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Masayuki SATO*1

佐藤　昌之 *1

　　　　　　　

ABSTRACTABSTRACTABSTRACTABSTRACTABSTRACT
　This paper addresses the design problem of robust model-following controllers for linear time-

invariant systems with parametric uncertainties.  To design such controllers, we apply a design method

for robust static output H2 controllers for Linear Parameter-Varying (LPV) systems using parameter-

dependent Lyapunov functions to a previously proposed model-following controller design.  We design

several model-following controllers for the lateral/directional motions of an aircraft, and demonstrate

their performance by numerical simulations and flight tests.

KeywordsKeywordsKeywordsKeywordsKeywords : Model-following controller, robust H2 problem, static output controller, aircraft motions,

flight test.

1  INTRODUCTION

　In the last decade, much research has been conducted on analysis and synthesis for Linear Parameter-Varying (LPV)

systems.  Conventionally, parameter-independent Lyapunov functions have been used ( 1) and references therein), how-

ever, they resulted in excessively conservative analysis and synthesized controllers; that is, not tight analysis and synthe-

sis.  This leads to the use of parameter-dependent Lyapunov functions to reduce the conservatism.  In accordance with this

suggestion, analysis and synthesis methods using parameter-dependent Lyapunov functions have been proposed 2-11).

Parameter-dependent Lyapunov functions generally lead to LPV controllers (i.e. gain-scheduled controllers), not Linear

Time-Invariant (LTI) controllers (i.e. robust controllers); since change-of-variables method sets substituted variables,

which represent controller state-space matrices, to be parameter-dependent 2-4), and variable elimination method also sets

controllers to be parameter-dependent even if Lyapunov functions are set to be parameter-independent 6).  Unfortunately,

the implementation of gain-scheduled controllers requires real-time calculation of state-space matrices of controllers,

and thus substantial on-board computing power.  Moreover, if the scheduling parameters are not measurable or can only

be obtained with a delay, then implementing gain-scheduled controllers is impossible.  On the other hand, implementing

robust controllers is reasonable even in such cases.  For these reasons, robust controller design for LPV systems using

parameter-dependent Lyapunov functions has been desired.
　Feron et al. have proposed a design method for robust dynamic output controllers for LPV systems via parametrically

affine Linear Matrix Inequalities (LMIs), using parametrically affine Lyapunov functions 5).  However, their formulation

includes a rank condition for static output controller design.  Although there exist some effective algorithms to tackle this
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intractable problem (rank condition) (e.g. 12)), it is difficult to restrict controllers to be some special forms, such as diagonal

matrices.  As another robust controller design method, robust state feedback controller design using biquadratic Lyapunov

functions 7) has been proposed 8, 9).  These proposed methods are also formulated via parametrically affine LMIs, and

therefore they obtain global optimal solutions for their formulations.  However, the performance of controllers using the

methods may be worse than that of controllers using parameter-independent Lyapunov functions because parameter-

dependent Lyapunov functions are restricted to be special forms.  Furthermore, these methods cannot be extended to

static output controller design.  As another design method of robust state feedback controllers for LPV systems, ex-

tended formulation 10) or dilated formulation 11) have been proposed.  However, these methods cannot be easily extended

to static output controller design.  For static output controller design, the design problem for LTI systems has been

formulated via two LMIs and one rank condition by Iwasaki and Skelton 13), but their method, i.e. elimination method,

cannot be applied to the problem of robust static output controller design for LPV systems because it generally gives LPV

controllers (i.e. gain-scheduled controllers) for LPV systems, as mentioned above.
　In this paper, we propose a design method for robust static output H2 controllers for LPV systems using parameter-

dependent Lyapunov functions under the condition that stabilizing controllers are given.  Our proposed method uses an

iterative algorithm that monotonically converges to an optimal solution.  Although the optimized controllers are not

generally global optimal solutions, a candidate solution to the problem is easily obtained.  The iterative algorithm used in

this paper has been originally proposed by Shimomura et al. 14, 15) to design multi-objective controllers for LTI systems

with uncommon Lyapunov variables.  Although the condition that stabilizing controllers are given seems to be restric-

tive, if the plant dynamics are well known (e.g. mass-spring systems or aircraft motions) then stabilizing controllers can

be designed with some effort.
　We also apply our proposed method to a previously proposed model-following controller design 16) to overcome its

drawbacks in its design, and we design several model-following controllers for aircraft motions.  In this design, matrices

to be designed are restricted to be special forms; block diagonal matrices, however, the proposed method can be applied

and obtain candidates for optimal model-following controllers.  We demonstrate their performance by numerical simula-

tions and flight experiments.
　This manuscript is organized as follows.  We first describe our proposed design method for robust static output H2

controllers, and demonstrate its effectiveness with a simple numerical example.  We next show its application to model-

following controller design, then show the design examples for the lateral/directional motions of an aircraft, and we

finally show the performance of those controllers by numerical simulations and flight experiments.
　Hereafter, XT denotes the transpose of a matrix X, He(Y) denotes Y+YT, Tr denotes matrix trace, ε(*) denotes an

expectation operator, and 0 and In respectively denote a zero matrix of an appropriate dimension and an n-dimensional

identity matrix.

2  ROBUST H2 CONTROLLER DESIGN

　We first give the formulation of robust H2 controller synthesis, and then show our method for it.

2.1  Problem Formulation

　We consider the following LPV system

1
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( ) + ( ) ( )
( ) ( ) ,
( )

2

12

+
 +



� A B B
C D
C

θ θ θ
θ θ
θ

x x w u
z x u
y x

=
=
=

(1)

where x ∈ Rn is the state vector with x＝0 at t＝0, w ∈ Rnw is the disturbance input vector, u ∈ Rnu is the control input

vector, z ∈ Rnz is the controlled output vector, y ∈ Rny is the measurement output vector.  Matrices are all of appropriate

dimensions.  The vector θ＝[θ1 … θκ]T is a time-varying vector consisting of k time-varying or time-invariant parameters

which cannot be measured on time; that is, they represent time-varying or time-invariant uncertainties of the plant.  The
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ranges of θi and θi are assumed to be known in advance and their variations are assumed to lie in convex regions Bθ and B:

( )( ) , , ,( ), ( ) 0∈ ∈ ∀ ≥�t tt tθθ θ θBB B

where ( ), ,1=   � � � ��
T

kθ θ θ θ θ  denotes an ordered pair of the direct product of two sets representing the existence regions of
 ・  ・θ and θ, and θi denotes the derivative of θi with respect to time.

　We now make the following assumption.

Assumption 1Assumption 1Assumption 1Assumption 1Assumption 1  R(θ) := D12(θ)T D12(θ) > 0, ∀ θ ∈ Bθ
　From the fact that R(θ) > 0 corresponds to the positivity of a weighting function of control inputs in Linear Quadratic

Regulator (LQR) problem, Assumption 1 is not a special assumption.
　We look for the following LTI controller with K ∈ Rnu×ny.

=u Ky (2)

　Applying controller (2) to system (1), we obtain the following closed-loop system.

( ) ( )
,

( )
1= +

 =

� Bθ θ
θ

cl

cl

x A x w
x C x (3)

　where Acl(θ) ＝A(θ) ＋B2(θ) KC2(θ) and Ccl(θ) ＝ C1(θ) ＋D12(θ) KC2(θ).
　If the closed-loop system is stable with given controller gain K, then the following lemma, which is related to H2 

・

performance, holds.  Hereafter, P(θ) denotes 
( )

1
�k
ii

i

P θθ
θ=

∂
∂∑ .

Lemma 1Lemma 1Lemma 1Lemma 1Lemma 1  17) If there exist a continuously differentiable positive definite matrix P(θ) ∈ Rn×n and a positive definite matrix

N ∈ Rnw×nw such that (4) and (5) hold, then (6) holds for w＝δ(0)w 0, where δ(･) is Dirac’s delta function and w 0 is a random

variable satisfying ε(w 0w 0
T) ＝ Inw.
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(6)

　If we optimize Tr(N), then we obtain an upper bound of the attenuation performance of impulse disturbance w＝δ(0)w 0,

which is given as the left-hand side of (6).
　If LPV system (1) is an LTI system, then LMIs (4) and (5) respectively become as follows.

1 1 0TN B PB− > (7)

{ } 0+ <T
clC CPAHe clcl (8)

　Minimizing Tr(N) subject to (7) and (8) is a standard H2 performance analysis for LTI systems.  Thus, Lemma 1 is

reasonably extended from H2 performance analysis for LTI systems to one for LPV systems.
　From Lemma 1, H2 performance analysis for LPV system (3) with given controller gain K is formulated as follows.

Problem 1Problem 1Problem 1Problem 1Problem 1  Calculate J such that

( )
inf Tr( ) ( ) ( )4 5
P

N
θ

=J subject to and .

　From Lemma 1 , robust H2 controller synthesis with controller (2) is formulated as follows:
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Problem 2Problem 2Problem 2Problem 2Problem 2  Find controller K ∈ Rnu × ny such that

( ),
inf Tr( ) ( ) ( )4 5
P K

N
θ

=J subject to and .

2.2  Proposed Method

　In Problem 2, inequality (5) is a Bilinear Matrix Inequality (BMI) in terms of P(θ) and K, and is not tractable.  One way

to address this problem is to minimize Tr(N) with variables P(θ) and K alternately, similarly to D-K iteration in µ synthesis.

However, we cannot reduce Tr(N) at the step where K is a design variable, because (4) includes only P(θ).  This iterative

algorithm therefore does not work well, and another algorithm is needed.
　After some manipulations to (5), we obtain the following inequality, which is equivalent to (5):

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

( ) ( ) ( ) ( )

1 1
11 2

1 1
2

0
− −

− −

 − +
< ∀ ∈ + − 

�
T T T TX M M C K M

KC M
θ θ θ θ θ θ θ

θ θ
θ θ θ θ

R R
R R

B (9)

 ・

where X11(θ) ＝ He{P(θ)A(θ)} ＋P(θ) ＋C1(θ)T C1(θ) and M(θ) ＝D12(θ)T C1(θ) ＋B2(θ)T P(θ).
　Inequality (9) has a multiplied term of P(θ) in the upper-left block; －M(θ)T  R(θ)－ 1 M(θ).  We cannot apply Schur

complement to this term because it is negative definite.  To address this problem, we apply the iterative algorithm of

Shimomura et al., which has been proposed to design multi-objective controllers; H2/H∞ controllers 14) and strictly positive

real H2 controllers 15).
　For the multiplied term of P(θ), the following relation holds for any L(θ).

{ }( ) ( ) ( ) ( ) ( ) ( ) ,( ) ( )1−− ≤ + ∀ ∈T TM M L LL M θθ θ θ θ θ θ θθ θR RHe B (10)

Because the following relation holds for any L(θ).

( ) ( ) ( ) ,0≥ ∀ ∈� �TL L θθ θ θ θR B

 ～

where L(θ) ＝ L(θ)T ＋ R(θ)－ 1 M(θ).  If L(θ) is set as －M(θ)T R(θ) － 1, then inequality (10) becomes an equality.
　We now consider an alternative to Problem 2 replacing －M(θ)T R(θ)－ 1 M(θ) with He{L(θ)M(θ)} ＋ L(θ)R(θ) L(θ)T

under the condition that L(θ) is given.

Problem 3Problem 3Problem 3Problem 3Problem 3  Find a controller gain K ∈ Rnu × ny such that

( ),
inf Tr( )�
P K

N
θ

=J (11)

subject to (4) and

{ } ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) , ,,
( ) ( ) ( ) ( )

1
11 2

1 1
2

0
−

− −

 + + +
< ∀ ∈ + − 

�
T T T TX L L C K ML M

KC M
θ θ θ θ θ θ θθ θ

θ θ
θ θ θ θ

He R R
R R

B (12)

where X11(θ) and M(θ) have the same definitions as in (9).

　Problem 3 is formulated via only LMIs in terms of P(θ) and K, thus it can be solved numerically.
　After these preliminaries, we now propose an iterative algorithm to solve Problem 2 under the condition that a stabiliz-

ing controller for (1) is given.

Algorithm 1Algorithm 1Algorithm 1Algorithm 1Algorithm 1
  ＾Step 1Step 1Step 1Step 1Step 1  Solve Problem 1 for (3) with given K, and set i＝ 0, Ji ＝ J.

Step 2Step 2Step 2Step 2Step 2  Solve Problem 3 with L(θ) defined as

{ }( ) ( )( ) ( ) ( ) ( ) 1
1 12 2

−= − +TL C D P Bθ θθ θ θ θ R
    ～    ～

　　where P(θ) is obtained in the preceding step, and set i＝ i+1, Ji ＝ J.
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   ＾Step 3Step 3Step 3Step 3Step 3  Solve Problem 1 with K that is obtained in Step 2, and set Ji ＝ J.
   ＾    ＾Step 4Step 4Step 4Step 4Step 4  If Ji－1 － Ji < ε is satisfied with a sufficiently small positive number ε then stop the iteration, otherwise return to Step

2.
　This algorithm solves analysis problem (Problem 1) and transformed synthesis problem (Problem 3) alternately.
　For Algorithm 1, the following relation holds.

Theorem 1Theorem 1Theorem 1Theorem 1Theorem 1 For Algorithm 1, the following relation holds:

ˆ ˆ ˆ .≤ ≤ ≤ ≤ ≤ ≤ ≤� �� �i iJ J J J J J1 1 0

    ～    ＾Proof 1Proof 1Proof 1Proof 1Proof 1  We first show Ji <_ Ji－1.  Assume that there exist P(θ), K, and N that satisfy (4) and (5) in Problem 1.  Since the left-

hand side of (12) is the same as the left-hand side of (9) with L(θ) defined in Step 2, inequality (12) always holds with P(θ)
    ～    ＾and K that are obtained in the preceding Problem 1.  Therefore, Problem 3 is always solvable.  Moreover, Ji <_ Ji－1 holds due

to the freedom of K in Problem 3.
   ＾     ～

　Next, we show Ji <_ Ji.  Assume that there exist P(θ), K, and N that satisfy (4) and (12) in Problem 3.  From the relation

of (10), the following relation holds.

≤Left -hand side of (9)  Left -hand side of (12) < 0

Therefore, (5) always holds with P(θ) and K that are obtained in the preceding Problem 3; that is, Problem 1 is always

solvable.  Moreover, P(θ) obtained in Problem 3 is not generally the same as P(θ) that is obtained in Problem 1 because
   ＾     ～

Problem 3 is not a problem that calculates J defined in Problem 1.  Therefore Ji <_ Ji holds due to the freedom of P(θ) in

Problem 1.  This completes the proof.
　If the controller gain K is supposed to be a special form, e.g. a diagonal matrix, then we can easily restrict K to be such

form.  This is shown in Sections 3 and 4.

Remark 1Remark 1Remark 1Remark 1Remark 1  Although inequalities (4), (5), and (12) are LMIs in terms of decision variables, P(θ) and K, they are not generally

affine functions with respect to parameters, so we must grid the range of θi and solve these inequalities at the grid points,

similarly to 2), 4).

2.3  Numerical Example

　To illustrate the effectiveness of Algorithm 1, we introduce the following numerical example.

[ ]( ) , , , , ,1 2 1 12 2

1 0 0 0 0
0 0 1 0 1 0 0

0 1 0 0 0
0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1
2 0 0 0 1 0

0 0 0 1 0
0 0 0 0 1

0 0 0 0 1

   
         
         
         = = = = = =
     −    
         −                 

A B B C D Cθ
θ θ

θ θ

 ・
　We set 0.5 <_ θ <_ 1.0 and |θ| <_ 0.2.  For this example, Routh-Hurwitz criteria for the same plant with fixed θ indicates that

the scalar feedback gain Κ must be negative.
　We design a robust static output controller (2) using Algorithm 1.  In this example we grid the range of θ at ten points

linearly and solve LMI conditions at these points, and set ε as 1.0 × 10－4.
　We first design the controller with P(θ)＝P0＋ θP1 and set two initial stabilizing gains as － 0.65 and － 1.7.  Figure 1

shows the values of Tr(Ν) and Κ versus the number of iterations.  Next, we design the controller with P(θ)＝P0＋ θP1

＋θ2P2 and set two initial stabilizing gains as －0.25 and －10, which are respectively farther from the optimal values than
－0.65 and －1.7.  Figure 2 shows the values of  Tr(Ν) and Κ versus the number of iterations.  These figures show that

the proposed method works well; that is, Theorem 1 holds.  Figure 3 shows the values of  Tr(Ν) versus the variations of
Κ using Problem 1; that is, H2 performance analysis.  This figure illustrates that the optimized solutions obtained using

the proposed method are very close to the global optimal solutions for this problem.
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3  APPLICATION TO MODEL-FOLLOWING CONTROLLER DESIGN

　In the previous section, we introduce an algorithm to design robust static output H2 controllers with ease.  In this section,

we apply the algorithm to the design of the model-following controller proposed by Kawahata 16).  This is an explicit model-

following controller and flight experiments using this controller demonstrated that it had good performance 18).  How-

ever, the design method has some drawbacks, which will be pointed out later on, we therefore apply the robust H2

controller synthesis to overcome the drawbacks.

3.1  Previous Design Methods

　We first describe previously proposed design methods of the model-following controller in 16).
　A nominal plant Gp and a stable model to be followed Gm are given below as (13) and (14) respectively.

: ,
= +

 =

�
p

B
G p p p p p

p p p

x A x u

y C x (13)

: ,
= +

 =

�
m

B
G m m m m m

m m m

x A x u
y C x (14)

where xp ∈ Rnp and xm ∈ Rnm respectively denote the state vectors of the plant and model with xp＝0 and xm＝0 at t＝

0, up ∈ Rnup and um ∈ Rnum respectively denote the input vectors to the plant and model, yp ∈ Rnyp and ym ∈ Rnym respectively

denote the output vectors of the plant and model, and matrices Ap, Am, etc. are supposed to have appropriate dimensions.
　The following assumptions are made:

Figure 1  Tr(N) and controller gain K versus iteration
number using P(θ)＝ P0 ＋ θP1
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Figure 2  Tr(N) and controller gain K versus iteration
number using P(θ)＝ P0 ＋ θP1 ＋ θ2P2

Figure 3  Tr(N) versus controller gain K
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Assumption 2Assumption 2Assumption 2Assumption 2Assumption 2  The numbers of plant inputs, plant outputs, and model outputs are all l; that is, nup ＝ nyp ＝ nym ＝ l.

　If plant has redundant inputs, then it does not satisfy this assumption.  In such case, one method to satisfy the assump-

tion is to select the plant inputs so that the assumption is satisfied.
　We further made the following assumption.

Assumption 3Assumption 3Assumption 3Assumption 3Assumption 3  The relative degrees of the model outputs are equal to those of the respective plant outputs.  The relative

degrees σi of the plant outputs are defined as follows:

{ }min , , , ,,1 10 1− =≠ ≥ �h
p p lA B hσ i pi ih C:= :

where Cpi denotes the ith row of Cp.  The relative degrees of the model outputs are defined in the same way.

　If the relative degrees of model outputs are less than those of plant outputs, then we require the derivatives of model

inputs when designing the model-following controller proposed in 16).  In such case, we can satisfy the assumption by

adding strictly proper filters to model inputs (unfortunately, we need the state variables of the filters to implement the

subsequent controllers), or by making some further assumptions so that the assumption is satisfied (see the design

example in Section 4).  If the relative degrees of model outputs are greater than those of plant outputs, then the following

formulation is a little bit different.  However, we have no need to use the derivatives of model inputs when designing the

model-following controller proposed in 16).
　Under these assumptions, the model-following controller in 16) is given in (15).  (See 16) for further details.)

,− + +p x p xm m um mu K x K x K x= (15)

where Kx, Kxm, and Kum are defined as follows.
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Matrix K is arbitrarily assigned under the restriction that it is a block-diagonal matrix.
　The model-following controller (15) has the following properties:

　i.  If the plant initial states and model initial states are all zeros, then the plant outputs coincide with the model outputs

for arbitrary model inputs.

　ii. If the initial plant states are not zeros or there are perturbations to the plant, then the model-following errors con-

verge according to the characteristic equations of the errors assigned by K.  Furthermore, the poles of the

closed-loop plant and the roots of the characteristic equations of the errors are the same, and n － z of these

poles or roots are placed by K, where n denotes the degree of the plant and z denotes the number of invariant

zeros of the plant.
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　From the second property, Kawahata has suggested placing the poles of the closed-loop system so as to decrease

model-following errors and disturbance effects on the plant, but he has showed no way to achieve this under the condi-

tion that there exist uncertainties and perturbations to the plant.  Miyazawa 19) has proposed a design method of decreas-

ing disturbance effects under such condition, which is shown in the following.
　We first describe the analysis of disturbance attenuation performance under the condition that there exist neither

uncertainties nor perturbations to the plant, we then describe a design problem minimizing disturbance attenuation

performance under the condition that there exist uncertainties and perturbations to plant.
　For a given K, its disturbance attenuation performance combined with control input effort is defined as (16) for an

appropriate xp＝xp0 at t＝0; that is, the plant state is to be driven to xp0 from 0 by disturbances and the inputs and states

of model are set to be zeros.  In this definition, Q＝QT >_ 0 and R＝RT > 0 are assumed.

( )( )TQ K RK
∞

= +∫ T
p x x pJ x x dt

0
: ε (16)

If we obtain K minimizing J defined in (16), then the controller (15) with K is a model-following controller with optimal

disturbance attenuation.  However, this formulation does not consider uncertainties such as modeling errors, and the

obtained model-following controller is not practical since the stability of the closed-loop system is apt to be broken due to

uncertainties of plant.
　Now we describe the problem minimizing disturbance attenuation performance under the condition that there exist

uncertainties and perturbations to plant.  Miyazawa has proposed to use the Multiple Delay Models and Multiple Design

Points (MDM/MDP) concept 20, 21) in the evaluation of disturbance attenuation; that is, multiple delays (17) are set at plant

inputs to estimate phase uncertainties in the high frequency range or time delays of plant system, and multiple design

points (18) are used to represent uncertainties, i.e. modeling errors and perturbations to plant (see Figure 4).

/
/ ,
2 1

2 1 � �i j

i j

T s
T s
− +

+=
ci iu u i l j m=1, , , =1, , (17)

[ ]� � �
T= +

k k k k k kp p p p p p lx A x B u k q u u u u1 2, =1, , , = (18)

Here, ui, uic, Tij, and m respectively denote the ith plant input, the command of the ith plant input, the j th delay time of

the i th plant input, and the number of delay models.  Matrices Apk and Bpk denote the state-space realizations of the k th

plant, and q denotes the number of design points.  In this formulation, we assume that there exist perturbations and

uncertainties only in the A and B matrices of plant.  If there exist perturbations and uncertainties in the C matrix, we can

satisfy the assumption by adding strictly proper filters to plant outputs.
　Given an appropriate gain K, let s denote ml × q, and J1, …, Js respectively denote the performance of the 1st, …, sth plant

models, with given K and matrices Ap*, Bp* and Mp derived from the nominal plant.  If we obtain K minimizing Jf :＝ max

{J1, …, Js}, then controller (15) with obtained K is a model-following controller with optimal disturbance attenuation under

the condition that the plant is expressed as the nominal plant model with some uncertainties described as multiple delay

models (17) and multiple design points (18).
　The above design sequence is summarized below.

Figure 4  Block diagram of model-following controller design using MDM/MDP concept

Kx
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 Tik/2s+1

-Tik/2s+1
 Tik/2s+1

-Ti  /2s+1
 Ti  /2s+1

j=1,    , m
Kxm xm +

Kum um=0 +

−
xp = Ap  xp +Bp up
.

...
k=1,    , q...

k k k k k

j

j

xp0
x  =p

i=1,    , l...

at t=0
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Sequence 1Sequence 1Sequence 1Sequence 1Sequence 1
　　Step A:  Calculate Ap*, Bp*, Mp, Am*, Bm*, and Mm from nominal plant (13) and model (14).
　　Step B:  Create ml × q plant models from multiple delay models (17) and multiple design points (18).
　　　Then minimize Jf with K using some numerical optimization algorithm.
　　Step C:  Calculate Kx, Kxm, and Kum with optimal K.

3.2  Proposed Method using Robust H2 Controller Synthesis for LPV Systems

　The above-mentioned design method produces good controllers as shown in 19).  However, the method only minimizes

disturbance attenuation performance under the condition that model inputs are always zeros; that is, it does not evaluate

model-following errors under the condition that there exist model inputs.  For practicality, we must minimize model-

following error performance, such as ( ) ( )
0

∞
− −∫

T
p m p my y y yS dt  with S＝ST >_ 0, as well as disturbance attenuation performance under

the condition that there exist uncertainties and perturbations to plant and model inputs are arbitrary.  Furthermore, the

above design method has some drawbacks in the evaluation of the performance: It does not consider the whole range of

uncertainties or perturbations to plant; we only minimize the worst case among the selected plant models; and the perfor-

mance is evaluated for some LTI systems even if the plant models consisting of the MDM/MDP models are a single

time-varying system.  If the MDM/MDP models are expressed as the nominal LTI plant with parametric uncertainties,

the robust H2 problem in Section 2 is applicable to overcome these drawbacks with a slight revision.  While the model-

following performance index, ( ) ( )
0

∞
− −∫

T
p m p my y y yS dt , has been previously reported in many papers (e.g. 22) and references

therein), here, unlike the previous literature, we evaluate the model-following error performance for not an LTI plant but

for an LTI plant with parametric uncertainties.
　The multiple design points usually represent models of plant at various different equilibriums, and these models can

then be expressed as an LPV system.  In the next section, we show how to express delay models as an LPV system with

a design example.  In this section, we show a design method for a model-following controller (15) in which the robust H2

problem is applied to overcome the drawbacks mentioned above.  The design sequence differs from Sequence 1 only in

Step B.
　A system whose state-space realization is given as {Ap(θ), Bp(θ), [Cp 0], 0} represents plant model with multiple delay

models (17) and multiple design points (18), where Ap(θ), Bp(θ), and [Cp 0] are augmented from the nominal ones by delay

models.  We now formulate the robust model-following controller design problem for plant expressed as {Ap(θ), Bp(θ), [Cp

0], 0} and model (14) with controller (15) where Ap*, Bp*, Mp, Am*, Bm*, and Mm are obtained from the nominal plant model.

The performance for evaluating model-following errors and disturbance attenuation is set as follows with e＝ yp－ ym:

( )( )TQ R
∞

= + +∫ T T
p p p pJ dte Se x x u uε

0
(19)

for random model inputs (um) and gusts (wg) at t ＝ 0.  In this expression, S＝ST >_ 0, Q＝QT >_ 0, and R＝RT > are assumed.

We may also consider the servo problem for model-following errors.  However, human operators (pilots) in the control

loop behave like servo controllers, so we do not consider the servo problem.  Finding an optimal block-diagonal matrix K

for J defined in (19) is a robust H2 controller synthesis with block-diagonal static output controller for the following

generalized plant.
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(20)

In (20), state variables are [xp
T xd

T xm
T]T, disturbance inputs are [wg

T um
T]T, and control input is up, where xd denotes the state

variables of delay models and wg denotes the disturbance input to plant.  Matrices [A*p 0], [Q1/2 0], [S1/2Cp 0], [－R1/2B*p－1
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A*p 0], and [－Mp 0] are appropriately augmented by delay models.  Matrix Bg represents the disturbance input matrix of

plant with an appropriate dimension.
　However, the generalized plant (20) has D11 term that prevents us from defining its H2 problem.  Since disturbance

inputs [wg
T um

T]T, consisting of disturbance inputs to plant and model inputs, do not have meaningful signals in high

frequency range, we add a strictly proper filter F(s) whose state-space representation is given as {Af, Bf, Cf, 0} to [wg
T um

T]T.

We then have the following generalized plant with the notation in (20):

A B C

A B

B

C D C D

C

f

f f

f

( ) ( ) ( )θ θ θ1 2

1 11 12

2

0

0

0

0





















(21)

We can now define robust H2 controller synthesis for this generalized plant.  In this representation, we confirm that

Assumption 1 is satisfied: D12(θ)T D12(θ)＝B*p－ T RB*p－ 1 > 0.
　After the above preliminaries, the proposed design method for the robust optimal model-following controller is given

below.

Sequence 2Sequence 2Sequence 2Sequence 2Sequence 2
　　Step A:  Calculate A*p, B*p, Mp, A*m, B*m, and Mm from nominal plant (13) and model (14).
　　Step B  Make a parametric state-space realization expressed as {Ap(θ), Bp(θ), [Cp 0], 0} from MDM/MDP models of the

plant, and set a filter F(s) and matrix Bg appropriately.  Then find robust H2 optimal gain K for (21) using

Algorithm 1.
　　Step C:  Calculate Kx, Kxm, and Kum with optimal K.

Remark 2Remark 2Remark 2Remark 2Remark 2  In (20), if we set S＝ 0 then J defined in (19) becomes  ( )( )
0

Q Rε ∞
+∫ T T

p p p p dtx x u u .  Furthermore, if we set um ＝ 0, then

xm＝0 holds since the dynamics of model are calculated by on-board computers, and the generalized plant (20) becomes as

follows after eliminating xm, um, and e.

A B B A B B B

Q

R B A

p p p p p p

p p

( ) ( ) ( )
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/ *
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(22)

The design problem for an optimal model-following controller (15) in which the performance index is one defined in (16) for

xp0 ＝ δ(0) Bg wg, where δ(･) is Dirac’s delta function and the plant is expressed as {Ap(θ), Bp(θ), [Cp 0], 0}, is a robust H2

controller synthesis for (22).  Then the performance index used in 19) is confirmed to be a special case of our performance

index and our design problem is confirmed to be a more general framework than one in 19).

4  Model-following Controllers for Lateral/Directional Motions of MuPAL- ααααα

　To demonstrate a practical application of our proposed design method, we design several model-following controllers

for the lateral/directional motions of MuPAL-α 23), one of JAXA's research aircraft (based on a Dornier Do-228 turboprop

commuter aircraft), and present the results of their evaluation by numerical simulations and flight experiments.

4.1  Design

　The nominal plant model of MuPAL-α is a linearized model at straight level flight at true air speed TAS=66.5 m/s and
  ′altitude H=1520 m.  For the delay models, first-order Pade-approximate delay models (17) are assumed at aileron and

rudder inputs.  For the design points, we set steady sideslip flight at β＝±5, ±10 deg at the same airspeed and altitude,

where β denotes the sideslip angle.  Let Ta and Tr respectively denote delay time parameters of the aileron and rudder
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delay models and they are set as time-invariant parameters, which are not measurable on time.  The variations of these

parameters are set as in (23) below from the characteristics of the modeled actuators (0.16 s), noise filters (0.02 s), the

cycle time of MuPAL- α 's flight control computer (0.02 s), the dead time of the system (0.08 s), and a margin (0.05 s).

Matrices that represent the maximum deviation of plant models from the nominal plant model are expressed as in (24)

where δ is set as a time-varying parameter, which is not measurable, and its range is normalized as in (23).  Here, the

parameter vector θ is given as [1/Ta 1/Tr δ]T.

[ ]
[ ]
[ ]

. , .

. , .
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0 02 0 33

0 02 0 33

1 1
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∈ −δ
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T (23)

 

. . . . . . . . .

. . . . . .
. .

( )
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(24)

　The aircraft to be followed are a Boeing 747 at TAS=67.4 m/s and H=0 m and Lockheed Jetstar at TAS=136.3 m/s and

H=0 m.  State-space realizations of models are calculated from 24).  The state variables of the plant and models are [v[m/

s] p[rad/s] φ[rad] r[rad/s]]T, control input variables are [δa [rad] δr [rad]]T, and output variables to be followed are [v[m/

s] φ[deg]]T.  Here, v denotes side velocity, p and r denote roll and yaw rates respectively, p denotes roll angle, and δa and
δr denote aileron and rudder angles respectively.
　We now design the model-following controllers according to Sequence 2 as follows.

Step A in Sequence 2Step A in Sequence 2Step A in Sequence 2Step A in Sequence 2Step A in Sequence 2
　The plant system has an invariant zero, so the model-following control law (15) cannot place all poles arbitrarily, and as

a result the feedback gains are very large and the subsequent H2 performance for LPV plant is very poor.  We therefore

make the following assumption.

Assumption 4Assumption 4Assumption 4Assumption 4Assumption 4  The elements of the first row of Bp are zeros.

Under this assumption the relative degree of v is two in the plant and one in the models.  The model-following controller

in 16) is therefore different from (15), and requires derivatives of the model inputs.  We therefore make the same

assumption for the models.

Assumption 5Assumption 5Assumption 5Assumption 5Assumption 5  The elements of the first row of Bm are zeros.

Under these assumptions, matrix K in (15) is restricted as      
 
 
 

k k
k k

1 2

3 4

0 0
0 0  and can place all poles.  Matrices A*p, B*p, Mp,

A*m, Bm, and Mm are then calculated under these assumptions.

Step B in Sequence 2Step B in Sequence 2Step B in Sequence 2Step B in Sequence 2Step B in Sequence 2
　We next calculate robust H2 optimal K by applying Algorithm 1.  Hereafter Assumptions 4 and 5 are not assumed.
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　Matrices to be set are set as follows.
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　Then, the initial values of K is the best of optima for the following problems with 44 pairs set as initial gains, which are

the combinations of setting ki (i＝1, …, 4) to be 1, 4, 7 or 10, using a numerical optimization algorithm in 25).  As shown

in section 2.3, our proposed algorithm works well.  However, the algorithm produces a candidate of global minimum; that

is, generally speaking, it produces a local minimum, which heavily depends on the initial gain.  Thus, we use MDM/MDP

method to obtain the initial gains of our proposed method.

Problem 4Problem 4Problem 4Problem 4Problem 4  Find a controller K such that

{ }min max ,, ,1 8�
K

J J

where Ji is the square of H2 performance for (21) with setting Ta ＝ 0.02 or 0.33, Tr ＝ 0.02 or 0.33, and δ ＝ － 1 or 1.

　The generated values are shown as initial values in Tables 1 and 2.  Using these initial values, we carry out Algorithm

1 with ( ) 1 1
0= + +

a ra rT TP P P Pθ  and ε set as 1×10－4, where we set P(θ) to be independent of the parameter δ because the

entries of the δ dependent matrices in (24) have small values.  In accordance with Remark 1, the ranges of 1/Ta and 1/Tr

are gridded at ten points linearly, and we design and analyze at these points.  The optimized gains generated with the

proposed method are shown as optimized values in Tables 1 and 2.  In this optimization process, neither Assumptions

4 nor 5 are assumed.  Therefore, the optimized gains are for nominal LTI plant with parametric uncertainties with no

assumptions, not for the assumed plant model.
　Although we cannot confirm whether the optimized gains are the global optima, for the Jetstar model, the optimized

gains differ considerably from the initial gains, and the performance using the optimized gains is much better than that

resulting from the initial gains.  This implies that identifying an LPV system as a system composed of many LTI systems

may lead to very poor performance.

Table 1  Initial and optimized gains for B747 model Table 2  Initial and optimized gains for the Jetstar model

Initial values Optimized values

k
1 4.3974 4.2570

k
2 3.1293 2.9465

k
3 10.515 9.6351

k
4 8.0106 7.0830

  J^i 704.63 (i＝ 0) 698.30 (i＝ 41)

Initial values Optimized values

k
1 0.7630 3.4680

k
2 0.5517 3.4390

k
3 8.0882 12.365

k
4 8.1012 7.5256

  J^i 143093 (i＝ 0) 15557 (i＝ 112)
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Step C in Sequence 2Step C in Sequence 2Step C in Sequence 2Step C in Sequence 2Step C in Sequence 2
　We calculate Kx, Kxm, and Kum for the B747 and Jetstar models with the respectively optimized K's.  They are shown

in Tables 3 and 4.

4.2  Numerical Simulations

　We conduct numerical simulations to evaluate the performance of the designed controllers.  In these simulations,

neither Assumption 4 for the plant nor 5 for the models are assumed.
　To compare the performance of controllers evaluating model-following error performance and those that do not, we

design a controller (15) minimizing the H2 performance for (21) with the same Q, R and F(s) in the previous subsection,

and S＝0 and um＝0; that is, a robust H2 controller that evaluates only disturbance attenuation performance.  The initial

values of K in Algorithm 1 are obtained similarly in the previous subsection and the optimized K is obtained using

Algorithm 1 setting ( ) 1 1
0= + +

a ra rT TP P P Tθ  and ε set as 1.0 × 10－4.  The initial and optimized values are shown in Table 5.

The gains do not change in accordance with models since this problem minimizes only disturbance attenuation perfor-

mance of plant.
　We conduct numerical simulations for rudder doublet inputs to the models, which are the same inputs as in the

subsequent flight experiments, with the optimized gains in Tables 1, 2, and 5.  In these simulations, we use LTI plant

models with maximum pure delays (0.33 s) for plant aileron input and plant rudder input, and we set δ＝－ 1, 0, 1.

Figures 5 and 6 show time histories of vp－vm, φp－φm, and plant inputs δa and δr, where variables with subscript p denote

plant variables and variables with subscript m denote model variables.  In Figures 5 and 6, the left figures show time

histories with the controllers (15) calculated with gains in Tables 1 or 2 and the right figures show time histories with

the controllers (15) calculated with gains in Table 5.  We confirm that the controllers evaluating model-following errors

have better performance than those do not, especially in Figure 5.  Although we omit motion time histories of plant and

Table 3  Controller for B747 model

Table 4  Controller for Jetstar model

Table 5  Initial and optimized gains for optimal disturbance attenuation

Initial values Optimized values

k
1 2.0396 2.2223

k
2 2.0902 2.2982

k
3 5.1908 4.9949

k
4 7.2970 6.9919

  J^i 63.644 (i＝ 0) 63.385 (i＝ 65)
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Figure 6  Numerical simulations of rudder doublet inputs to Jetstar model
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Figure 7  Time histories of rudder doublet inputs to B747 model (dotted: model, solid: MuPAL-α)
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Figure 5  Numerical simulations of rudder doublet inputs to B747 model
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models, we see their time histories in the subsequent flight experiments (Figures 7 and 8).  We see discrepancies in

outputs, especially in Figure 6, this seems to be due to Assumptions 4 and 5 when designing A*p, A*m, etc.  If we want to

reduce the discrepancies, we do either of the following; not make Assumptions 4 and 5, or add strictly proper filters to

model inputs.  However, in our case, the former leads to worse performance than making assumptions, and the latter

leads to the use of state variables of filters and subsequent numerical burden for designing controllers.  Thus, in our

design, Assumptions 4 and 5 are reasonable.

4.3  Flight Experiments

　After the numerical simulations, the controllers designed with optimized gains in Tables 1 and 2 were verified by flight

experiments.  Due to prevailing weather conditions, the flight experiments were conducted under conditions slightly

different conditions from the nominal: TAS=62-70 m/s, H=1300-1400 m.  In these experiments, Assumption 5 for mod-

els was not assumed.
　The details of on-board computers of MuPAL-α and the implementation of designed flight controllers are described

in 26).  Thus, we omit them in this manuscript.
　Figures 7 and 8 respectively show the response of B747 and Jetstar models with rudder doublet inputs.  The rudder

doublets were input to excite the Dutch-roll motions of model aircraft; B747 model, Jetstar model, and MuPAL- α

respectively have about 8 s, 3 s, and 4 s period Dutch-roll motions.  The inputs to B747 and Jetstar models are 10 deg

and 8 s, and 2 deg and 3 s duration inputs respectively.  Figure 7 demonstrates that the designed controller for B747

model has good performance since there is very little discrepancy in outputs (v and φ).  Although Jetstar model has

larger natural vibration frequency than plant has, Figure 8 demonstrates that the designed controller for Jetstar model

also simulate the motions of Jetstar model.  In contrast to Figure 7, Figure 8 shows discrepancies in outputs (v and φ)

and this is mainly because of Assumptions 4 and 5 which are made by us due to technical problems.
　We next conducted experiments to verify the practicality of controllers with normal pilot inputs.  Figures 9 and 10

respectively show steady turns of the B747 and Jetstar models.  (There is no ψ (yaw angle) data of models in these

figures because of the capacity limitations of the flight control computers.)  These figures demonstrate that the de-

signed model-following controllers have good performance with normal pilot inputs under the real gust conditions (e.g.

especially from 120 to 140 s in Figure 9 and from 90 to 110 s in Figure 10).

5  Conclusions

　This paper proposes a design method for robust static output H2 controllers for LPV systems using parameter-dependent

Lyapunov functions.  Although there is a special assumption that stabilizing controllers are given, the presented numeri-

cal example demonstrates that the proposed method works well.  We apply the proposed method to a previously pro-

Figure 8  Time histories of rudder doublet inputs to Jetstar model (dotted: model, solid: MuPAL-α)
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posed model-following controller design to overcome its drawbacks.  In contrast to previous methods, the proposed

method minimizes the robust model-following error performance and disturbance attenuation performance for an LPV

system with a process that convergences to an optimal solution.  Several model-following controllers for the lateral/

directional motions of an aircraft are designed using the proposed method, and numerical simulations and flight experi-

ments confirm that these controllers have good performance.
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