

ISSN 1349-1113 JAXA-RR-07-002

# 宇宙航空研究開発機構研究開発報告

JAXA Research and Development Report

Straight line systemsの摂動系に対する衝撃波干渉条件について

岸 恭子, 岩宮 敏幸, 高橋 匡康

2007年10月

## 宇宙航空研究開発機構

Japan Aerospace Exploration Agency

This document is provided by JAXA.

## Straight line systems の摂動系に対する 衝撃波干渉条件について\*

岸 恭子 \*1 岩宮 敏幸 \*1 高橋 匡康 \*1

### On Shock Interaction Conditions for a Perturbation of Straight Line Systems<sup>\*</sup>

Kyoko KISHI<sup>\*1</sup>, Toshiyuki IWAMIYA<sup>\*1</sup> and Tadayasu TAKAHASHI<sup>\*1</sup>

#### ABSTRACT

The purpose of this report is to prove the existence of  $2 \times 2$  hyperbolic non-linear systems of conservation laws which satisfy shock interaction conditions such that different from Smoller-Johnson class. By using the fact that straight line systems reduce to two scalar conservation laws, we estimate shock interaction conditions for a certain perturbed system of straight line systems.

#### 概 要

本稿の目的は, Smoller-Johnson class とは異なる衝撃波干渉条件を満足する2×2非線形双曲型保存則系の存在を示すことである. Straight line system と呼ばれる系がスカラー保存則に帰着されることを用いて, Straight line system のある摂動系に対する衝撃波干渉条件の評価を行う.

#### 1. はじめに

本稿では、次の形の2×2双曲型保存則系

(1.1) 
$$\begin{cases} u_t + f(u, v)_x = \\ v_t + g(u, v)_x = \end{cases}$$

を考える. ここでt > 0,  $-\infty < x < \infty$  とし, u = u(t,x), v = v(t,x) は未知関数とする. また $f,g: \mathbb{R}^2 \rightarrow \mathbb{R}$  は,  $C^2$ -級関数で,  $f_v g_u \neq 0$  を満たすものとする.

0

0

非線形双曲型保存則系においては、滑らかな初期関数 に対してもその解が有限時間内に不連続性をもつという 現象が知られている.このように有限時刻で解が不連続 となる現象は、 $(u_l, v_l), (u_r, v_r)$ から成る初期値:

| $\left(u(0,x),v(0,x)\right) = \left\{ \begin{array}{l} \\ \end{array} \right.$ | $(u_l, v_l)$ | x < 0 |
|--------------------------------------------------------------------------------|--------------|-------|
|                                                                                | $(u_r, b_r)$ | x > 0 |

とする,いわゆる Riemann 問題として一般化され,その 解は衝撃波 (shock wave) 及び膨張波 (rarefaction wave) として求められる (Riemann 問題とその解の存在や一意 性,また衝撃波及び膨張波などについての詳細に関して は, [8] などの文献を参照されたい).

Riemann 問題が可解であるためには, 衝撃波曲線 (shock curve) 及び膨張波曲線 (rarefaction curve) が大 域的に存在することが必要となる.

本稿では、Temple class の特別な例である straight line system がスカラー保存則に分解できることを用いて、 その摂動系に対する衝撃波干渉条件 (shock interaction condition)の正負に関する評価を行い、Smoller-Johnson class とは異なる衝撃波干渉条件を満足する系が存在する ことを述べる. 衝撃波干渉条件は、衝撃波の干渉後に起こ る現象の幾何学的特徴付けを与える条件であり ([4], [9])、 衝撃波曲線の大域的存在を保証する条件として期待され

\*1 総合技術研究本部 計算科学研究グループ (Computational Science Research Group, Institute of Aerospace Technology)

<sup>\*</sup> 平成 19 年 4 月 27 日受付 (Received 27 April, 2007)

るものである.

#### 2. 衝撃波干渉条件

**2.1** 固有ベクトルの正規化 系 (1.1)の流束関数

$$F = \left(\begin{array}{c} f \\ g \end{array}\right)$$

に対する Jacobian 行列を

$$\nabla F = \left(\begin{array}{cc} f_u & f_v \\ g_u & g_v \end{array}\right)$$

とする. ∇F は相異なる実固有値をもつとし, それらの 実固有値を

(2.1) 
$$\lambda_1(u,v) < \lambda_2(u,v)$$

とする. これは, 系 (1.1) が strictly hyperbolic ([5]) で あることを意味している.

**Remark 2.1.** 系 (1.1) の固有値  $\lambda_i$  に対して,以下が成 立する:

(i)  $f_v g_u > 0 \mathcal{O} \succeq \mathfrak{S}$ ,

 $\lambda_1 < \min\{f_u, g_v\} \le \max\{f_u, g_v\} < \lambda_2.$ 

(ii)  $f_v g_u < 0 \, \mathcal{OE}$  ),

$$\min\{f_u, g_v\} < \lambda_1 < \lambda_2 < \max\{f_u, g_v\}.$$

系 (1.1) の固有値  $\lambda_1$ ,  $\lambda_2$  に対応する右固有ベクトルを それぞれ  $\boldsymbol{r}_1$ ,  $\boldsymbol{r}_2$ , 左固有ベクトルを  $\boldsymbol{\ell}_1$ ,  $\boldsymbol{\ell}_2$  で表し, 次 のような正規化を仮定する:

- (2.2)  $\nabla \lambda_i \cdot \boldsymbol{r}_i > 0$  for i = 1, 2,
- (2.3)  $\boldsymbol{\ell}_i \cdot \boldsymbol{r}_i > 0 \quad \text{for } i = 1, 2.$

ここで (2.2) 式は genuinely nonlinear ([5]) であること を意味している.

#### 2.2 衝撃波干涉条件

Fの2階 Fréchet 微分を

$$\nabla^2 F(\boldsymbol{r}_i, \boldsymbol{r}_i) = \begin{pmatrix} \boldsymbol{r}_i^T \cdot \nabla^2 f \cdot \boldsymbol{r}_i \\ \boldsymbol{r}_i^T \cdot \nabla^2 g \cdot \boldsymbol{r}_i \end{pmatrix}$$

で表す. ここで  $\nabla^2 f$ ,  $\nabla^2 g$  は Hessian 行列

$$\nabla^2 f = \begin{pmatrix} f_{uu} & f_{uv} \\ f_{vu} & f_{vv} \end{pmatrix}, \quad \nabla^2 g = \begin{pmatrix} g_{uu} & g_{uv} \\ g_{vu} & f_{vv} \end{pmatrix}$$

である.

衝撃波が干渉することによって新たに発生する衝撃波 または膨張波に対する指標として,次のスカラー値

$$\boldsymbol{\ell}_{i} \cdot \nabla^{2} F(\boldsymbol{r}_{i}, \boldsymbol{r}_{i}) \qquad (i, j = 1, 2, \ i \neq j)$$

が用いられる ([9]). 但しここで  $r_i$  及び  $\ell_i$  は, 系 (1.1) の 正規化された右固有ベクトル及び左固有ベクトルとする.

スカラー値  $\ell_j \cdot \nabla^2 F(\mathbf{r}_i, \mathbf{r}_i)$ の正負は,同じ固有値に 対応する衝撃波が干渉した場合に新たに発生する波を特 徴付けるものである.このことを以下の (i)~(iv) に図示 した.但し, *iS* は  $\lambda_i$  に対応する衝撃波, *iR* は  $\lambda_i$  に対 応する 膨張波を表すものとする (*i* = 1, 2).

(i)  $\ell_2 \cdot \nabla^2 F(r_1, r_1) > 0$ の場合, 1Sと1Sが干渉す ると、1Sと2Rが発生する.



(ii)  $\ell_1 \cdot \nabla^2 F(\mathbf{r}_2, \mathbf{r}_2) > 0$ の場合, 2S と 2S が干渉す ると, 1R と 2S が発生する.



(iii)  $\ell_2 \cdot \nabla^2 F(r_1, r_1) < 0$ の場合, 1Sと1Sが干渉す ると, 1Sと2Sが発生する.



(iv)  $\ell_1 \cdot \nabla^2 F(\boldsymbol{r}_2, \boldsymbol{r}_2) < 0$ の場合, 2S と 2S が干渉す ると, 1S と 2S が発生する.



特に,

(2.4) 
$$\begin{cases} \boldsymbol{\ell}_2 \cdot \nabla^2 F(\boldsymbol{r}_1, \boldsymbol{r}_1) > 0\\ \boldsymbol{\ell}_1 \cdot \nabla^2 F(\boldsymbol{r}_2, \boldsymbol{r}_2) > 0 \end{cases}$$

の場合,これらの式は Glimm-Lax の衝撃波干渉条件 (shock interaction condition) と呼ばれ ([4]),これ らを満足する系の class は Smoller-Johnson class と して知られている.

文献 [9] と同様の考察によって, (2.4) 以外の衝撃波干 渉条件に対しても,衝撃波曲線及び膨張波曲線の幾何的 な構造を知ることができる.このことを以下に図示する. (なお,図中の矢印  $r_1$ ,  $r_2$  は点  $(u_0, v_0)$  における右固有 ベクトルの向きを示すものとする)







3)  $\ell_2 \cdot \nabla^2 F(r_1, r_1) < 0$ ,  $\ell_1 \cdot \nabla^2 F(r_2, r_2) < 0$ 



4) 
$$\ell_2 \cdot \nabla^2 F(r_1, r_1) > 0, \quad \ell_1 \cdot \nabla^2 F(r_2, r_2) < 0$$



以下では, (*u*, *v*)-空間において局所的に衝撃波干渉条 件 2)~4)を満足する系の存在について考察する.

#### 3. Temple class $\succeq$ straight line system

本節では、Temple class と呼ばれる系と、その特別 な例である straight line system について述べる。特に、 straight line system の持ついくつかの重要な性質を示す。

Temple class 及び straight line system は以下のよう に定義される. 尚, Temple class に対する解の安定性に ついては文献 [1], [2] などを, 差分近似については [3], [7], [11] などを参照されたい.

**Definition 3.1.** 系 (1.1) において衝撃波曲線と膨張波 曲線が一致するとき,系 (1.1) は**Temple class に属す** るという ([10]).特に,Riemann 不変量から成る座標系  $w = (w_1, w_2)$  に対して,その等値線 { $(u, v) : w_i(u, v) = const.$ } (i = 1, 2) が直線となるとき,系 (1.1) を straight line system という.

Definition 3.1 で定義された class に関して, 次の結果 が知られている.

**Theorem 3.1** ([10]). 系 (1.1) の右固有ベクトルを

$$\boldsymbol{r}_1 = \begin{pmatrix} 1 \\ p \end{pmatrix}, \quad \boldsymbol{r}_2 = \begin{pmatrix} 1 \\ q \end{pmatrix}$$

とし *p*, *q* が Riemann 不変量であると仮定する. このと き,以下は同値である:

- (i) 系 (1.1) が straight line system となる.
- (ii) ある関数 H<sub>1</sub>(·), H<sub>2</sub>(·) が存在して

$$\begin{cases} f = \frac{H_1(p) - H_2(q)}{q - p} \\ g = \frac{qH_1(p) - pH_2(q)}{q - p} \end{cases}$$

と表せる.

**Remark 3.1.** 系 (1.1) が straight line system である とき, Riemann 不変量  $w_i$  (i = 1, 2) は  $a_1b_2 - a_2b_1 \neq 0$ を満たす実数  $a_i$ ,  $b_i$  を用いて

$$\begin{cases} w_1 = a_1 u + b_1 u \\ w_2 = a_2 u + b_2 u \end{cases}$$

と表すことができる.このとき,次のTheorem 3.2からもわかるように、衝撃波曲線と膨張波曲線は一致し、 $\{w_i \equiv const.\}$ で表せる直線となる.

Theorem 3.1 と同様の証明法により,次の Theorem を得る (ここでは議論の簡単化のため、上の Remark に 述べた Riemann 不変量に対して  $b_1 = b_2 = 1$  とする).

**Theorem 3.2.** 系 (1.1) は straight line system とする.  $a_1 \neq a_2$  なる  $a_1, a_2 \in \mathbb{R}$  に対し系 (1.1) の Riemann 不 変量  $w_1, w_2$  を

(3.1) 
$$\begin{cases} w_1 = a_1 u + v \\ w_2 = a_2 u + v \end{cases}$$

と表記すると,

(3.2) 
$$\begin{cases} a_1 f(u, v) + g(u, v) = \phi(a_1 u + v) \\ a_2 f(u, v) + g(u, v) = \psi(a_2 u + v) \end{cases}$$

なる実数値関数  $\phi$  及び  $\psi$  が存在して,系 (1.1) は互いに 独立したスカラー保存則

(3.3) 
$$\begin{aligned} &(a_1u+v)_t + \phi(a_1u+v)_x = 0, \\ &(a_2u+v)_t + \psi(a_2u+v)_x = 0 \end{aligned}$$

に帰着される. またこのとき, 系 (1.1)の固有値  $\lambda_1(u, v)$ ,  $\lambda_2(u, v)$ に対して次が成立する:

(3.4) 
$$\psi'(a_2u+v) = \lambda_1(u,v) < \lambda_2(u,v) = \phi'(a_1u+v).$$

*Proof.*  $(u_0, v_0) \in \mathbb{R}^2$  を任意に選び固定する.

$$\begin{cases} \sigma(u - u_0) = f(u, v) - f(u_0, v_0) \\ \sigma(v - v_0) = g(u, v) - g(u_0, v_0) \end{cases}$$

が成立している. ここから衝撃波速度 σ を消去すると

$$\frac{f(u,v) - f(u_0,v_0)}{u - u_0} = \frac{g(u,v) - g(u_0,v_0)}{v - v_0}$$

を得る.

系 (1.1) が straight line system であるとすると、 $\lambda_i$ に対応する衝撃波曲線(及び膨張波曲線)は {(u,v) |  $w_i(u,v) = const.$ }, i = 1, 2, で表すことができる。従っ て (3.1) 式より  $\lambda_1$  に対応する衝撃波曲線上の点 (u,v) に 対して  $a_1(u - u_0) + (v - v_0) = 0$  が成立し、

$$\frac{f(u,v) - f(u_0,v_0)}{u - u_0} - \frac{g(u,v) - g(u_0,v_0)}{v - v_0} \\
= \frac{f(u,v) - f(u_0,v_0)}{u - u_0} - \frac{g(u,v) - g(u_0,v_0)}{-a_1(u - u_0)} \\
= \frac{a_1(f(u,v) - f(u_0,v_0)) + (g(u,v) - g(u_0,v_0))}{a_1(u - u_0)} \\
= 0$$

を得る. 従って

 $a_1(f(u,v) - f(u_0,v_0)) + (g(u,v) - g(u_0,v_0)) \equiv 0$ 

が成立する. このことから,  $w_1$ を変数とするある実数値 関数  $\phi = \phi(w_1)$  が存在して  $a_1 f(u, v) + g(u, v) = \phi(w_1)$ と表せることがわかる.

また、 $\lambda_2$ に対応する衝撃波曲線上の点 (u, v)に対して 同様の考察を行うことにより、 $w_2$ を変数とする実数値関 数  $\psi = \psi(w_2)$ が存在して  $a_2f(u, v) + g(u, v) = \phi(w_2)$ と表せることがわかる. 以上により, (3.1) 式が成立するならば, (3.2) を満足 する  $\phi$ ,  $\psi$  が存在することが示された. さらに, (3.3) 式 並びに (3.4) 式は (3.2) 式から自明である.

(3.2) を仮定すると、Riemann 不変量  $w_1$ ,  $w_2$  は (3.1) のように表記されることが容易にわかる。従って、上の 議論を逆にたどることにより、衝撃波曲線と膨張波曲線 が一致することを示すことができる。///

**Remark 3.2.** (3.4) 式は,  $\lambda_1$  は上に有界, 且つ  $\lambda_2$  は下 に有界であることを示している.

さらに, Theorem 3.2 と同様の仮定のもとで, 系 (1.1) の固有値・固有ベクトルに対し次の Proposition が成立 することがわかる.

**Proposition 3.1.** 系 (1.1) が straight line system で あるとき, Riemann 不変量を (3.1) で定めると, 右固有 ベクトル  $r_i$ 及び固有値  $\lambda_i$  (i = 1, 2) に対して次が成立 する:

(i) 
$$\mathbf{r}_{1} = \pm \begin{pmatrix} 1 \\ -a_{1} \end{pmatrix}$$
 とすると  
(3.5)  $\nabla \lambda_{1} \cdot \mathbf{r}_{1} = \mp (a_{1} - a_{2})\psi''$  (複号同順),  
(ii)  $\mathbf{r}_{2} = \pm \begin{pmatrix} 1 \\ -a_{2} \end{pmatrix}$  とすると  
(3.6)  $\nabla \lambda_{2} \cdot \mathbf{r}_{2} = \pm (a_{1} - a_{2})\phi''$  (複号同順).

Proof. (3.4) より  $\begin{cases} \nabla \lambda_1 = (a_2 \psi'', \psi'') \\ \nabla \lambda_2 = (a_1 \phi'', \phi'') \end{cases}$ となり、 i = 1, 2 に対して  $\nabla \lambda_i \cdot \boldsymbol{r}_i = \begin{cases} \mp (a_1 - a_2) \psi'' & (i = 1) \\ \pm (a_1 - a_2) \phi'' & (i = 2). \end{cases}$ 

この Proposition は、Straight line system (1.1) の右 固有ベクトルの向きと、関数 $\phi$ 及び $\psi$ の凹凸性との対応 関係を示すものである。またこの場合、(2.2) より系 (1.1) に対する正規化された右固有ベクトル  $r_i$  は次のように書 ける:

(3.7) 
$$\begin{cases} \mathbf{r}_{1} = -(\operatorname{sgn}\{(a_{1} - a_{2})\psi''\}) \begin{pmatrix} 1\\ -a_{1} \end{pmatrix} \\ \mathbf{r}_{2} = (\operatorname{sgn}\{(a_{1} - a_{2})\phi''\}) \begin{pmatrix} 1\\ -a_{2} \end{pmatrix} \end{cases}$$

但し

医し  
sgn 
$$h = \begin{cases} -1 & h < 0 \\ 0 & h = 0 \\ +1 & h > 0. \end{cases}$$
  
さらに、(2.3) より正規化された左固有ベクトル  $\ell_i$  は  
(3.8) 
$$\begin{cases} \ell_1 = (\operatorname{sgn} \psi'')(a_2, 1) \\ \ell_2 = (\operatorname{sgn} \phi'')(a_1, 1) \end{cases}$$

と書くことができる.

次の Proposition は, straight line system の重要な特 徴を示すものである.

Proposition 3.2. straight line system に対して恒等式

$$\boldsymbol{\ell}_j \cdot \nabla^2 F(\boldsymbol{r}_i, \boldsymbol{r}_i) \equiv 0 \qquad (i, j = 1, 2, \ i \neq j)$$

が成立する.

*Proof.* ここでは  $\boldsymbol{\ell}_2 \cdot \nabla^2 F(\boldsymbol{r}_1, \boldsymbol{r}_1) \equiv 0$  に対する証明のみ を与える.

Theorem 3.2 と同様に, Riemann 不変量は (3.1) で与 えるものとする. このとき, 関係式 (3.2) から, f, gに 対する 1 階及び 2 階の偏微分は,  $\phi$ ,  $\psi$  を用いて以下の ように表すことができる.

$$\begin{cases} f_u = \frac{1}{a_1 - a_2} (a_1 \phi' - a_2 \psi') \\ f_v = \frac{1}{a_1 - a_2} (\phi' - \psi') \\ g_u = -\frac{a_1 a_2}{a_1 - a_2} (\phi' - \psi') \\ g_v = -\frac{1}{a_1 - a_2} (a_2 \phi' - a_1 \psi'), \end{cases}$$
$$\begin{cases} f_{uu} = \frac{1}{a_1 - a_2} (a_1^2 \phi'' - a_2^2 \psi'') \\ f_{uv} = \frac{1}{a_1 - a_2} (a_1 \phi'' - a_2 \psi'') \\ f_{vv} = \frac{1}{a_1 - a_2} (a_1 \phi'' - a_2 \psi'') \\ f_{vv} = \frac{1}{a_1 - a_2} (\phi'' - \psi'') \end{cases}$$
$$\begin{cases} g_{uu} = -\frac{a_1 a_2}{a_1 - a_2} (a_1 \phi'' - a_2 \psi'') \\ g_{uv} = -\frac{a_1 a_2}{a_1 - a_2} (a_1 \phi'' - a_2 \psi'') \\ g_{uv} = -\frac{a_1 a_2}{a_1 - a_2} (\phi'' - \psi'') \\ g_{vv} = -\frac{1}{a_1 - a_2} (a_2 \phi'' - a_1 \psi''). \end{cases}$$

これらの関係式と (3.7) 式から,

$$\nabla^2 F(\mathbf{r}_1, \mathbf{r}_1) \\ = \begin{pmatrix} f_{uu} - 2a_1 f_{uv} + a_1^2 f_{vv} \\ g_{uu} - 2a_1 g_{uv} + a_1^2 g_{vv} \end{pmatrix}$$

$$= \frac{1}{(a_1 - a_2)^2} \begin{pmatrix} -(a_1 - a_2)^2 \psi'' \\ a_1(a_1 - a_2)^2 \psi'' \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ a_1 \end{pmatrix} \psi''$$

となり、これに (3.8) 式で表された左固有ベクトル  $\ell_2$  をかけることによって

$$\ell_2 \cdot \nabla^2 F(\boldsymbol{r}_1, \boldsymbol{r}_1) = (\operatorname{sgn} \phi'')(a_1, 1) \cdot \begin{pmatrix} -1 \\ a_1 \end{pmatrix} \psi''$$
$$= 0$$

を得る. ///

#### 4. 基本的な衝撃波干渉条件

系 (1.1) に対するスカラー値  $\ell_j \cdot \nabla^2 F(\mathbf{r}_i, \mathbf{r}_i)$ の正負 の基本的な組み合わせとして、以下の4つが考えられる:

1) 
$$\begin{cases} \ell_{2} \cdot \nabla^{2} F(\boldsymbol{r}_{1}, \boldsymbol{r}_{1}) > 0 \\ \ell_{1} \cdot \nabla^{2} F(\boldsymbol{r}_{2}, \boldsymbol{r}_{2}) > 0 \end{cases}$$
2) 
$$\begin{cases} \ell_{2} \cdot \nabla^{2} F(\boldsymbol{r}_{1}, \boldsymbol{r}_{1}) < 0 \\ \ell_{1} \cdot \nabla^{2} F(\boldsymbol{r}_{2}, \boldsymbol{r}_{2}) > 0 \end{cases}$$
3) 
$$\begin{cases} \ell_{2} \cdot \nabla^{2} F(\boldsymbol{r}_{1}, \boldsymbol{r}_{1}) < 0 \end{cases}$$

1

$$\left\{ \begin{array}{l} \boldsymbol{\ell}_1 \cdot \nabla^2 F(\boldsymbol{r}_2, \boldsymbol{r}_2) < 0 \\ \\ \end{array} \right.$$

$$\left\{ \begin{array}{l} \boldsymbol{\ell}_2 \cdot \nabla^2 F(\boldsymbol{r}_1, \boldsymbol{r}_1) > 0 \end{array} \right.$$

$$\boldsymbol{\ell}_1 \cdot \nabla^2 F(\boldsymbol{r}_2, \boldsymbol{r}_2) < 0.$$

本稿では、1)~4)の条件全てを「衝撃波干渉条件」と呼 ぶこととし、これらを満足する系の存在について述べる.

#### 4.1 straight line system の摂動系

本節では、系 (1.1) を straight line system に属するものとし、簡単のため $\theta$ を正の実数とし、次のような一次の摂動系を考える:

(4.1) 
$$\begin{cases} u_t + f(u, v)_x + \theta u_x = 0\\ v_t + g(u, v)_x = 0. \end{cases}$$

以下では、正の実数 M に対して、 $\Omega_M$  を次によって定義される  $\mathbb{R}^2$  の有界集合とする:

$$\Omega_M \stackrel{\text{def}}{=} \{(u, v) \in \mathbb{R}^2 : |u|, |v| \le M \}.$$

系 (4.1) の Jacobian 行列は

$$\nabla F(\theta) = \begin{pmatrix} f_u + \theta & f_v \\ g_u & g_v \end{pmatrix},$$

行列  $\nabla F(\theta)$  の固有値は

のように表すことができる.

$$\begin{split} \lambda_1(\theta) \\ &= \frac{1}{2} \left\{ (f_u + g_v + \theta) - \sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u} \right\}, \\ \lambda_2(\theta) \\ &= \frac{1}{2} \left\{ (f_u + g_v + \theta) + \sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u} \right\} \\ \\ & \geq \vdots \\ \lambda_i(\theta) \quad (i = 1, 2) \quad i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \quad \lambda_i(\theta) \\ \\ & \leq i \\ \\ & \leq i \\ \lambda_i(\theta) \quad \lambda_i(\theta) \quad$$

**Proposition 4.1.**  $\phi$ 及び $\psi$ は Theorem 3.2 (3.2) 式で 得られた関数とする. 系 (4.1) に対する固有値  $\lambda_i(\theta)$  に 対して $\alpha_i(\theta)$ を

$$\alpha_i(\theta) = \frac{(f_u + \theta) - \lambda_i(\theta)}{f_v}$$

で定める.このとき,任意のM > 0に対してある実数  $\theta_M > 0$ が存在し, $0 < \theta < \theta_M$ なる $\theta$ 及び $(u,v) \in \Omega_M$ に対して以下のことが成立する.

系 (4.1) の正規化された右固有ベクトル 
$$r_i( heta)$$
 は

(4.2) 
$$\begin{cases} \boldsymbol{r}_1(\theta) = -(\operatorname{sgn}(a_1 - a_2)\psi'') \begin{pmatrix} 1 \\ -\alpha_1(\theta) \end{pmatrix} \\ \boldsymbol{r}_2(\theta) = (\operatorname{sgn}(a_1 - a_2)\phi'') \begin{pmatrix} 1 \\ -\alpha_2(\theta) \end{pmatrix} \end{cases}$$

と書け、左固有ベクトル  $\ell_i(\theta)$  は

(4.3) 
$$\begin{cases} \boldsymbol{\ell}_1(\theta) = (\operatorname{sgn} \psi'')(\alpha_2(\theta), 1) \\ \boldsymbol{\ell}_2(\theta) = (\operatorname{sgn} \phi'')(\alpha_2(\theta), 1) \end{cases}$$

と書ける.

*Proof.* (3.5), (3.6) より, (4.2) で定めた  $r_i(\theta)$  に対し

$$\nabla \lambda_i(0) \cdot \boldsymbol{r}_i(0) = \nabla \lambda_i \cdot \boldsymbol{r}_i > 0$$

が成立していることがわかる. 但し $\lambda_i$ ,  $r_i$ は系 (1.1) に 対する固有値並びに正規化された右固有ベクトルとする. (2.1) 式からわかるように,

$$\nabla \lambda_i(\theta) = \left( \left( \lambda_i(\theta) \right)_u, \left( \lambda_i(\theta) \right)_v \right)$$
$$= \frac{1}{2} \begin{pmatrix} (f_u + g_v)_u \mp \frac{(f_u - g_v + \theta)(f_u - g_v)_u + 2(f_v g_u)_u}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} \\ (f_u + g_v)_v \mp \frac{(f_u - g_v + \theta)(f_u - g_v)_v + 2(f_v g_u)_v}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} \end{pmatrix}^T$$

の各成分は $\theta \ge 0$ に関する連続関数である. $\alpha_i(\theta)$ は  $\theta \ge 0$ に関する連続関数であるから,

$$\nabla \lambda_{1}(\theta) \cdot \boldsymbol{r}_{1}(\theta)$$

$$= -(\operatorname{sgn}(a_{1} - a_{2})\psi'') \Big( \big(\lambda_{1}(\theta)\big)_{u}, \big(\lambda_{1}(\theta)\big)_{v} \Big)$$

$$\cdot \begin{pmatrix} 1 \\ -\alpha_{1}(\theta) \end{pmatrix}$$

$$= -(\operatorname{sgn}(a_{1} - a_{2})\psi'') \Big( \big(\lambda_{1}(\theta)\big)_{u} - \alpha_{1}(\theta) \big(\lambda_{1}(\theta)\big)_{v} \Big)$$

並びに

$$\nabla \lambda_{2}(\theta) \cdot \boldsymbol{r}_{2}(\theta)$$

$$= (\operatorname{sgn}(a_{1} - a_{2})\phi'') \Big( \big(\lambda_{2}(\theta)\big)_{u}, \big(\lambda_{2}(\theta)\big)_{v} \Big)$$

$$\cdot \begin{pmatrix} 1 \\ -\alpha_{2}(\theta) \end{pmatrix}$$

$$= (\operatorname{sgn}(a_{1} - a_{2})\phi'') \Big( \big(\lambda_{2}(\theta)\big)_{u} - \alpha_{2}(\theta) \big(\lambda_{2}(\theta)\big)_{v} \Big)$$

従って, (4.2) は系 (4.1) の正規化された右固有ベクト ルであり, (4.3) は正規化された左固有ベクトルであるこ とが示される. ///

(4.2), (4.3) より, 摂動系 (4.1) に応じるスカラー値  $\ell_j(\theta) \cdot \nabla^2 F(\mathbf{r}_i(\theta), \mathbf{r}_i(\theta))$ は、次のようにかける:

**Proposition 4.2.** 摂動系 (4.1) の左固有ベクトル  $\ell_j(\theta) = \pm(\alpha_i(\theta), 1), i, j = 1, 2, i \neq j$ に対し

$$\begin{split} \boldsymbol{\ell}_{j}(\theta) \cdot \nabla^{2} F\big(\boldsymbol{r}_{i}(\theta), \boldsymbol{r}_{i}(\theta)\big) \\ &= \pm \frac{\alpha_{i}(\theta) - a_{i}}{a_{1} - a_{2}} \cdot \big(\alpha_{i}(\theta) - a_{j}\big) \\ &\times \Big(\big(\alpha_{i}(\theta) - a_{1}\big)\phi'' - \big(\alpha_{i}(\theta) - a_{2}\big)\psi''\Big) \\ &\quad (\mbox{igschule}) \end{split}$$

と表せる.

*Proof.* Proposition 3.2 の証明で用いた f, g o 1 階及 び 2 階微分を  $\phi, \psi$  で表した関係式から, (4.1) に対する Hessian 行列  $\nabla^2 F(\mathbf{r}_i(\theta), \mathbf{r}_i(\theta))$  は以下のように表すこ とができる:

$$\nabla^{2} F(\mathbf{r}_{i}(\theta), \mathbf{r}_{i}(\theta))$$

$$= \begin{pmatrix} f_{uu} - 2f_{uv}\alpha_{i}(\theta) + f_{vv}\alpha_{i}(\theta)^{2} \\ g_{uu} - 2g_{uv}\alpha_{i}(\theta) + g_{vv}\alpha_{i}(\theta)^{2} \end{pmatrix}$$

$$= \frac{1}{a_{1} - a_{2}}$$

$$\times \begin{pmatrix} (\alpha_{i}(\theta) - a_{1})^{2}\phi'' - (\alpha_{i}(\theta) - a_{2})^{2}\psi'' \\ -a_{2}(\alpha_{i}(\theta) - a_{1})^{2}\phi'' + a_{1}(\alpha_{i}(\theta) - a_{2})^{2}\psi'' \end{pmatrix}$$

但しここで  $\mathbf{r}_i(\theta) = \pm (1, -\alpha_i(\theta))^T$ , i = 1, 2 である. 従って、 $\boldsymbol{\ell}_j(\theta) = \pm (\alpha_i(\theta), 1)$ , i, j = 1, 2,  $i \neq j$  とすると

を得る. ///

$$\begin{array}{l} \mathbb{V} \cdot \nexists, \\ P_1(\theta) = (\operatorname{sgn} \phi'') \cdot \left(\alpha_1(\theta) - a_2\right) \\ & \times \left( \left(\alpha_1(\theta) - a_1\right) \phi'' - \left(\alpha_1(\theta) - a_2\right) \psi''\right) \\ P_2(\theta) = (\operatorname{sgn} \psi'') \cdot \left(\alpha_2(\theta) - a_1\right) \\ & \times \left( \left(\alpha_2(\theta) - a_1\right) \phi'' - \left(\alpha_2(\theta) - a_2\right) \psi''\right) \end{array}$$

と定めると, Proposition 4.1 (4.3) 及び Proposition 4.2 より

(4.4) 
$$\begin{cases} \boldsymbol{\ell}_{2}(\theta) \cdot \nabla^{2} F\left(\boldsymbol{r}_{1}(\theta), \boldsymbol{r}_{1}(\theta)\right) \\ &= \frac{\alpha_{1}(\theta) - a_{1}}{a_{1} - a_{2}} \cdot P_{1}(\theta) \\ \boldsymbol{\ell}_{1}(\theta) \cdot \nabla^{2} F\left(\boldsymbol{r}_{2}(\theta), \boldsymbol{r}_{2}(\theta)\right) \\ &= \frac{\alpha_{2}(\theta) - a_{2}}{a_{1} - a_{2}} \cdot P_{2}(\theta) \end{cases}$$

と表せる.

以下では、摂動系 (4.1) に対する衝撃波干渉条件、す なわちスカラー値  $\ell_j(\theta) \cdot \nabla^2 F(\mathbf{r}_i(\theta), \mathbf{r}_i(\theta))$ の正負を調 べるため、(4.4) 式の右辺の各項  $(\alpha_i(\theta) - a_i)/(a_1 - a_2)$ および  $P_i(\theta)$  (i = 1, 2)の正負について考察する.

まずはじめに、以下の Lemma を示すことができる.

**Lemma 4.1.** 任意の M > 0 に対してある実数  $\theta_M > 0$ が存在し、 $0 < \theta < \theta_M$  なる  $\theta$  及び  $(u, v) \in \Omega_M$  につい て以下のことが成立する.

(I) 
$$f_v g_u > 0$$
 のとき,  
 $\frac{\alpha_i(\theta) - a_i}{a_1 - a_2} > 0$   $(i = 1, 2)$ 

(II) 
$$f_v g_u < 0 \ \mathcal{O} \succeq \overset{*}{\underset{}}$$
,  
(II<sub>1</sub>)  $f_u - g_v > 0 \ \overset{*}{\underset{}} \succ \overset{*}{\underset{}} \overset{*}{\underset{}} \begin{cases} \frac{\alpha_1(\theta) - a_1}{a_1 - a_2} > 0\\ \frac{\alpha_2(\theta) - a_2}{a_1 - a_2} < 0 \end{cases}$   
(II<sub>2</sub>)  $f_u - g_v < 0 \ \overset{*}{\underset{}} \succ \overset{*}{\underset{}} \overset{*}{\underset{}} \overset{*}{\underset{}} \begin{cases} \frac{\alpha_1(\theta) - a_1}{a_1 - a_2} < 0\\ \frac{\alpha_2(\theta) - a_2}{a_1 - a_2} > 0 \end{cases}$ 

Proof.  $\theta = 0$  の場合には, 摂動系 (4.1) は系 (1.1) に等し い. 従って i = 1, 2 に対し  $\frac{\alpha_i(0) - a_i}{a_1 - a_2} = \frac{a_i - a_i}{a_1 - a_2} = 0.$ 以下では,  $\theta$  についての関数  $\frac{\alpha_i(\theta) - a_i}{a_1 - a_2}$ 

の増減を調べるため、上の関数のθに関する微分:

$$\begin{aligned} \frac{\partial}{\partial \theta} \left( \frac{\alpha_i(\theta) - a_i}{a_1 - a_2} \right) \\ &= \frac{1}{a_1 - a_2} \frac{\partial \alpha_i(\theta)}{\partial \theta} \\ &= \frac{1}{\phi' - \psi'} \left( 1 - \frac{\partial \lambda_i(\theta)}{\partial \theta} \right) \\ &= \frac{1}{2} \frac{1}{\phi' - \psi'} \left( 1 \mp \frac{f_u - g_v + \theta}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} \right) \end{aligned}$$

について考える.

(I) 
$$f_v g_u > 0$$
を仮定する. このとき  
$$\left| \frac{f_u - g_v + \theta}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} \right| <$$

であるから,

$$1 \mp \frac{f_u - g_v + \theta}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} > 0.$$

1

(3.4)式より  $\phi' - \psi' > 0$  であるから,

$$\frac{\partial}{\partial \theta} \left( \frac{\alpha_i(\theta) - a_i}{a_1 - a_2} \right) > 0$$

が成立し、 $\frac{\alpha_i(\theta) - a_i}{a_1 - a_2}$ は $\theta$ に関する単調増加関数である ことがわかる。従って $\theta > 0$ に対し

$$\frac{\alpha_i(\theta) - a_i}{a_1 - a_2} > 0.$$

(II) 
$$f_v g_u < 0$$
を仮定する. このとき

$$\left|\frac{f_u - g_v + \theta}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}}\right| > 1$$

が成立している.  
(II<sub>1</sub>) 
$$f_u - g_v > 0$$
のとき,  $f_u - g_v + \theta > 0$ であるから  

$$\frac{f_u - g_v + \theta}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} > 1.$$
このとき

$$1 - \frac{f_u - g_v + \theta}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} < 0,$$
  
$$1 + \frac{f_u - g_v + \theta}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} > 0$$

となり, 従って

$$\frac{\alpha_1(\theta) - a_1}{a_1 - a_2} < 0, \quad \frac{\alpha_2(\theta) - a_2}{a_1 - a_2} > 0$$

を得る.

 $(II_2) f_u - g_v < 0 のとき, f_u - g_v + \theta < 0 を満足す るような充分小さい <math>\theta > 0$ をとれば

$$\frac{f_u - g_v + \theta}{\sqrt{(f_u - g_v + \theta)^2 + 4f_v g_u}} < -1.$$
以下 (II<sub>1</sub>) と同様に示すことができる. ///

Remark 4.1.

$$\operatorname{sgn}(f_v g_u) = \operatorname{sgn}(a_1 a_2)$$
$$\operatorname{sgn}(f_v - g_u) = \operatorname{sgn}\frac{a_1 + a_2}{a_1 - a_2}$$

であることに注意する.また,Lemma 4.1 において $\theta < 0$ を仮定すると, $(\alpha_i(\theta) - a_j)/(a_1 - a_2)$ (i, j = 1, 2)の符号が反転することに注意する.

次に,  $P_i(\theta)$ に対しては次の Lemma を示すことができる.

**Lemma 4.2.** 任意の M > 0 に対してある実数  $\theta_M > 0$ が存在し、 $0 < \theta < \theta_M$  なる  $\theta$  および  $(u, v) \in \Omega_M$  に対 して以下のことが成立する:

(i) 
$$\phi'' \cdot \psi'' > 0 \mathcal{O}$$
  
(4.5)  $P_1(\theta) < 0, \quad P_2(\theta) > 0$   
(ii)  $\phi'' \cdot \psi'' < 0 \mathcal{O}$   
(iii)  $P_1(\theta) > 0, \quad P_2(\theta) < 0$ 

$$P_1(0) = -(\operatorname{sgn} \phi'')(a_1 - a_2)^2 \psi'',$$
  
$$P_2(0) = (\operatorname{sgn} \psi'')(a_1 - a_2)^2 \phi''$$

を得る.

(i)  $\phi'' \cdot \psi'' > 0 \mathcal{O} \succeq \mathfrak{F}$ 

$$(\operatorname{sgn} \phi'')\psi'' > 0, \quad (\operatorname{sgn} \psi'')\phi'' > 0$$

であるから

$$P_1(0) < 0, \quad P_2(0) > 0$$

を得る. 一方,  $P_i(\theta)$  は  $\alpha_i(\theta)$  について連続な関数である から,  $\theta \ge 0$  に関しても連続である. 従って, 充分小さ な  $\theta > 0$  に対して (4.5) を得る.

(ii)  $\phi'' \cdot \psi'' < 0 \mathcal{O} \geq \mathfrak{F}$ 

$$(\operatorname{sgn} \phi'')\psi'' < 0, \quad (\operatorname{sgn} \psi'')\phi'' < 0$$

であるから

$$P_1(0) > 0, \quad P_2(0) < 0.$$

同様にして (4.6) を示すことができる. ///

Lemma 4.1 および Lemma 4.2 から, (4.4) 式右辺各項 の正負がわかる.これらのことから, 摂動系 (4.1)の衝 撃波干渉条件に関して,次の定理が導出される:

**Theorem 4.1.** 正の実数 M > 0 に対して,  $(u, v) \in \Omega_M$ とする. Straight line system に属する系 (1.1) に対する 摂動系 (4.1) を  $\theta > 0$  について定義する.

このとき, 任意の M > 0に対してある実数  $\theta_M > 0$ が 存在し,  $0 < \theta < \theta_M$ なる  $\theta$ について以下のことが成立 する:

$$\begin{array}{ll} (\mathrm{I}) & f_v g_u > 0 \ \& \ & \varsigma \ i i \\ (\mathrm{i}) & \phi'' \cdot \psi'' > 0 \ \mathcal{O} \succeq \ & \\ & \left\{ \ell_2(\theta) \cdot \nabla^2 F(\boldsymbol{r}_1(\theta), \boldsymbol{r}_1(\theta)) < 0 \\ \ell_1(\theta) \cdot \nabla^2 F(\boldsymbol{r}_2(\theta), \boldsymbol{r}_2(\theta)) > 0 \\ (\mathrm{ii}) & \phi'' \cdot \psi'' < 0 \ \mathcal{O} \succeq \ & \\ & \left\{ \ell_2(\theta) \cdot \nabla^2 F(\boldsymbol{r}_1(\theta), \boldsymbol{r}_1(\theta)) > 0 \\ \ell_1(\theta) \cdot \nabla^2 F(\boldsymbol{r}_2(\theta), \boldsymbol{r}_2(\theta)) < 0 \\ \end{array} \right.$$

$$\left( \begin{array}{ll} (\mathrm{II}) & f_u - g_v \ge 0 \ \& \ & \varsigma \ i i \\ & \mathrm{i}) \ \phi'' \cdot \psi'' > 0 \ \mathcal{O} \succeq \ & \\ & \left\{ \ell_2(\theta) \cdot \nabla^2 F(\boldsymbol{r}_1(\theta), \boldsymbol{r}_1(\theta)) < 0 \\ \ell_1(\theta) \cdot \nabla^2 F(\boldsymbol{r}_2(\theta), \boldsymbol{r}_2(\theta)) < 0 \\ \end{array} \right.$$

$$\left\{ \begin{array}{l} \ell_2(\theta) \cdot \nabla^2 F(\boldsymbol{r}_1(\theta), \boldsymbol{r}_1(\theta)) < 0 \\ \ell_1(\theta) \cdot \nabla^2 F(\boldsymbol{r}_2(\theta), \boldsymbol{r}_2(\theta)) < 0 \\ \end{array} \right.$$

$$\left\{ \begin{array}{l} \ell_2(\theta) \cdot \nabla^2 F(\boldsymbol{r}_1(\theta), \boldsymbol{r}_1(\theta)) > 0 \\ \ell_1(\theta) \cdot \nabla^2 F(\boldsymbol{r}_2(\theta), \boldsymbol{r}_2(\theta)) > 0 \\ \end{array} \right.$$

(II<sub>2</sub>) 
$$f_u - g_v < 0$$
ならば  
i)  $\phi'' \cdot \psi'' > 0 \mathcal{O} \succeq \mathfrak{E}$   

$$\begin{cases} \boldsymbol{\ell}_2(\theta) \cdot \nabla^2 F(\boldsymbol{r}_1(\theta), \boldsymbol{r}_1(\theta)) > 0\\ \boldsymbol{\ell}_1(\theta) \cdot \nabla^2 F(\boldsymbol{r}_2(\theta), \boldsymbol{r}_2(\theta)) > 0 \end{cases}$$
ii)  $\phi'' \cdot \psi'' < 0 \mathcal{O} \succeq \mathfrak{E}$   

$$\begin{cases} \boldsymbol{\ell}_2(\theta) \cdot \nabla^2 F(\boldsymbol{r}_1(\theta), \boldsymbol{r}_1(\theta)) < 0\\ \boldsymbol{\ell}_1(\theta) \cdot \nabla^2 F(\boldsymbol{r}_2(\theta), \boldsymbol{r}_2(\theta)) < 0. \end{cases}$$

#### 5. おわりに

Theorem 4.1 は, Smoller-Johnson class 以外の系の存 在を示すものである.

Smoller-Johnson class に属する系に対しては、衝撃波 曲線の存在が議論されているが、衝撃波干渉条件 2)~4) を満足する系に対しては衝撃波曲線の存在などが十分に 議論されているとはいえない.これらの系に対して、衝 撃波曲線の大域的存在, Riemann 問題の一意可解性など を解析することは極めて重要な問題である.

また, Theorem 4.1 では Straight line system の摂動 系 (4.1) を考えることにより 4 種類の衝撃波干渉条件を満 足する系が存在することを示したが, (4.1) 式のような形 の摂動系の場合,  $f_v g_u > 0$  という条件下で (2.4) を満た す系は現れないことがわかった. 衝撃波干渉条件によっ て区別される 4 種の系を詳細に調べるためには, (4.1) 式 とは異なるより一般的な摂動系についての考察が必要で ある.

#### 参考文献

- S. Bianchini, Stability of L<sup>∞</sup> solutions for hyperbolic systems with coinciding shocks and rarefactions, SIAM J. Math. Anal., **33-4** (2001), 959–981.
- [2] A. Bressan and P. Goatin, Stability of L<sup>∞</sup> solutions of Temple class systems, Differential and Integral Equations 13 (2000), 1503–1528.
- [3] A. Bressan and H. K. Jenssen, On convergence of Godunov scheme for nonlinear hyperbolic systems, Chinese Ann. Math. Ser. B 21 (2000), 269–284.
- [4] J. Glimm and P. D. Lax, Decay of solutions of systems of hyperbolic conservation laws, Memories of Amer. Math. Soc., 101 (1970).
- P. D. Lax, Hyperbolic systems of conservation laws, II, comm. Pure Appl. Math., 10 (1957), 537–566.
- [6] P. D. Lax, Shock waves and entropy, Contributions to Nonlinear Functional Analysis, edited by E. Zarantonello, Academic Press, New York, 1971, 603–634.

9

- [7] R. J. LeVeque and B. Temple, Stability of Godunov's method for a class of 2 × 2 systems of conservation laws, Trans. Amer. Math. Soc., 288 (1985), 115–123.
- [8] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.
- [9] J. A. Smoller and J. L. Johnson, Global solutions for an extended class of hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal., **32** (1969),

169 - 189.

- [10] B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781–795.
- [11] T. Yang, H. Zhao, C. Zhu, BV estimates of Lax-Friedrichs' scheme for a class of nonlinear hyperbolic conservation laws, Proc. Amer. Math. Soc., 131 (2003), 1257–1266.

### 宇宙航空研究開発機構研究開発報告 JAXA-RR-07-002

| 発 行    | 平成 19 年 10月 31 日             |
|--------|------------------------------|
| 編集・発行  | 宇宙航空研究開発機構                   |
|        | 〒182-8522 東京都調布市深大寺東町 7-44-1 |
|        | URL: http://www.jaxa.jp/     |
| 印刷・製本  | (株)東京プレス                     |
| 本書及び内容 | 客についてのお問い合わせは、下記にお願いいたします。   |
| 宇宙航空研  | 研究開発機構 情報システム部 研究開発情報センター    |
| 〒305-8 | 505 茨城県つくば市千現 2-1-1          |
|        |                              |

TEL:029-868-2079 FAX:029-868-2956

© 2007 宇宙航空研究開発機構

※本書の一部または全部を無断複写・転載・電子媒体等に加工することを禁じます。



本書は再生紙を使用しております.