使用できない静止軌道等で1km 以上の距離を 離しての FF 技術

これらは ETS-VII で実証した技術を基本にして開発可能である.これらについては,

(1)3機以上数機までの宇宙機ならRVRを複数搭載し, またスキャン型として多数の宇宙機の相対位置を計測する ことも考えられる.しかし,それ以上の機数になると,宇 宙機同士が測距信号を交換し合って相互の位置を推定する GPS ライクな航法方式^{9,10)}が必要になると考え,研究に着 手している.

(2) GPS が使用できない静止軌道等の遠距離用センサと

して,数kmまで計測可能なレーザ・レーダの研究を実施 している.

また,2機の宇宙機間の FF であっても,さらなる高精 度の軌道保持が必要なミッションもあり,例えば ST-3 の ようなミッションを実現するためには RVR 等の航法セン サの高精度化が必要である.その解決策として,RVR の定 温制御によるバイアス誤差の低減や,GPS 搬送波位相相対 航法等が考えられ,ETS-VII の航法技術をベースにさらな る高精度化を図っていく計画である.

5. おわりに

FF 技術は複数の衛星が一定の軌道(位置と速度を含む) 関係を保って飛行する技術であり,高精度の干渉計等の単 一衛星では達成不可能なミッション,一体では制御が不可 能な超大型宇宙構造物の分割飛行,一部の故障に対してロ バストな宇宙システムの構築等,さまざまな利用方法が提 案されている.

本稿は,現有技術で達成可能な FF の軌道保持精度を明 らかにするために,ETS-VIIの RVD 実験中の軌道保持点 での制御精度を解析・評価した結果を報告したものである. ETS-VII はドッキング・フェーズで PXS,最終接近フェー ズで RVR,相対接近フェーズで GPS 相対航法を主航法セ ンサとして使用してランデプ制御や軌道保持を行っており, 異なる航法センサの航法値の比較より精度評価を行った結 果,PXSを使用するフェーズでは1cm オーダー,RVRを 使用するフェーズでは,近距離で数 cm オーダー,遠距離 でも数10 cm オーダー,GPS 相対航法を使用するフェー ズでは10 m オーダーで制御可能であることが確認された. これにより,現在提案されている多くのFF ミッションが, ETS-VII の軌道保持技術により実現可能であることを示す ことができた. ETS-VII により開発した自動 RVD 技術は, FF にも直 接応用可能である.ETS-VII で得られた軌道上データの評 価結果を反映して,これらの高度な宇宙ミッションを実現 する技術を開発していく所存である.

参考文献

- Burns, R., Mclaughlin, C. A., Leither, J. and Martin, M.: TechSat 21: Formation Design, Control and Simulation, Proceedings of 2000 IEEE Aerospace Conf., Big Sky, 2000.
- 2) Deininger, W. D., Weiss, M. A., Wiemer, D. J., Hoffman, C. N., Cleven, G. C., Patel, K. C., Linfield, R. P. and Livesay, L. L.: Description of the StarLight Mission and Spacecraft Concept, Proceedings of 2001 IEEE Aerospace Conf., Big Sky, 2001.
- Lau, K., Colavita, M., Blackwood, G., Linfield, R., Shao, M. and Gallagher, D.: The New Millenium Formation Flying Optical Interferometer, AIAA Paper 97-3820, 1997.
- Kawano, I. and Mokuno, M.: Automated Rendezvous Docking System of Engineering Test Satellite-VII, Advances in the Astronautical Sciences, Vol. 96, AIAA, AAS 97-467, 1997, pp. 751–765.
- 5) 河野 功, 李野正明, 鈴木 孝, 小山 浩, 功刀 信: ETS-VII ランデブ・ドッキング実験の結果, 日本航空宇宙学会論文誌, 50 (2002), pp. 95-102.
- 6) Kawano, I., Mokuno, M., Kasai, T. and Suzuki, T.: Result of Autonomous Rendezvous Docking Experiments of Engineering Test Satellite-VII, J. Spacecraft Rockets, **38** (2001), pp. 105–111.
- Clohessy, W. H. and Wiltshire, R. S.: A Terminal Guidance System for Satellite Rendezvous, Aerospace Sci., 29 (1960), pp. 653–658.
- 8) 河野 功, 杢野正明, 鈴木 孝, 宮野智行, 五日市敦, 前田裕昭: ETS-VII 自動ランデブ用 GPS 相対航法の性能評価,電子情報 通信学会論文誌 B, **J84-B** (2001), pp. 2169–2178.
- Cobb, H., Cohen, C. and Parkinson, B.: Theory and Design of Pseudolite, Proceedings of ION National Technical Meeting, San Diego, Institute of Navigation, 1994, pp. 69–75.
- 10) Morley, T. and Lachapelle, G.: GPS Augmentation with Pseudolites for Navigation in Constricted Waterways, Navigation, J. Inst. Navigation, 44 (1997), pp. 359–372.