

宇宙航空研究開発機構研究開発報告 JAXA Research and Development Report

ヘリコプタの騒音を低減するアクティブ・フラップの数値解析

梁 忠模,青山 剛史,齊藤 茂

2008年2月

宇宙航空研究開発機構

Japan Aerospace Exploration Agency

This document is provided by JAXA.

宇宙航空研究開発機構研究開発報告

JAXA Research and Development Report

ヘリコプタの騒音を低減するアクティブ・フラップの 数値解析

Comprehensive Study on Active Flap Control for BVI Noise Reduction

梁 忠模^{*1},青山 剛史^{*1},齊藤 茂^{*2} Choongmo YANG^{*1}, Takashi AOYAMA^{*1} and Shigeru SAITO^{*2}

*1 総合技術研究本部 計算科学研究グループ Computational Science Research Group, Institute of Aerospace Technology

*2 航空プログラムグループ 運航・安全技術チーム Operation and Safety Technology Team, Aviation Program Group

> 2008年2月 February 2008

Japan Aerospace Exploration Agency

概要	1
1. はじめに	2
2. 計算法	3
3. コードの検証	5
3.1 BVI騒音の解析	5
3.2 AFCコードの検証	6
3.3 AFCに関する実験結果との比較	6
4. 位相角の影響	8
4.1 翼端渦の挙動に及ぼす位相角の影響	8
4.2 位相角がBVI騒音に及ぼす影響を把握するための簡易モデル	10
4.3 AFC用CFDコードを用いた3次元の計算	11
4.4 騒音予測の改善	12
5. アクティブ・フラップ位置の影響	13
5.1 計算条件	13
5.2 空力解析の結果	17
5.3 騒音解析の結果	21
6. 結論	23
参考文献	24

ヘリコプタの騒音を低減するアクティブ・フラップの数値解析*

梁 忠模*1,青山 剛史*1,齊藤 茂*2

Comprehensive Study on Active Flap Control for BVI Noise Reduction*

Choongmo YANG^{*1}, Takashi AOYAMA^{*1} and Shigeru SAITO^{*2}

Abstract

A three-dimensional unsteady Euler code for the analysis of active flap control (AFC) has been developed in this study based on an advanced CFD code for the full configuration of helicopters. The effect of phase angle and geometric position of AFC on blade-vortex interaction (BVI) noise is analyzed by combining the new CFD code with an acoustic code based on the Ffowcs Williams and Hawkings (FW-H) equation. As a result, a simple model is proposed to understand the effect of flap phase angle on BVI noise and 3D calculations by the present method confirm that the model properly works. The prediction of the effect of flap phase angle by the present method is remarkably improved by applying the understandings derived from the simple model. A quantitative noise reduction of 5.62dB is obtained at the flap phase angle of 60° and noise signal strongly propagates almost downward in the present condition. The prediction of flap phase. When the flap is located near the blade tip, the merger between outer flap vortex and tip vortex can change the tip vortex strength and the blade surface pressure in the BVI condition. As the flap location moves inward, the sudden change of BVI noise reduction mechanism happens, which needs more discussion for the understandings.

Keywords: Helicopter, CFD, BVI noise, Active Flap Control

既 要

ヘリコプタ全機周りの流れ場を解析する3次元非定常オイラー・コードをベースに、ブレード/渦干渉(Blade-Vortex Interaction:BVI)騒音低減用のアクティブ・フラップ制御(Active Flap Control:AFC)を解析するコードを開発し、 Ffowcs Williams and Hawkings(FW-H)の式に基づく音響解析コードと組み合わせることで、AFCの重要な2つのパラ メータであるフラップの位相角と取り付け位置が騒音に及ぼす影響を解析した。ここで、位相角の影響を容易に把握 するための簡易的なモデルを提案し、そこから得られる知見を適用することで、実験値の予測を格段に改善できるこ とを示した。また、ここで用いた特定の条件では、位相角60°のとき5.62dBの騒音低減効果が得られた。フラップ位置 の影響については、より翼端に近い位置に配置されたフラップを適正な位相角で作動させることが騒音低減に有効で あることを示した。また、フラップを翼端に近い位置に配置した場合、フラップの外端から発生するフラップ渦がブ レードの翼端渦と融合する現象が捉えられた上、それが翼端渦の強度に影響を及ぼしてBVIの起こる瞬間にブレード上 圧力変動を増加させることを確認した。さらに、フラップ位置を内側から外側に移動させると、ある位置を境に騒音 低減のメカニズムが劇的に変わることが分かったが、そのメカニズム解明については今後の課題である。

*1 総合技術研究本部 計算科学研究グループ (Computational Science Research Group, Institute of Aerospace Technology)

*2 航空プログラムグループ 運航・安全技術チーム (Operation and Safety Technology Team, Aviation Program Group)

^{*} 平成19年12月6日受付 (received 6 December 2007)

2

記号

- フラップが最も上方(あるいは下方)に振れた Α とき放出された渦と中立位置で放出された渦の ミスディスタンス ブレードのコード長 с C_T 推力係数 中立位置で放出された渦とブレードのミスディ d, d_0 スタンス k 定数 M_{T} 翼端マッハ数 アクティブ・フラップの周波数 P_{AFC} Rブレードの半径 SP音圧の最大値 *X*, *Y*, *Z* ロータ座標 ティップ・パス・プレーンの傾角 α_{TPP} コレクティブ・ピッチ角 θ_0 アクティブ・フラップの振幅 θ_{0AFC} θ_{1c} 横方向のサイクリック・ピッチ角 縦方向のサイクリック・ピッチ角 θ_{1s} アクティブ・フラップのピッチ角 θ_{AFC} 前進比 μ ブレードの方位角 ψ アクティブ・フラップの位相角 ψ_{AFC} アクティブ・フラップの位相角のずれ ψ_d
- ψ_{VG} 渦発生位置の方位角

はじめに

垂直離着陸し,かつ空中に静止することができるヘリ コプタは、ドクターヘリ、消防・防災ヘリ、報道ヘリ等、 様々な分野で活用されている。また、最近は空力的デザ インの改善等によって高速前進飛行も徐々に可能とな ってきており、ますます都市間交通の手段として活躍 が期待されている。しかし、主に騒音と有視界飛行の問 題がそれを妨げる大きな要因となっているのが現状で ある。わが国においては、国土交通省がヘリコプタの全 天候飛行を可能にするために,固定翼航空機と同様に 計器飛行方式を適用しようとしている。それが可能と なると、ヘリコプタの飛行頻度が劇的に増加するため、 騒音の問題が大きくクローズアップされることになる。 ヘリコプタ運航会社の中には,現存の比較的騒音が低い ヘリコプタより5dB以上騒音の低いヘリコプタを運用し ない限り企業活動を続けていくことは不可能だと明言 しているところもある。この騒音低減量は、2002年か ら適用されたICAOの新たな騒音基準から10dBの低減 を意味する。

様々なヘリコプタ騒音の中でも, とくに着陸時に顕

著となるブレード/渦干渉 (Blade-Vortex Interaction: BVI)騒音は住民への被害が大きいため、その低減が喫 緊の課題となっている。低減技術としては、低騒音飛 行経路を取る方法^{1,2}, 翼型・翼端形状を工夫する受動的 な方法³⁶, ロータやブレードをアクティブに制御する能 動的な方法⁷に分類される。受動的方法は高速衝撃騒音 の低減に有効な手段であることが示されているものの⁸ ⁹, BVI騒音低減の手段としては必ずしも大きな効果は 期待できない。そこで, 高調波制御(Higher Harmonic Control:HHC), 個々のブレードを別個に制御するIBC (conventional Individual Blade Control), 翼端噴射, ア クティブ・タブ、アクティブ・ツイスト、アクティブ・ フラップ (Active Flap Control: AFC) など, 様々な能 動的騒音低減手法がBVI騒音を大幅に低減する突破口と なる技術として注目を集めている。ここでは,能動的方 法のひとつであるアクティブ・フラップに着目して研究 を行ったが、まずは様々な能動的方法の現状について解 説する。

HHCについては、国際共同で行われたHART (Higher harmonic control Aeroacoustic Rotor Test) プロジェク トのもとに総合的な研究が行われてきた¹⁰⁻¹³。HARTプ ロジェクトとは、高調波制御がBVI騒音や振動に及ぼ す影響を理解するために, NASA Langley, US Army, DLR, DNW, ONERAの共同で行われた研究プロジェ クトである。HART IとHART IIの2つのフェーズがあり、 それぞれ1994年と2001年に, BO105のメインロータモ デルで風洞試験が行われた。前者ではブレード圧力分 布,ブレード荷重,騒音,ブレード変形,後流,速度場 の計測が、後者ではPIV計測が実施された。IBCについ ては、最近の飛行試験によって閉ループ制御のIBCが振 動低減に効果的であることが示された¹⁴。アクティブ・ タブはJAXAと川田工業の共同開発によるものだが、そ のBVI 騒音低減効果については、風洞試験¹⁵¹⁶及び数値 解析17によって確認されている。ONERAとDLRのチー ムは, "Active Twist Blade" (ATB)¹⁸のプロジェクトで2 つのアクティブ・ツイストのコンセプトについて共同研 究を進めている。その一方は, Active Twist Blade (ATB) と呼ばれるもので、他方はTwistable Section Closed by Actuation (TWISCA) と呼ばれるものである。また、 NASA, Army 及び MIT の進める Active Twist Rotor (ATR) 19プログラムにおいては, 閉ループ制御によってハブの 4Pと1Pの振動を同時に低減できることが示された。ボ ーイングでは、 ピエゾ・アクチュエータとロバストな 電源バスを実大ブレードに搭載することに成功した²⁰。 アクティブ・ツイストの騒音低減効果に関しては参考 文献²¹に詳しい。AFCはフラップ部分に切り欠きができ るため構造的には好ましくないが、いくつかの点で他

3

の能動的制御技術に比べて優位な点を持っている22。そ れは、(1) HHCやIBCに比べて駆動パワーが低いこと、 (2) ブレードへの搭載が比較的容易であること、(3) ブ レード本体の制御系とは独立にできること、である。参 考文献23と24には、AFCによって騒音と振動の両方が 低減できる可能性が示されている。さらに、複雑な回転 翼機の性質上,能動的制御技術は騒音や振動の低減のみ ならず,様々な形での応用の可能性を持っている。例え ば、AFCはロータの空力性能を向上させるポテンシャ ルを持っている²⁵のはもちろんのこと、ロータの不具合 を能動的に診断する技術への適用も研究されている²⁶。 通商産業省(現経済産業省)によって1994年から2001 年までの期限付きで設立された(株)コミュータヘリコ プタ先進技術研究所 (Advanced Technology Institute of Commuter-helicopter, Ltd.: ATIC)は,2000年にアクテ ィブ・フラップ付きの実大ロータによるワールタワー試 験27-28を実施した。また,別の実大ワールタワー試験では、 Heliflap²⁹と呼ばれる電磁アクチュエータと後縁フラッ プのパッケージがテストされ、大きなパワーの消費なく かつ熱の問題も回避して,フラップに高周波での大きな 振幅を与えられることが示された。ONERAとDLRは, 解析ツールを用いてフラップの最適位置と制御法につ いて研究し, 騒音低減と振動低減ではフラップの最適ス パン位置が異なるので, それらを同時に実現するために は、スパン位置の異なるいくつかのフラップを同時に制 御することが必要であるとの結論に達した³⁰。この知見 をもとにAFC付きの実大ブレード³¹を設計し、大きな 遠心力のもとでその信頼性をワールタワー試験によっ て確認した。ドイツとフランスにおけるAFCに関する 様々な活動は参考文献32に詳しい。一方、ボーイング は, DARPA, NASA, U.S. Army 及び3つの大学との共 同プロジェクトで, AFCを持つSmart Material Actuated Rotor Technology (SMART) システムのワールタワー 試験が成功したと2004年5月にウェブサイト³³で公表し た。また,メリーランド大学のGlenn L. Martin風洞では, ピエゾ・アクチュエータによる開/閉ループのAFCが振 動低減に有効であることをスケールモデルで示した³⁴。

AFCの解析については文献8にもまとめられているように、AFCを持つブレードの空弾性モデルを開発する 様々な努力が続けられている。しかし、これらの研究 においては、その焦点が空弾性に当てられているため、 AFCの非定常空力に関しては比較的簡単なモデルが用 いられているのが現状である。ここで、AFCがBVI騒 音に及ぼす影響を解析しようとすれば、AFCによる翼 端渦の軌跡や渦構造の変化を正確に捉える必要がある ことから、より正確な非定常空力のモデル化が必要に なる。そこで、本研究では、移動重合格子法を適用す ることでAFCを解析できるCFDコードを世界に先駆け て開発し, Ffowcs Williams and Hawkings (FW-H)の 式に基づく音響解析コードと組み合わせることで,AFC における2つの重要なパラメータであるフラップの位相 角と取り付け位置が騒音に及ぼす影響を解析した。

2. 計算法

ここでは、ヘリコプタ全機周りの流れ場を解析するコ ード^{35,36} (オリジナルコード) をAFC用に拡張すること でコードの開発を行った。そして、そのCFDコードと 音響解析コードを組み合わせることで、BVI騒音の計算 を行った。

計算格子としては,図1に示す移動重合格子を用いた。 この格子は、メインロータとテールロータの個々のブ レードを覆うブレード格子,胴体周りの胴体格子,機体 全体を包む内側背景格子, さらにその外に配置された 計算領域全体に及ぶ粗い外側背景格子からなっている。 ここで移動重合格子法を用いている理由は,限られた計 算資源を有効に活用して, ブレードから後方に流れ去る 翼端渦を正確に模擬するためである。格子密度の高い物 体適合のブレード格子には、コストパフォーマンスを考 えて相対的に低い精度のスキームを適用し, 広い領域を 持つ背景格子は直交格子で構築して高精度のスキーム を適用している。また,メインロータ・ブレード格子は, フラップの動きに応じてCFDの計算ステップ毎に作り 直されている。表1に格子点数を示す。ブレード本体と フラップ部分に存在する隙間部分については、スパン 方向のそれは格子点をそこに集中させて実際に隙間を 設けることで正確にモデル化したが、コード方向の切り 欠き部分はここでターゲットとしている現象には大き な影響を及ぼさないものと考えて無視した。また,本研 究では純粋にフラップの空力だけに着目して剛性の高 いブレードを想定しているため,弾性変形の影響も無視 した。流れの情報は内側背景格子と外側背景格子の間, または内側背景格子とブレード及び胴体格子の間で交 換される。ヘリコプタの翼端渦を数周にわたって捉え る上で最も重要な役割を果たす内側背景格子にほとん どの格子点を費やしている。内側背景格子の格子間隔は 0.05c (=0.006R) である。ヘリコプタのBVI騒音計算で は、十分な解像度をもって翼端渦をシミュレートしよう とすると、莫大な計算量と計算時間を必要とするため、 精度をある程度犠牲にして現実的な計算が行われてい るのが現状である。例えば他の研究機関の例を見ると, NASA³⁷で0.1c, ONERA³⁸では0.15cの背景格子が使われ ている。

上述した2つの計算スキームについて解説する。メイ ンロータとテールロータのブレード格子及び胴体格子

a) Perspective view

b) Close-up of inner background gird

c) Close-up of main-rotor blade gird 図1 計算格子

表	1	格	Ŧ	点数
	-		-	11112

Inner background grid	$(X \times Y \times Z)$ 450 × 400 × 80 = 14,400,000
Outer background grid	$(X \times Y \times Z)$ $83 \times 79 \times 49 = 321,293$
Blade grid	$(\text{chord} \times \text{normal} \times \text{span}) \times \text{blade}$ $(77 \times 20 \times 70) \times 2 = 215,600$
Total	15,275,693 points
Spacing of inner background grid	$0.05c \ (= 0.006R)$

における空力計算には,差分法に基づく3次元非定常オ イラーソルバー³⁹を用いた。このコードで使われている 数値解法は,効率化されたBeam-Warming法を基礎とし, 右辺にChakravarthy-OsherのTVDスキームを適用した ものである。空間精度は2次,時間精度は1次であるが, ニュートン反復法で時間精度を高めている。ここでの 計算結果はすべて4回のニュートン反復で求められたも のである。方位角方向の計算ステップ数は1周あたり約 17000で,これは角度に換算すると約0.021°になる。 直交格子である内側および外側背景格子では、4次精 度のコンパクトMUSCL TVD スキーム⁴⁰を適用した有限 体積法オイラーソルバーを用いている。数値流束は、 AUSM(Advection Upstream Splitting Method)タイプ の近似リーマン解法の一種であるSimple High-resolution Upwind Scheme (SHUS)⁴¹により求めている。このスキ ームは数値拡散が小さいという特徴を持つ。また、時間 積分には4段のルンゲ・クッタ法を用いている。外側背 景格子の境界条件としては、一様流の条件を課してい

表2 作動条件

Thrust Coefficient, C_T	0.0054
Tip Mach Number, M_T	0.664
Advance ratio, μ	0.164
Tip path plane angle	1.0° (aft.)

表3 トリム条	件
---------	---

	Strawn	CAMRAD II
Collective pitch angle	6.14°	5.73°
Lateral Cyclic pitch angle	0.9°	0.97°
Longitudinal Cyclic pitch angle	1.39°	1.86°

る。計算は, JAXAの第3世代の数値シミュレータであ る CeNSS (Central Numerical Simulation System) によ って行った。計算時間としては, CeNSSの CPUを36台 並列に用いて,約1500万点の格子点で完全な周期解を 得るのに約100時間を要する。

BVI騒音の音圧は,CFDで得られたブレード翼面上の 圧力分布を入力として,音響コード⁴²を用いて計算する。 このコードは,FW-H (Ffowcs Williams and Hawkings) 式のFarassat Formulation 1⁴³と呼ばれる形式を用いて作 られている。

3. コードの検証

3.1 BVI 騒音の解析

オリジナルコードを用いて,表2に示された条件で AH-1シリーズの1/7スケール・モデルロータから放出 されるBVI騒音の計算を行った。その結果を実験データ ⁴⁴及び他の計算結果⁴⁵と比較することでAFCなしの状態 でのBVI騒音予測におけるコードの検証を行った。図2 のa)とb)は、それぞれ図3に示された2つの観測点に

おける計算結果と実験値の比較である。Strawnらによ るCFDの結果は灰色の線で示されている。彼らは、ロ ータディスクのローリングモーメントがゼロとなる実 験値の推力に計算結果のトリムを反復計算で合わせる ことはせず,表3に"Strawn"で示されたトリム条件を 直接適用することで計算を行った。点線で示された実 験値に見られる正のピーク(BVIに起因する)は、彼ら の方法ではどちらのマイク位置でも捉えられていない が,同じトリム条件で本解析法によって計算された結 果(細線)は騒音予測をかなり改善している。ここで、 表3に示すCAMRADII (Comprehensive Analytical Code for Rotorcraft Aerodynamics and Dynamics) で得られた トリム条件を本解析法に適用すると, 図中の太線で示さ れるようにマイク3における最初の負のピークと正のピ ークを過大予測している以外は,予測の改善はさらに顕 著となる。従って、BVI騒音の予測はトリム条件に大き

図4 フラップ付きブレードの翼面上圧力分布とトレフツ面上の渦度コンター

図5 アクティブ・フラップのピッチ角

く依存すると言える。図2に見られる本解析法による計 算結果と実験値の間の不一致については、その原因とし て、トリム計算、数値計算のスキーム及び移動重合格子 間の補間における精度不足、粘性とブレード弾性変形を 無視していること、格子解像度の不足などが挙げられる が、少なくともここで示されたようにBVI騒音の特徴で ある音圧履歴における鋭いピークを本方法によって捉 えることに成功したので、本方法の騒音予測能力が検証 されたと言える。

3.2 AFCコードの検証

AFCがブレードの空力に及ぼす影響を本解析法で捉 えることができることを示すために、いくつかの計算 を試みた。図4は、フラップの後縁が最も上方に位置す るとき、中立に位置するとき、最も下方に位置するとき の3ケースについて、ブレード表面上の圧力分布とブレ ードから放出された渦の渦度を可視化したものである。 放出渦の挙動に及ぼすフラップの振幅の影響を把握す るため,振幅として6.0°と15.0°の2つを選んだ。ここで, 図5に示されるAFCのピッチ角は

$$\theta_{AFC}(\phi) = \theta_{0AFC} \cos P_{AFC}(\phi - \phi_{AFC}), \qquad (1)$$

のように定義される。ここで、 ψ 、 θ_{0AFC} 、 P_{AFC} と ψ_{AFC} は、 それぞれブレード方位角、AFCの振幅、周波数、位相 角である。フラップ両端の隙間の幅は0.003Rである。 渦度の等値面はブレード後縁から約1コード分後方に位 置する鉛直面(トレフツ面)上で表示した。ブレードと アクティブ・フラップの諸元及び作動条件は表4に示し た。

3.3 AFCに関する実験結果との比較

本方法による計算結果を,1997年にATICが行った実 験結果¹⁵と比較した。実験に用いられた1枚ブレードの

Blade	
Aspect ratio	10
Airfoil	NACA0012
Twist angle	0.0°
Number of blade	2
Active Flap	
Chord -wise length	0.2c
Span-wise length	0.1R
Position	0.85-0.95R
Amplitude	6.0° and 15.0°
Frequency	4P
Operating Conditi	on
Tip Mach Number, M_T	0.65
Advance ratio, μ	0
Collective pitch angle, θ_0	5.0°

表4 モデルロータの諸元及び作動条件(動作確認用)

モデルロータ(図6)では、ブレードはハブに固定され ており、ピッチング運動のみ可能となっている。表5に ロータ諸元と計算条件を示す。AFCの作動機構につい ては文献46に詳しい。この実験の以下の3つの特徴によ って、CFDとの比較が容易となっている。

- 1) フラップとリードラグ方向の自由度を持たない固定 されたハブであるためトリム計算が不要
- ブレードの剛性が高いので、弾性変形の影響を考慮 する必要がない
- 3) 1枚ブレードなので1周あたりBVIが1回しか発生し

図6 実験に用いられたモデルロータ

ない

図7は、AFCなし、位相角50°及び170°の3つのケー スについて、計算結果と実験値を比較したものである。 図では、波形を見やすくするため170°と50°の結果をそ れぞれ±20°ずらして表示してある。マイクは図8に示 した位置にある。正のピークの直後に見られるなだらか な山は、近傍場の荷重音である。計算結果は、AFCな しの場合、正のピークをかなり過小予測している。また、 実験値に示されている、位相角170°で騒音低減効果が 見られる傾向についても、逆に騒音増加と予測してい る。これらの重大な差異については、以下の議論でその 原因を明らかにする。

図7 音圧に関する計算結果と実験値との比較

4. 位相角の影響

4.1 翼端渦の挙動に及ぼす位相角の影響

ここで計算対象としたモデルロータの翼端渦の軌跡 は、図9のようになる。図に示された鉛直面は一様流と 平行で、ブレードが方位角46°にあるとき、スパン位置 0.9R(Rはロータ半径)の前縁と交差する。この交差点 は、以下に説明する通り、最も強い音源が存在する位置 である。図10は、いくつかの方位角位置において、前 縁から約0.01cの位置でのブレード翼面上圧力の時間変 動 ∂p/∂t(音圧との相関がよく、音源強度の近似を与 えるものと考えられる)をスパン方向に分布させたもの である。計算は、一様流速度が18.0m/sであること以外 表5に示したものと同じ条件で行われた。この図より、

*∂p/∂t*の最大値はブレード方位角が46°のとき,0.9R付近に現れることがわかる。従って,先の交差点に最も強い音源が存在すると考えられる。この交差点でブレードと干渉する渦は,ブレードがψ_{vg}に位置するときにその翼端後縁から吐き出されたもので,ここではψ_{vg}の値は143°である。付け加えると,図10ではそれぞれの方

図10 ブレード翼面上圧力の時間変動

表5 ロータ	₮諸元と	計算条件
--------	------	------

Blade				
Hub type	rigid in flap and lead-lag			
Rotor radius	1m			
Blade chord length	0.12m			
Airfoil	NACA0012			
Twist angle	0.0°			
Planform	rectangular			
Number of blade	1			
Active Flap				
Chord -wise length	0.25c			
Span-wise length	0.18R			
Position	0.80-0.98R			
Amplitude	6.0°			
Frequency	2P			
Operating	Condition			
Free-stream velocity	20.1m/s			
Rotor rpm	600			
Collective pitch angle	5.0°			
Cyclic pitch angle	0.0°			
Shaft tilt angle	0.0°			

位角位置で翼端とミッドスパンに2つのピークが見られる。これは、図9に示すように、曲線状の翼端渦がブレ ードの翼端とミッドスパンで同時にブレードと交差し 始めるからである。

図11は、図7中の鉛直面における渦度のコンターを可 視化したものである。ここでの計算が1枚ブレードに対 して行われていることより、翼端渦は発生からブレード との干渉に至るまで、途中で他のブレードの干渉を受け ないため、その軌跡は極めて単純なものとなっている。

図から明らかなように,渦の垂直方向位置はフラップ位 相角の変化に伴って移動している。

図12は、フラップの動きと渦の垂直方向位置の関係 を定量的に示している。図12a)では,横軸に位相角を, 縦軸に渦発生時の方位角位置 ψ_{VG}におけるフラップ角 (式(1)参照)を取っている。図中に"Neutral"で示さ れた実線は中立位置で、フラップが上方に振れる場合を 正としている。図12b)は、位相角と渦の垂直方向位置 の関係を示すもので、渦の垂直方向位置は図4の鉛直面 上で右から2番目の丸で示された場所で測られている。

図13 2次元的なBVIの分類

図中の実線は干渉するブレードの前縁位置を表し、点線 はAFCなしの場合の渦位置を表す。図12a)とb)を比 較すると、フラップ角と渦の垂直方向位置は極めて相関 がよく、フラップが下がると渦位置も下がり、フラップ が上がると渦位置も上がることがわかる。図12c)は、 図12b)の渦位置と実線の距離として表されるミスディ スタンスを示す。次節では,2次元的に見たBVIを4つ のタイプに分類することで,ミスディスタンスと騒音強 度の関係について論じる。

4.2 位相角が BVI 騒音に及ぼす影響を把握するための簡 易モデル

図14 ミスディスタンスとピーク音圧の関係

表6 渦の半径と循環の計算条件

	Case 1	Case 2	Case 3			
Core radius	0.1	0.1	0.05			
Circulation	0.3	0.6	0.6			

前節で得られたフラップ角と渦位置の関係について の理解をもとに、ここでは位相角がBVI騒音に及ぼす影 響⁴⁷を把握するための簡易モデルを提案する。このモデ ルでは、先に述べた最大音源がBVI 騒音の強度に支配的 影響を持ち、図9の鉛直面におけるBVIが重要であると 考える。図13は、2次元的に見たBVIをI、II、III、IV の4つのタイプに分類したものである。図13a)の左端 の図は、A<d₀のときアクティブ・フラップをもつ先行 ブレードから放出された渦と後続ブレードの関係を示 すものである。ここでAはフラップが最も上方(あるい は下方)に振れたとき放出された渦と中立位置で放出さ れた渦の垂直方向の距離であり, d₀は中立位置で放出 された渦とブレードのミスディスタンスである。式(1) に示すように、AFCの振幅と周波数及びブレードの方 位角を固定すると、フラップ角は位相角 ψ_{AFC} のみの関 数となるので, 渦の垂直位置も位相角の関数として変 化する。図13a)の中央と右端の図は、それぞれミスデ ィスタンスとピーク音圧を位相角の関数として表した ものである。中央の図から右端の図を得るに当っては、 以下の関係式を用いた。

$$SP(d) = \frac{kSP(0)}{d^2 + k} \tag{2}$$

ここで、SPはミスディスタンスdの関数であるピーク

音圧であり, kは定数である。式(2)の右辺は, dが0 のときSP(0)となる。この式は, 簡単な平行 BVIのモデ ル(固定翼の渦発生装置から放出された翼端渦とブレー ドが平行干渉する)での計算から導いた⁴⁸。図14は, 表 6に示された3つケースで求められたミスディスタンス とピーク音圧の関係である。ピーク音圧は, ロータの回 転中心から半径100Rの半球上で求めている。図8の四 角は計算結果を表し,実線は式(2)を用いてカーブフ ィッティングしたものである。以上より,式(2)の仮 定が妥当であることが示された。図13b)-d)は, それぞ れ $d_0 < A < 2d_0, 2d_0 < A, d_0 = 0$ の条件で図13a)と同様 の図を示したものである。 d_0 が相対的にAに対して増 加するに従って, ピーク音圧のグラフが連続的に変化し ている様子が見て取れる。

4.3 AFC用CFDコードを用いた3次元の計算

前節で提案したモデルの妥当性を示すため,図7を得 た条件で3次元CFDの計算を行い,結果を図15に示した。 この計算には、ミスディスタンス,渦のコア径,渦強度 のすべての影響が含まれている。図で,横軸は位相角, 縦軸はピーク音圧を表す。ここで、ピーク音圧は図16 に示すロータ回転中心から半径100Rを持つ半球状の観 測面で求めた。この図に現れた傾向は位相角120°から 170°にへこみを持つので、明らかに図13のタイプIIに 分類されるものである。従って、本研究で提案された簡 易モデルが実際の3次元的なBVI騒音の現象をよくモデ ル化していることが示された。図より、位相角13°から 106°の間でBVI騒音の低減が見られ、位相角60°では最 大値5.62dBを得るに至っている。図中に見られるずれ ψ_d は、図12a)におけるフラップ角のずれに起因してい る。図16に示す半球状の観測面における音圧のコンタ

ーの図から,ピーク音圧が観測されるホットスポットは 方位角方向に150°,緯度方向に75°の点であることがわ かる。従って、一様流とロータ回転速度がともにそれほ ど大きくない今回の条件では、騒音はほぼ下方に伝播す ると言える。付け加えると、図17に示すように同様な 傾向が図8のマイク位置でも見られる。ただし、このマ イク位置では必ずしもピーク音圧が観測されるわけで はないので、騒音低減量は先の半球上の観測点に比べて 小さい。

4.4 騒音予測の改善

図7の実験結果は,表5に示されるように,シャフト 傾角0°の条件で得られたものであるが,文献44には,

この状態でAFCなしの最大のBVI騒音が得られたと報 告されている。しかし,最大の騒音が観測される条件で は,通常ティップパスプレーンは頭上げに傾いている ことから,この実験では風洞の偏流が計測に大きな影 響を及ぼしたと考えられる。そこで,先に述べた簡易モ デルから得られる知見をもって,図7の予測結果を改善 することを試みる。図7の計算結果は偏流の影響を考慮 していないので,先にも述べた通り,図13のタイプII に分類される計算を行ったことになる。故に,図18上 方図の2つの丸で示されるように,位相角50°と170°で それぞれAFCなしに比べて騒音の減少と増加を示す結 果となった。しかし,もしタイプIV (ヘッドオンBVI) で位相角50°と170°のピーク音圧を予測した場合,図18

図20 音圧に関する計算結果と実験値との比較

下方図の2つの丸で示されるように、両方で騒音低減が 得られることになる。また、位相角50°の方が170°より 低減効果はわずかに大きく、さらに、AFCなしの場合 のピーク音圧はタイプIIよりもタイプIVの方が大きい。 これらの傾向はすべて図7の実験結果とよく一致してお り、タイプIVの計算を行うことで図7の予測結果を改善 できることがわかる。

この考え方の妥当性を確認するため、タイプIVの条件で3次元のCFD計算を行った。ここでは、その条件 を達成するために、ロータのシャフト傾角を調整するこ とで、風洞の偏流の影響を模擬した。用いるべきシャフ ト傾角を決定するに当っては、シャフト傾角が最大音源 の存在する位置における *∂p/∂t*の値に及ぼす影響を調 べ(図19)、*∂p/∂t*が最も大きくなるシャフト傾角1.4°(頭 上げ)を選定し、図20に計算結果と実験値を比較した。 図20の計算結果は、図7のそれに比べて、AFCなしの 正のピーク値を大幅に改善するとともに、位相角50°と 170°の影響も定性的に正しく予測している。従って、こ こで開発されたAFC用のCFDコードは、定量的に改善 の余地があるものの、定性的にはAFCの位相角がBVI 騒音に及ぼす影響を正しく予測することが示された。

図21は、このタイプIVの条件下で位相角がピーク音 Eに及ぼす影響を図示したものである。最初の負のピー クは2番目の負のピークよりだいぶ小さいが、全体の傾 向は図13d)に示したとおりである。ピークに違いが出 る理由は、実現象をより正確に模擬する3次元計算にお

図21 タイプIVにおいて位相角がピーク音圧に及ぼす 影響

いては、2番目のピークの方が最初のピークに比べて強い渦(フラップが最も下がった位置で発生した渦)と干渉するからである。ここでは、BVI騒音の強度に最も大きな影響を与えるミスディスタンスのみに着目したが、 AFCがBVI騒音に与える影響をより包括的に把握するためには、渦のコア径や渦強度、さらにはブレードの弾 性変形を同時に考慮する必要がある。

5. アクティブ・フラップ位置の影響

5.1 計算条件

AFCの性質をより深く把握するため,前節の検証に 用いたモデルロータと作動条件を用いて,フラップのス

図23 フラップの動きに応じた渦発生の概念図

表6 テストケース

Position Phase (R) (degree)	40-58%	50-68%	60-78%	65-83%	68-86%	70-88%	73-91%	77-95%	80-99%
0		0		0	0		0		
20				0	0		0		
40				0	0		0		
50									
60		0		0	0		0	0	
80				0	0		0		
100				0	0		0		
120		0		0	0		0	0	
130									
140				0	0		0		
150									
160				0	0		0		
170									
180		0		0	0		0	0	

•: main calculations : sub calculations

パン方向位置が騒音に及ぼす影響を解析した。図22に 示すように,フラップのスパン方向の長さは0.18Rとし, フラップの取り付け位置は内側のフラップ端を0.4Rか ら0.8Rに変えることで設定した。また,表7に幾何的パ ラメータと計算格子点数を示す。それぞれの幾何形状 に対する計算ケースを表6に示す。これらは同時に位相 角の影響も考慮している。図23はフラップの動きに応 じた渦の発生に関する概念図である。フラップの振動に 従ってフラップ部分での揚力が変化することで、ブレー ド全体の揚力変動が発生する。このとき、ブレード揚力 に強く依存している渦の強さだけでなく、渦の垂直方向 位置も振動する。弾性変形のない固いブレードの場合、 BVI騒音の低減におけるAFCの主要な役割は、揚力を 変えることで翼端渦とブレードのミスディスタンスを 変化させることもあるが、2次的な役割として回転方向 の異なる2つの渦をフラップの両端から作り出すことに

図24 方位角の関数として得られた揚力の変動

図25 ブレード1周分の渦度等値面(フラップ位置0.80-0.90R, 位相角60°)

ある(図23)。ブレード本体から発生する翼端渦に比べ れば、これらのフラップ渦の強度は小さい。また、フラ ップ渦の挙動は、フラップの周期、振幅及び位相角など の条件に依存する。このフラップ渦がBVIに及ぼす影響 を次節で述べる。

4節の簡易モデル構築に用いた式(2)から、ミスデ ィスタンスがブレード揚力に比例するとの仮定を用い ると、フラップの動きとピーク音圧との関係を直接予測 することができる。フラップの位置や動きを考慮して断 面揚力をスパン方向に積分することで、フラップを持つ ブレードの揚力を求める簡単なモデルを導き出すこと ができる。断面揚力は、一様流マッハ数、方位角、フラ ップの配置、フラップの作動条件を考慮して2次元のブ レード翼素理論を適用することで求められる。ここで、 フラップの影響は適切な重み関数を適用することで大 まかにモデル化する。図24は結果の一例として,フラ ップが0.65Rから0.83Rに位置するとき,ブレード翼素 理論とCFD計算で得られた揚力の変動を方位角の関数 として表示したものである。CFDの結果は,ブレード 翼素理論で得られる大まかな傾向について同様の結果 を示している上,簡易理論では捉えられないBVIに起因 する45°付近での変動についても予測している。これは, CFDによる本解析法の妥当性を示すひとつの傍証とな っている。この図でAFCによる揚力の変化を調べると, AFCなしに比べて位相角が0°の場合は1.8%増加,位相 角が60°及び120°の場合はそれぞれ1.4%及び0.8%の減 少となった。最もBVI騒音の低減効果が大きい位相角 60°の場合を考えると,巡航時と異なって揚力の減少が あまり大きな問題とならない着陸時であることを考え れば,1.4%の減少は十分許容範囲であると考えられる。

(a) AFCなし
 (b) フラップ位置 0.60-0.78*R*, 位相角 60°(c) フラップ位置 0.80-0.98*R*, 位相角 60°
 図26 渦度等値面の鳥瞰図と鉛直断面における渦度コンター(ブレード方位角 180°, フラップ位相角 60°)

図27 渦度コンターの断面図の詳細

図28 ブレード方位角0°のときの渦度鳥瞰図と断面コンター

5.2 空力解析

図25は、フラップ位置を0.80Rから0.90Rまで、位相 角を60°としたとき、ブレード1周分の渦度等値面を上 方から見た図である。図では翼端渦とフラップ渦(フラ ップの両端から発生する渦)の両者の動きがよく可視化 されている。翼端渦のコア径はブレードのサイクリック 運動に応じて変化しており、フラップ渦はフラップの動 きに応じて消えたり現れたりしている。フラップの動き が渦の挙動に及ぼす影響をさらに詳細に検討するため, 図26に渦度等値面の鳥瞰図と鉛直断面における渦度コ ンターを示した。ここで、ブレード方位角は180°、フ ラップ位相角は60°,また、フラップ位置は0.60-0.78R と0.80-0.98Rとした。鉛直断面は、図14に示す最も顕著 なBVIが見られる位置に選定した。AFCなしの場合に 比べて,AFCありの場合は明らかに2つのフラップ渦が 確認できる。フラップ位置による相違は主に外側フラッ プ渦の挙動に起因している。フラップ位置0.60-0.78Rの 場合は、外側フラップ渦は完全に翼端渦と分離した形と なっている。それに対して、フラップ位置0.80-0.98Rの 場合は、外側フラップ渦が翼端渦とひとつになる方向 で動いているように見える。フラップ位置による翼端渦 とフラップ渦の挙動の相違が、渦度コンターの断面図で ある図27からさらに明確に把握できる。フラップ位置 が外側に移動するにつれて外側及び内側フラップ渦も 外側に移動する。フラップが翼端に十分近いと、外側フ ラップ渦は翼端渦と融合してひとつの大きな渦となり、 その形も渦の強さも異なったものとなる。

図28は、ブレード方位角を0°に固定して、フラップ 位置と位相角を変えた4つのケースについて渦度の鳥瞰 図と断面コンターを示したものである。図の断面コン ターより、一様流方向にはまず最初にフラップ渦が流 れてきて、その後に異なった垂直方向位置を翼端渦が 流れてくる様子が見て取れる。図29は、図28で示した 4つのケースについて、渦度コンターの時間変化を表す。 この図は、翼端渦とフラップ渦が発生してからBVIに至 るまでどのような軌跡を辿るかが克明に分かる図とな っている。図29(a)中の2つの点線は、強い翼端渦と 弱いフラップ渦の軌跡を大まかに表している。位相角

(a) 位相角60°, フラップ位置0.60-0.78R

(b) 位相角120°, フラップ位置0.60-0.78R

(d) 位相角120°, フラップ位置0.80-0.98R

図29 フラップ位置と位相角の異なる4つのケースにおける渦度コンターの時間変化

を60°から120°に変えると、どちらのフラップ位置のケ ースでもフラップ渦の軌跡は上方にシフトする。また、 フラップ位置0.80-0.98Rのケースで翼端渦の軌跡がフラ ップ位相角の変化に伴って大きく影響を受けているの に対して、フラップ位置0.60-0.78Rでは影響があまり顕 著でない。その結果、後続ブレードと干渉するBVIの位 置において、フラップ位置0.80-0.98Rでは位相角による ミスディスタンスの変化が極めて顕著となっている。 図30は、上/下面の3%コード位置におけるスパン方 向の圧力分布を1周分コンターにした図で、方位角45° 位置あたりで急激な変化が見られる。これがBVI騒音 の原因となる圧力変動である。フラップ位置の相違に 伴う圧力分布の変化は、主に下面の90%位置周辺で方 位角0°から45°に現れる。これは、ブレードとフラッ プ渦の干渉に起因すると考えられる。フラップ位置が 0.40.58Rから0.7-0.88Rに移ると、フラップ渦に起因し

図30 上/下面の3%コード位置におけるスパン方向の1周分圧力コンター

図31 ブレード表面上の非定常圧力分布(AFCなし)

図32 フラップ位置がブレード表面上の非定常圧力分布に及ぼす影響

て圧力分布が変化する位置はBVIが発生する方位角45° に近づく。この現象をより深く理解するために,コード 位置3%,スパン位置90%におけるブレード表面上の非 定常圧力分布を図31と32に示す。ここで,フラップ位 相角は120°とした。図21はAFCなしの場合の結果である。 圧力の時間微分は騒音強度とよい相関を持っており,こ の図では方位角45°あたりにその最大値が現れる。図29 と30にも示したとおり,フラップ渦とブレードの干渉 は翼端渦とブレードの干渉の直前に発生すると考えら れる。図32は,図31中に四角で囲まれた部分を拡大し たもので,AFCなしのみならずフラップ位置を変えた ケースにも表示している。フラップを持つ場合, どのケースでも翼端渦に起因するピークとその反対向 きにフラップ渦に起因する局所的なピークが見られる。 フラップ位置が外側に移動するほど,図中の矢印で示 したようにフラップ渦に起因するピークは翼端渦に起 因するピークに近づいていく。この結果より,本解析法 は翼端渦とブレードの干渉のみならず,フラップ渦と ブレードの干渉も捉えることに成功していると言える。 フラップ渦との干渉による圧力変動が翼端渦とのそれ に比べて小さいことから,フラップ渦がBVI騒音の強度 に与える影響はあまり大きくないと言えるが,フラップ 位置が最も外側のケースでは渦の融合による翼端渦そ のものの変化で,BVIにおける圧力変動が大きくなって いる。従って,そこから発生する騒音も大きなものとな っていることが予想される。騒音については,次節で詳 細に議論する。

図33 フラップ位置と位相角が音圧履歴に及ぼす影響

5.3 騒音解析

フラップ位置と位相角が騒音に及ぼす影響を把握す るため、図16の半球状観測面において音圧が最も高く なる位置でブレード1周あたりの音圧履歴を図33に表示 した。図には、BVI騒音の特徴である鋭いピークが見ら れ、その強さはフラップの条件に依存していることが分 かる。フラップ位置が外側に移動するにつれて音圧のピ ーク値は高くなっている。フラップ位置が0.80-0.98Rの とき、位相角60°でのピーク値はAFCなしのピーク値よ り低いが,位相角120°では格段に高くなっている。一方, フラップ位置が0.60-0.78Rのケースでは、低減量は小さ いものの位相角120°で騒音低減が得られている。もう ひとつ着目すべき点は、図32で説明したフラップ渦と の干渉の影響である。フラップ渦と翼端渦の融合による 騒音の増加はもちろん考えられるが、融合しないフラッ プ渦との干渉に起因する騒音の増加は翼端渦との干渉 による騒音に比べて無視できる。従って、振動低減など 騒音低減以外の目的でフラップを比較的内側につける 場合, そこから発生するフラップ渦とブレードの干渉に よる騒音の増加は考えなくても済むという知見が得ら れた。

フラップ位置の影響をさらに明確にするため,図34 にいくつかの位相角においてマイク1と遠方場で計算さ れたピーク音圧をフラップ位置に対してプロットした。 図より,フラップ位置が外側になるほど異なる位相角間 での結果の相違が大きくなる。即ち,BVI騒音に及ぼす 影響が大きくなる。逆に,フラップ位置が内側になるほ ど異なる位相角間での結果の相違は小さくなり,それ は図35にも現れていた。もちろんこの結果は飛行条件 などBVIの発生条件にも大きく依存するので,ここでの 結果をすべてのケースに当てはめることはできないが,

ここで見られた逆の傾向が現れる現象は、フラップ位 置によって渦が騒音に及ぼすメカニズムが根本的に異 なることを意味すると考えられる。即ち、内側フラッ プと外側フラップでは、BVI騒音に及ぼす影響の大きい 2つのパラメータであるミスディスタンスと渦強度に対 する感度が逆であると考えられる。フラップ位置が外側 になると、ブレード揚力の変化は大きくなり、ミスディ スタンスと渦強度の変化も大きくなるので,結果として BVI騒音に及ぼす影響も増大する。ただし、騒音への寄 与で考えたとき、ミスディスタンスが最も影響力の大き なパラメータである。一方、フラップ位置が内側になる と、フラップの動きがミスディスタンスに及ぼす影響は 減少するので、ミスディスタンスそのもののBVI騒音へ の影響力も小さくなる。そして、渦強度も小さくなるも のの、その影響力は相対的にミスディスタンスより大き くなると考えられる。

さらにフラップ位置が内側に移動すると,図34の40 %スパン位置に見られるように,もはやミスディスタン スも渦強度もほとんどフラップの影響を受けなくなり 無視できるまでになる。ここで見られたメカニズムが逆 転する現象は,図35に示すようにフラップの内端が60 %から70%スパンのときに発生する。逆転する位置の より正確な特定とそのメカニズム把握についてはさら なる計算が必要であるが,ここでは,フラップがBVI騒 音の低減に及ぼす影響と一言で言ってもその位置によ って現象が大きく異なるという知見も得ることができ た。

図36は、位相角を横軸にとって、いくつかのフラップ位置について遠方場における音圧の変化を表示したものである。フラップ位置0.80-0.98Rに比べて、フラップ位置0.60-0.78Rの場合は変動の振幅が小さく、BVI騒

図34 マイク1と遠方場で計算されたピーク音圧とフラップ位置の関係

図35 遠方場で計算されたピーク音圧とフラップ位置の関係

図36 フラップの位相角に対する遠方場での音圧の変化

音の低減効果も小さい。また,図34で説明した逆転現 象も図中で正負のピークが逆転する結果に現れている。 以上より,もしAFCで最大の騒音低減効果を得ようと すれば,なるべく外側に配置したフラップを適切な位相 角で作動させるべきであることが結論付けられる。ここ では,その具体的な値は,フラップ位置が0.80-0.98*R*, 位相角が60°であった。

6. 結論

ヘリコプタのBVI騒音を低減するアクティブ・フラッ プ用のCFDコードを開発し、AFCの位相角およびフラ ップ位置が騒音に及ぼす影響を解析することで、以下の 結論を得た。

- 1. 位相角がBVI騒音に及ぼす影響を把握するための簡易 モデルを提案し,それがうまく機能することを示し た。
- 2. 簡易モデルから得られる知見を用いることにより, AFC用CFDコードによる実験値の予測結果は格段に 改善された。

- 3. BVI騒音の風洞試験は流れの偏流に極めて敏感である ため、コード検証用の計算を行うに当っても特別の配 慮が必要である。
- 4. ここで用いた特定の条件では、位相角60°のとき 5.62dBの騒音低減効果が得られた。
- 5. フラップを翼端に近い位置に配置した場合, フラップ の外端から発生するフラップ渦がブレードの翼端渦 と融合する現象が捉えられた。また, それが翼端渦の 強度に影響を及ぼし, BVIの起こる瞬間にブレード上 圧力変動を増加させることが確認された。
- 6. フラップ位置を内側から外側に移動させると、ある位置を境に騒音低減のメカニズムが劇的に変わることが分かった。その原因はAFCの2つの重要なパラメータであるミスディスタンスと渦強度の騒音に対する寄与度が逆転することにあると考えられるが、その正確な把握には更なる解析が必要である。
- フラップ位置がBVI騒音に及ぼす影響を定量的に予測 し、より翼端に近い位置に配置されたフラップを適正 な位相角で作動させることが騒音低減に有効である ことを示した。

参考文献

- Gopalan, G., Schmitz, F. H., and Sim, B. W., Flight Path Management and Control Methodology to Reduce Helicopter Blade-Vortex Interaction (BVI) Noise, AHS Vertical Lift Aircfraft Design Conference, San Francisco, CA, Jan., 2000.
- Schmitz, F. H., Gopalan, G., and Sim, B. W., Flight Trajectory Management to Reduce Helicopter Blade-Vortex Interaction (BVI) Noise with Head/ Tailwind Effects, 26th ERF, No. 77, The Hague, The Netherlands, Sep., 2000.
- Boxwell, D. A. and Schmitz, F. H., Full-Scale Measurements of Blade-Vortex Interaction Noise, Journal of the American Helicopter Society, Vol.27, (4), Oct, 1982, pp.11-27.
- Martin, R. M. and Connor, A. B., Wind-Tunnel Acoustic Results of Two Rotor Models with Several Designs, NASA-TM 87698, 1986.
- Yu, Y. H., Liu, S. R., Jordan, D. E., Landgrebe, A. J., Lorber, P. F., Pollack, M. J., and Martin, R. M., Aerodynamic and Acoustic Test of a United Technologies Model Scale Rotor at DNW, AHS 46th Annual Forum, May, 1990.
- Lowson, M. V., Progress Towards Quieter Civil Helicopters, 17th ERF, No. 59, 1991.
- Yu, Y. H., Gmelin, B., Splettstoesser, W., Philippe, J.J., Prieur, J., and Brooks, T., Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology, Prog. Aerospace Sci., Vol. 33, 1997, pp. 647-687.
- Baeder, J. D., "Passive Design for Reduction of High-Speed Impulsive Rotor Noise," American Helicopter Society 52nd Annual Forum Proceedings, Washington, D.C., June 4-6, 1996.
- Aoyama, T., Aoki, M., Kondo, N., Saito, S., and Kawachi, K, "Effect of Blade-Tip Shape on High-Speed Rotor Noise," AIAA Paper 96-2380, June 1996.
- Yu, Y. H., Gmelin, B., Splettstoesser, W., Philippe, J.J., Prieur, J., and Brooks, T., "Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology," Progress in Aerospace Sciences, Vol. 33, 1997, pp. 647-687.
- Y. H. Yu, C. Tung, B. van der Wall, H. Pausder, C. Burley, T. Brooks, P. Beaumier, Y. Delrieux, E. Mercker, and K. Pengel, "The HART II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic

Pitch Control (HHC) Inputs - The Joint German/ French/Dutch/US Project, " 58th Annual Forum of the American helicopter Society, Montreal, Canada, June 11-13, 2002.

- B. van der Wall, "2nd HHC Aeroacoustic Rotor Test (HART II)- Part I: Test Documentation -," DLR 1B 111-2003/21, Braunschweig, Germany, 2003.
- B. van der Wall, and C. Burley, "2nd HHC Aeroacoustic Rotor Test (HART II)- Part II: Representative Results -," DLR 1B 111-2005/3, Braunschweig, Germany, 2005.
- Arnold, U. T. P., and Fürst, D., "Closed Loop IBC Results from Recent CH-53G Flight Tests," Paper No. 19, 30th European Rotorcraft Forum, Marseilles, France, September 14-16 2004.
- Kobiki, N., Kondo, N., Saito, S., Akasaka, T., and Tanabe, Y., "Active Tab, a New Active Technique for Helicopter Noise Reduction," Paper No. 50, 29th European Rotorcraft Forum, Friedrichshafen, Germany, September 16-18, 2003.
- Kobiki, N., Akasaka, T., Kondo, N., Tanabe, Y., and Saito, S., "An Experimental Study of On-blade Active Tab for Helicopter Noise Reduction," Paper No. 87, 30th European Rotorcraft Forum, Marseilles, France, September 14-16 2004.
- Aoyama, T., Yang, C., and Saito, S., "Numerical Analysis of BVI Noise Reduction by Active Tab," American Helicopter Society 60th Annual Forum Proceedings, Baltimore MD, June 7-10, 2004.
- Riemenschneider, J., Keye, S., Wierach, P., and Rochettes, H. M., "Review of the Common DLR/ ONERA Project "Active Twist Blade" (ATB)," Paper No. 22, 30th European Rotorcraft Forum, Marseilles, France, September 14-16 2004.
- Shin, S., Cesnik, C. E. S., and Hall, S. R., "Closed-loop Control Test of the NASA/Army/MIT Active Twist Rotor for Vibration Reduction," American Helicopter Society 59th Annual Forum Proceedings, Phoenix, AZ, May 6-8, 2003.
- Weems, D. B., Anderson, D. M., Mathew, M. B., and Bussom, R. C., "A Large-Scale Active-Twist Rotor," American Helicopter Society 60th Annual Forum Proceedings, Baltimore MD, June 7-10, 2004.
- Booth, E. R., Jr., and Wilbur, M. L., "Acoustic Aspects of Active-Twist Rotor Control," American Helicopter Society 58th Annual Forum Proceedings, Montreal, Canada, June 11-13, 2002.

- Friedmann, P. P., "Vibration Reduction In Rotorcraft Using Actively Controlled Flaps - Their Evolution and Potential for Improving Rotorcraft Technology," Paper No. 21, 30th European Rotorcraft Forum, Marseilles, France, September 14-16 2004.
- Liu, L., Patt, D., and Friedmann, P. P., "Simultaneous Vibration and Noise Reduction in Rotorcraft Using Aeroelastic Simulation," American Helicopter Society 60th Annual Forum Proceedings, Baltimore MD, June 7-10, 2004.
- Patt, D., Liu, L., and Friedmann, P. P., "Achieving Simultaneous Reduction of Rotorcraft Vibration and Noise Reduction Using Simulation," Paper No. 25, 30th European Rotorcraft Forum, Marseilles, France, September 14-16 2004.
- Bernhard, A. P. F., O'Neill, J., Kohlhepp, F., Welsh, W., and Lorber, P., "Active Rotor Control (ARC) of a Mach-Scale Trailing Edge Flap Rotor," American Helicopter Society 57th Annual Forum Proceedings, Washington, DC, May 9-11, 2001.
- Stevens, P. W., and Smith, E. C., "Active Interrogation of Helicopter Rotor Faults using Trailing Edge Flap Actuation," American Helicopter Society 57th Annual Forum Proceedings, Washington, DC, May 9-11, 2001.
- Hasegawa, Y., Katayama, N., Kobiki, N., and Yamakawa, E., "Whirl Test Results of ATIC Full Scale Rotor System," Paper No. 13, 26th European Rotorcraft Forum, The Hague, Netherlands, September 26-29, 2000.
- Hasegawa, Y., Katayama, N., Kobiki, N., Nakasato, E., Yamakawa, E., and Okawa, H., "Experimental and Analytical Results of Whirl Tower Test," American Helicopter Society 57th Annual Forum Proceedings, Washington, DC, May 9-11, 2001.
- Fink, D. A., Hawkey, T. J., Gaudreau, M. P. J., Wellman, B., and Ormiston, R. A., "An Electromagnetic Actuator for Individual Blade Control," American Helicopter Society 56th Annual Forum Proceedings, Virginia Beach, VA, May 2-4, 2000.
- Leconte, P., and Kube, R., "Main Rotor Active Flaps: Numerical Assessment of Noise and Vibration Reduction," 2nd DLR-ONERA Aerospace Symposium, Berlin, Germany, June 15-16, 2000.
- Enenkl, B., Klöppel, V., Preissler, D., and Jänker,
 P., "Full Scale Rotor with Piezoelectric Actuated

Blade Flaps," Paper No. 89, 28th European Rotorcraft Forum, Bristol, UK, September 17-20, 2002.

- 32. Toulmay, F., Klöppel, V., Lorin, F., Enenkl, B., and Gaffiero, J., "Active Blade Flaps - The Needs and Current Capabilities," American Helicopter Society 57th Annual Forum Proceedings, Washington, DC, May 9-11, 2001.
- http://www.boeing.com/news/releases/2004/q2/ nr_040518t.html.
- 34. Koratkar, N. A., Spencer, M. G., and Chopra, I., "Wind Tunnel Testing of a Mach-Scaled Active Rotor with Trailing-Edge Flaps," American Helicopter Society 57th Annual Forum Proceedings, Washington, DC, May 9-11, 2001.
- 35. Ochi, A., Aoyama, T., Saito, S., Shima, E., and Yamakawa, E., BVI Noise Predictions by Moving Overlapped Grid Method, AHS 55th Annual Forum, Montreal, Canada, May 1999.
- Yang, C., Aoyama, T, Saito, S., Numerical Analysis of Interaction Noise between Main Rotor and Tail Rotor of Helicopter, 24th ICAS, Yokohama, August, 2004.
- 37. Sim, B. W. and Lim, J. W., "Bladee-Vortex Interaction (BVI) Noise & Airload Prediction Using Loose Aerodynamic/Structural Coupling", American Helicopter Society 62nd Annual Forum, Phoenix, Arizona, 2006.
- 38. Peron, S., Benoit, C., Renaud, T., Sides, J., Tanabe, Y., Saito, S., Yang, C., and Aoyama, T., "ONERA/JAXA common investigations on CFD tools for an accurate prediction of BVI", International Forum on Rotorcraft Multidisciplinary Technology, AHS Specialists' Conference, Seoul, Korea, October 15-17, 2007
- 39. Aoyama, T., Kawachi, K., Saito, S., Unsteady Calculation for Flow-field of Helicopter Rotor with Various Tip Shapes, 18th European Rotorcraft Forum, Paper No.B03, Avignon, France, September 1992.
- Yamamoto, S. and Daiguji, H., Higher-Order-Accurate Upwind Schemes for Solving the Compressible Euler and Navier-Stokes Equations, J. of Computers & Fluids, 22, pp.259-270, 1993.
- Shima, E., and Jounouchi, T., "Role of CFD in Aeronautical Engineering (No.14) - AUSM type Upwind Schemes -," NAL SP-34, 1999, pp. 7-12.
- Nakamura, Y., and Azuma, A., "Rotational Noise of Helicopter Rotors," Vertica, vol. 3, No. 3/4, pp.293-316, 1979.
- 43. Farassat, F., Theory of noise generation from moving

bodies with an application to helicopter rotors, NASA TR R 451, 1975.

- 44. Splettstoesser, W. R., Schultz, K. J., Boxwell, D. A., and Schmitz, F. H., "Helicopter Model Rotor Blade Vortex Interaction Impulsive Noise: Scalability and Parametric Variations," Paper No. 18, 10th European Rotorcraft Forum, The Hague, The Netherlands, August 28-31, 1984.
- Strawn, R. C., Duque, E. P. N., and Ahmad, J., "Rotorcraft Aeroacoustics Computations with Overset-Grid CFD Methods," Journal of the American Helicopter Society, Vol. 44, (2), Apr. 1999, pp. 132-140.
- 46. Kobiki, N., Tsuchihashi, A., Murashige, A., and Yamakawa, E., "Elementary Study for the Effect of HHC and Active Flap on Blade Vortex Interaction,"

Paper No. 29, 23rd European Rotorcraft Forum, Dresden, Germany, September 16-18, 1997.

- Malovrh, B., and Gandhi, F., "Sensitivity of Helicopter Blade-Vortex Interaction Noise and Vibration to Interaction Parameters," Journal of Aircraft, Vol. 42, (3), May-June 2005, pp. 685-697.
- 48. Caradonna, F., Kitaplioglu, C., McCluer, M., Baeder, J., Leishman, G., Berezin, C., Visintainer, J., Bridgeman, J., Burley, C., Epstein, R., Lyrintzis, A., Koutsavdis, E., Rahier, G., Delrieux, Y., Rule, J. and Bliss, D., "A Review of Methods for the Prediction of BVI Noise", American Helicopter Society Technical Specialists' Meeting for Rotorcraft Acoustics and Aerodynamics, Williamsburg, VA, October 28-30, 1997.

	宇宙航空	2研究開発機	構研究開発報告	JAXA-BR	-07-020
--	------	--------	---------	---------	---------

-				
	発	行	平成20年2月29日	
	編集・	発行	宇宙航空研究開発機構	
			〒182-8522 東京都調布市深大寺東町7-44-1	
			URL: http://www.jaxa.jp/	
	印刷・	製本	株式会社 実業公報社	
	本書及(び内容	についてのお問い合わせは、下記にお願いいたします。	
	宇宙船	抗空研	F究開発機構 情報システム部 研究開発情報センター	
	〒305-8505 茨城県つくば市千現2-1-1			
	TEL:029-868-2079 FAX:029-868-2956			

©2008 宇宙航空研究開発機構

※本書の一部または全部を無断複写・転載・電子媒体等に加工することを禁じます。

