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We characterize complexities in combustion instability in a lean premixed gas-turbine model

combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions,

and short-term predictability. The dynamic behavior in combustion instability near lean blowout

exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by

the onset of combustion oscillations with slow amplitude modulation. Our results indicate that

nonlinear time series analysis is capable of characterizing complexities in combustion instability

close to lean blowout. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766589]

An understanding of the physical process underlying

combustion instability leading to lean blowout is of

current interest in modern combustion physics as well as

in nonlinear science. In this study, the characterization of

complexities in combustion instability in a lean premixed

gas-turbine combustor, which is of fundamental and

practical importance for combustion systems, has been

carried out from the viewpoint of nonlinear dynamics,

focusing on characterizing the dynamic behavior of

combustion instability close to lean blowout. The use of

nonlinear time series analysis involving permutation

entropy in combination with a surrogate data method,

multifractal analysis, and nonlinear forecasting based on

a radial basis function network allows us to capture the

signature of self-affine structures and chaotic oscillations

in combustion instability. Our results have not been

reported in previous papers on combustion phenomena,

in particular, thermoacoustic combustion oscillations.

I. INTRODUCTION

Lean premixed combustion is becoming an effective

way for reducing nitrogen oxide (NOx) emission from gas-

turbine engines. However, it is more susceptible to the

excitation of combustion instabilities such as lean blowout,

thermoacoustic combustion oscillations, and flame flashback,

which is a major issue that limits the development of propul-

sion and land-based gas-turbine engines. Thermoacoustic

combustion oscillations, caused by closed-loop coupling

between unsteady pressure and heat-release fluctuations

referred to as the Rayleigh criterion, lead to serious damage

in combustors and are detrimental to the operation of

engines. A complex interaction between the combustion pro-

cess and acoustic field inside the combustors generates the

nonlinear dynamical behavior of thermoacoustic combustion

oscillations. Details of the physical mechanism of the excita-

tion of thermoacoustic combustion oscillations in various

types of laboratory-scale gas-turbine combustor have been

discussed in a recent review.1 In most studies,1–9 a linear

analysis such as power spectrum analysis has been applied to

the pressure and heat-release fluctuations with the aim of

characterizing the dynamics underlying thermoacoustic com-

bustion oscillations. This method is one of the common and

conventional methods of characterizing unsteady combustion

modes of an observational time series, but may be insuffi-

cient for revealing the nonlinear nature of combustion insta-

bility. In fact, combustion instability is roughly classified by

the power spectrum into stable combustion represented by a

limit cycle with a small oscillation amplitude and unstable

combustion represented by a limit cycle with a large oscilla-

tion amplitude and well-defined oscillation frequencies.1 This

indicates that the power spectrum may have limited use in

characterizing the complex dynamics underlying combustion

instability.

The nonlinear time series approach inspired by chaos

theory conveys useful information for clarifying the nonlin-

ear properties of complex dynamics, and its utilization has

led to the possibility of uncovering information about the

underlying dynamics of flame or combustion instability. In

recent years, it has been applied to the temporal behavior of

the unstable combustion state observed not only in experi-

ments (e.g., a thermal pulse combustor,10 a ducted premixed

combustor,11–13 a spark ignition engine,14,15 and swirling

premixed flames16) but also in the numerical solutions of

sets of nonlinear differential equations derived from first

principles (e.g., a thermal pulse combustor,17 detonation,18,19

and a spark ignition engine20). In previous studies6,11–13 rele-

vant to thermoacoustic combustion oscillations, the

Grassberger-Procaccia (GP) algorithm,21 used to obtain the

correlation dimension as a class of the fractal dimension

from an observational time series, was used to characterize

the nonlinear nature. In particular, the usefulness of the GP
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algorithm in characterizing the nonlinear nature of pressure

fluctuations in thermoacoustic combustion oscillations was

emphasized by Kabiraj and co-workers.12 However, the GP

algorithm often leads to a misdiagnosis in distinguishing

chaos from temporally correlated stochastic processes or in

testing for low-dimensional chaos from a time series.22

Diks,23 Yu et al.,24 and Small et al.25 have recently proposed

improved versions of the GP algorithm. Without using the

correlation dimension and instead by estimating the degree

of parallelism of neighboring trajectories in the phase space

reconstructed from a time series, we have recently reported

the possibility that pressure fluctuations at an equivalence

ratio of /¼ 0.43 near lean blowout (see Fig. 1) in a lean

premixed gas-turbine model combustor are ascribed to

stochastic processes, whereas those at /¼ 0.45 are ascribed

to chaotic oscillations with slow amplitude modulation.25

The importance of the degree of parallelism has been shown

in a previous study regarding flame front instability induced

by buoyancy/swirl coupling.16

As mentioned above, the relevance of chaos to thermoa-

coustic combustion oscillations has been shown by nonlinear

time series analysis, even in the above previous work.26 To

obtain better understanding of the nonlinear dynamics in

combustion instability, the characterization of complexities

of combustion instability close to lean blowout is needed

from different viewpoints, which will be of significance in

not only combustion science and physics but also nonlinear

dynamics. Our purpose in this study is to conduct a more in-

depth investigation of the complexities of combustion insta-

bility in a lean premixed gas-turbine model combustor from

the viewpoints of permutation entropy, multifractal structure,

and nonlinear forecasting based on a neural network. We first

use the mathematical method devised by Bandt and Pompe27

to estimate permutation entropy. Permutation entropy repre-

sents the degree of randomness estimated from a sequence of

ranks in the values of a time series, as a coarse-grained dupli-

cation of the time series. This method was used to character-

ize the dynamic properties of a different type of flame front

instability.28 Another simple and useful time series analysis

for distinguishing chaos from stochastic processes, referred

to as the 0-1 test, has been introduced by Gottwald and Mel-

bourne.29 The 0-1 test classifies a given time series into one

of two opposite classes: deterministic behavior and uncorre-

lated random behavior. However, in this study, we estimate

the degree of visible determinism in the dynamic behavior,

rather than make a judgment of whether the dynamical

behavior is deterministic or stochastic. For this reason,

we do not apply the 0-1 test in this study. Instead, the

amplitude-adjusted Fourier transform (AAFT) surrogate

method30 and the cycle surrogate method31,32 are applied to

evaluate the statistical significance of the estimates for the

permutation entropy. Second, we use multifractal analysis to

examine the fractal structure in the phase space constructed

from the time series data of pressure fluctuations. This allows

the degree of self-similarity to be evaluated as a spectrum,

and has recently been applied to study the dynamic behavior

of a spark ignition engine.15,20 We do not use improved ver-

sions of the GP algorithm23–25 because they cannot assess

multifractality. The dynamic behavior of deterministic chaos

has the important features of short-term predictability and

long-term unpredictability. In nonlinear physics, nonlinear

forecasting based on orbital instability in the phase space or

neural network theory has been shown to ensure good per-

formance in the short-term prediction of deterministic

chaos.26,33–50 We use a generalized radial basis function

(GRBF) network,33,38,39,46 which is based on regularization

theory.40 This can be considered to be an inverse approach in

the sense that the underlying dynamics is expressed by a pre-

dictive model constructed from the observed temporal

behavior. The importance of the inverse approach has been

discussed in studies of crystal growth38 and a blast furnace.46

This paper is organized as follows. In Sec. II, we briefly

describe the experimental system and methods used in this

work. In Sec. III, we present the central ideas behind the

mathematics of time series analysis. We present the results

and discussion in Sec. IV and our conclusions in Sec. V.

II. EXPERIMENTAL SYSTEM AND METHODS

The experimental system we used in this study is identi-

cal to that used in previous studies.8,9,26 It is mainly com-

posed of a blower, an electric heater, an axial swirler, a

combustion chamber with a length of 630 mm and a

100� 100 mm2 cross section, and a water-cooled stainless-

steel duct (see Fig. 1 of Ref. 26). The inlet air preheated at

700 K is delivered to the combustion chamber at a mass flow

rate of 78 g/s. Methane gas is used as the main fuel, which is

injected through multiple orifices 260 mm upstream of the

inlet of the combustion chamber. The swirler with a vane

angle of 45� relative to the inlet premixture stream is used as

a flame holder in this study. As in previous works,8,9 active

control by secondary fuel injection is not applied in this

study so that we can focus on characterizing the complexities

of combustion instability. The equivalence ratio of the meth-

ane/air premixture / is varied from 0.43 to 0.47 because,

under these conditions, the dynamic behavior of combustion

instability near lean blowout undergoes a transition to cha-

otic oscillations. The pressure fluctuations of combustion

instability p0 are obtained using a pressure transducer

FIG. 1. Time variations in pressure fluctuation p0 at equivalence ratios

/¼ 0.43 and 0.45. The upper figure (lower figure) shows the time variation

in p0 for combustion instability near lean blowout (for combustion oscilla-

tion with a small modulation in amplitude).

043128-2 Gotoda et al. Chaos 22, 043128 (2012)

Downloaded 10 Dec 2012 to 155.198.167.11. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

.5

This document is provied by JAXA.



(Kulite Semiconductor Products, Model XTEL-190-15G)

placed on the wall of the combustion chamber with the aim

of investigating the dynamic behavior of combustion insta-

bility.26 The pressure transducer is set 10 mm downstream of

the inlet of the combustion chamber because the effect of

thermoacoustic coupling strongly appears in the time series

of pressure fluctuations. Nonlinear time series analysis is

applied to the time series data of p0 at a sampling frequency

of 5.12 kHz.

III. MATHEMATICAL TREATMENT USED FOR
NONLINEAR TIME SERIES ANALYSIS

A. Permutation entropy in combination with surrogate
data method

Kolmogorov-Sinai (KS) entropy is an invariant measure

of the complexity of dynamics. Bandt and Pompe27 have

recently introduced permutation entropy as a coarse-grained

version of the KS entropy that can be estimated by a conven-

ient algorithm using a time series. Given a sequence with

embedding dimension D, we index all possible permutations

(D! permutations) of order D� 2 as p. Each permutation

represents a coarse-grained pattern of the dynamic behavior

when the sequence consists of D successive data points taken

from a time series. We first count the number of permuta-

tions denoted as q(p) for all vectors XðtÞ ¼ ðp0ðtÞ;
p0ðtþ 1Þ;…; p0ðtþ D� 1ÞÞ consisting of sequences of order

D. We then calculate the relative frequency for each permu-

tation to obtain pðpÞ ¼ qðpÞ=ðN � Dþ 1Þ. The permutation

entropy is defined as

HðDÞ ¼ �
X

p

pðpÞlog2 pðpÞ: (1)

The permutation entropy can be normalized as follows

with respect to the maximum permutation entropy, which is

obtained for completely random processes:

�h ¼ HðDÞ
log2D!

; (2)

where 0 � �h � 1. The lower bound corresponds to a monot-

onically increasing or decreasing process, while the upper

bound corresponds to a completely random process.

The surrogate method first introduced by Theiler et al.30

is a type of statistical test used in combination with nonlinear

time series analysis to test for weak evidence of deterministic

chaos. In this method, we first postulate a null hypothesis

about the dynamics generating some statistical properties of

a given time series. For instance, under the null hypothesis

that irregular components of pressure fluctuations represent a

stochastic process, we generate sets of surrogate time series

such that they possess the same power spectra as those of the

original time series. This can be conducted using the AAFT

surrogate method. The surrogate time series entirely preserve

the power spectra owing to the regular oscillations included

in the original time series; however, they lose the determin-

ism (chaos) generating the irregular components, if any, of

the original time series. For periodic cycles with slow

amplitude modulation included in pressure fluctuations,26 the

surrogate method based on shuffling individual cycles within

a time series, referred to as the cycle surrogate data, is more

useful for testing for determinism in the case of slow ampli-

tude modulation. Referring to previous studies,31,32 under

the null hypothesis that each cycle is independent of its adja-

cent cycle and that no determinism is visible in pitch fluctua-

tions of the time series, we generate a ten-cycle surrogate

time series.

The next step in the surrogate method is to estimate

appropriate statistics such as permutation entropy for both the

original time series and the surrogate series. Then, we calcu-

late the mean and variance of the estimated statistics for the

surrogate data and conduct a t-statistical test to evaluate the

statistical significance of the difference in the estimated statis-

tics between the original and surrogate data. When the t-test

statistic exceeds the critical t-value for the given degrees of

freedom, the null hypothesis is rejected. This rejection implies

that the irregular components of the original time series stem

from a deterministic process, which can be interpreted as pos-

sible evidence of the existence of chaos.

B. Multifractal analysis

A multifractal structure exhibits various self-similarities

in the phase space constructed from time series data, which

is generally characterized by a singularity spectrum. The sin-

gularity spectrum represents the fractal dimension of inter-

woven sets in the attractor. It provides us with an intuitive

understanding of the multifractal structure in terms of the

singularity strength and has been applied in recent combus-

tion research.15,20 Note that in previous studies,15,20 the sin-

gularity spectrum was directly estimated for positive time

series data.

On the basis of Takens’ embedding theorem,51 the phase

space is constructed from the time series data of the pressure

fluctuations p0. The time-delayed coordinates used for the

construction of the phase space are expressed as

xðtiÞ ¼
�

p0ðtiÞ; p0ðti þ sÞ; p0ðti þ 2sÞ;…; p0
�

ti þ ðDþ 1Þs
��
;

(3)

where i¼ 0, 1,…, n (n is the data number of the time series),

x(ti) are the phase space vectors, p0(ti) are the pressure fluctu-

ations at time ti, D is the embedding dimension, that is, the

dimension of the phase space, and s is the time lag. The

value of D used to obtain the singular spectrum is set to 3 in

this work with reference to a previous study.52 If the time lag

is too small, then the elements of the phase space vectors are

strongly correlated. If the time lag is too large, then the cor-

relation is lost completely. An appropriate choice for the

time lag is made using mutual information.26

In this work, we directly estimate the singularity spec-

trum using the standard box-counting method. The probabil-

ity measure in the ith box, which is divided into boxes of

size e in the support of the phase space, is scaled with the

singularity strength as

piðeÞ ¼ eai ; (4)
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where pi is the probability measure in the ith box and ai is

the singularity strength characterizing the scaling in the ith
box. The number of boxes N(a) for which the probability has

singularity strength between a and da scales with f(a)

according to the power law of pi(e) as follows:

NðaÞ ¼ e�f ðaÞ: (5)

The partition function is obtained for the parameter q,

which can vary from �1 to þ1,

ZðqÞ ¼
X

i

piðeÞq: (6)

A scaling exponent function s(q) can be estimated from

the slope of the linear part of the ln Z(q) versus ln e curve for

different q using

sðqÞ ¼ lim
e!0

lnZðqÞ
ln 1

e

: (7)

The singularity strength a and its spectrum f(a) are

finally obtained from the following equations obtained by

the Legendre transformation:

a ¼ dsðqÞ
dq

; (8)

f ðaÞ ¼ qa� sðqÞ: (9)

The generalized dimension Dq is expressed as follows:

Dq ¼
sðqÞ

q� 1
: (10)

Note that Dq at q¼ 0 corresponds to the capacity dimen-

sion in the phase space. A schematic of the singularity spec-

trum f(a) as a function of singularity strength a is shown in

Fig. 2. When q¼ 0, the value of f(a) becomes maximum.

From Eqs. (9) and (10), the maximum value of the singular-

ity spectrum f(a)max corresponds to the capacity dimension.

Therefore, f(a)max is estimated for different equivalence

ratios in this work. In addition, the degree of multifractality

Da (¼ amax� amin) is also estimated. As will be shown in

Fig. 5, the singularity spectrum does not intersect at an axis

of the singularity strength, but we estimate the multifractality

Da in this work (see Fig. 2) similarly to in a previous study20

(note that a clear definition of multifractality was not given

in the previous study20). In a preliminary test, the value of

f(a)max calculated for the time series data of the solution of

the Lorenz equations is nearly in accord with the capacity

dimension (¼ 2.07), and the validity of the calculation code

applied in this work is confirmed.

C. Nonlinear forecasting based on neural network

We utilize a GRBF neural network as a nonlinear fore-

casting method to capture the predictability of the dynamic

behavior of combustion instability close to lean blowout.

Previous applications of GRBF networks to complex time se-

ries have been reported.38,46 We refer to p0ðtiÞ as the input

vectors consisting of lagged sequences of data points of pres-

sure fluctuations and p0ðti þ TDtÞ as the corresponding data

point T time steps in the future. Predictions of p̂0ðti þ TDtÞ
about the corresponding actual value p0ðti þ TDtÞ are made

using the following input-output mapping, i.e., a network of

radial basis functions:

p̂0ðti þ TDtÞ ¼
XNh

h¼1

chexp
n
�bhkp0ðtiÞ � chk

2
o
; (11)

where p0ðtiÞ¼
�

p0ðtiÞ;p0ðti�sÞ;p0ðti�2sÞ;…;p0
�

ti�ðDþ1Þs
��

,

Nh is the number of Gaussian functions, i.e., the basis func-

tions, ch are the weight coefficients, and bh and ch are the

scalar and vector parameters determining the shapes of the

basis functions, respectively. In GRBF networks, bh and ch are

optimized by applying a learning algorithm such as stochastic

gradient descent to the time series. The GRBF network approxi-

mates the dynamics underlying the time series using a single

model defined by Eq. (11) over the entire phase space. In this

sense, the GRBF network is a class of global predictive methods.

In this study, we optimize the parameters ch, bh, and ch

using stochastic gradient descent such that the parameters

minimize the approximation error E between p̂0ðti þ TDtÞ
and p0ðti þ TDtÞ, defined by

E ¼ 1

N

XN

i¼1

½p0ðti þ TDtÞ � p̂0ðti þ TDtÞ�2: (12)

Stochastic gradient descent involves the following set of

ordinary differential equations:

dch

ds
¼ x1

@E

@ch
; (13)

dbh

ds
¼ x2

@E

@bh

þ gðsÞ; (14)

dch

ds
¼ x3

@E

@ch

þ gðsÞ; (15)

where s is a time parameter in the learning process, x1, x2,

and x3> 0 are appropriately chosen learning rates, and g(s)FIG. 2. Schematic of singularity spectrum.
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is a Gaussian white noise that has a mean of 0 and an

appropriate variance and is added to the right-hand side

of Eqs. (14) and (15) every appropriately chosen time inter-

val to allow the learning system to escape from local

minima with large approximation errors. We keep applying

Eqs. (13)–(15) until E is reduced to a sufficiently small

value. The initial ch, bh, and ch are set to random numbers

lying between �1 and 1. In a preliminary test, the validity of

the algorithm used in this work is confirmed by predicting

the time series data of the low-dimensional deterministic

chaos produced using the Henon map and Lorentz equations.

IV. RESULTS AND DISCUSSION

The normalized permutation entropy �h as a function of

the embedding dimension D is shown in Fig. 3 for the origi-

nal time series, AAFT surrogate time series, and cycle surro-

gate time series data of the pressure oscillations at an

equivalence ratio of /¼ 0.45. The physical mechanism of

the onset of combustion oscillations with slow amplitude

modulation was phenomenologically explained in previous

studies.8,9,26 As shown in Fig. 3, �h for the original time series

data gradually decreases with increasing D. This trend basi-

cally corresponds to that obtained in previous studies of

acoustic emission by an anomalous discharge in a plasma

system53 and flame front instability induced by radiative heat

loss.28 A similar trend for �h with respect to D is observed for

both AAFT and cycle surrogate time series data. However,

the estimates of �h for the original time series become consid-

erably lower than those for the surrogate series as D
increases. The null hypotheses can be rejected by a two-

sided t-test for �h at 5% reliability. Our previous study using

nonlinear time series analysis26 suggested that pressure fluc-

tuations at /¼ 0.46 represent chaotic oscillations. On this

basis, the result in Fig. 3 suggests that pressure fluctuations

at /¼ 0.45 are due to chaotic oscillations. The minimum

normalized permutation entropy �hm for the original time se-

ries data is shown in Fig. 4 as a function of the equivalence

ratio /. Here, note that the minimum �hm for a change in the

embedding dimension D is plotted in Fig. 4. �hm at /¼ 0.43

is approximately 0.84, indicating that the dynamic behavior

near lean blowout is a stochastic process. �hm decreases sig-

nificantly as / increases, which means that the degree of

complexity in the dynamic behavior of pressure fluctuations

decreases. When combustion oscillations with slow ampli-

tude modulation begin to appear, the degree of complexity in

the dynamic behavior becomes nearly constant.

As mentioned in Sec. I, the correlation dimension

method, which is a conventional method of quantifying the

degree of self-similarity in the phase space, has been widely

applied in studies of thermoacoustic combustion oscilla-

tions;6,11–13 however, information on self-similarity in com-

bustion dynamics is limited in the sense that a structure with

self-similarity is expressed as only a single fractal dimen-

sion. In contrast, multifractal analysis, which allows the

degree of self-similarity to be evaluated as a spectrum, is

useful for quantifying details of the fractal structure and has

recently been used to study the dynamic behavior of a spark

ignition engine.15,20 As in previous studies,15,20 we conduct

a multifractal analysis of a three-dimensional phase space

constructed from time variations in pressure fluctuations.

Note that the previous studies15,20 directly performed a mul-

tifractal analysis of the time variation in pressure fluctuations

of a spark ignition engine, that is, a one-dimensional struc-

ture, without considering Takens’ embedding theorem.51 In

this sense, compared with the analysis in the previous stud-

ies,15,20 the multifractal analysis carried out in this work is

extended to reveal a structure with self-similarity in the

phase space. A similar analysis has been applied to a low-

dimensional phase space constructed from the time varia-

tions in the numerical solutions obtained for various types of

nonlinear dynamical system, such as the Henon map and

logistic map.52 The singularity spectrum f(a) as a function

FIG. 3. Variation in normalized permutation entropy �h as a function of

embedding dimension D: original data (•), AAFT surrogate data (w and

lines) and cycle surrogate data (lines) at equivalence ratio /¼ 0.45. The

temperature of preheated inlet air is 700 K. The mass flow rate of preheated

inlet air is 78 g/s. The difference between the values of �h estimated for the

original and both surrogate time series data is significantly large, which

shows that the null hypotheses can be rejected.

FIG. 4. Variation in minimum of normalized permutation entropy �hm as a

function of equivalence ratio /. The experimental conditions of preheated

inlet air flow are the same as those in Fig. 3.

043128-5 Gotoda et al. Chaos 22, 043128 (2012)

Downloaded 10 Dec 2012 to 155.198.167.11. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

.5

This document is provied by JAXA.



of singularity strength a at /¼ 0.43 and 0.45 is shown in

Fig. 5. The shape of f(a) in both cases is clearly unimodal

and downward concave. This indicates that both the dynam-

ics in combustion instability near lean blowout and the com-

bustion oscillations with slow amplitude modulation have a

multifractal structure. An interesting result to note in Fig. 5

is that the maximum f(a) at /¼ 0.43 is a noninteger (¼ 2.7)

smaller than the embedding dimension (D¼ 3). In our previ-

ous work,26 we concluded that the dynamic behavior of pres-

sure fluctuations near lean blowout is stochastic. On the

basis of the result obtained in Fig. 5, it is conceivable that

the dynamic behavior of combustion instability near lean

blowout may exhibit a self-affine structure and fractional

Brownian motion. This indicates that the important nonlinear

nature of pressure fluctuations near lean blowout, which can-

not be discussed by measuring the parallelism of neighboring

trajectories in the phase space,16,26 can be extracted by multi-

fractal analysis. The maximum singularity spectrum f(a)max,

which corresponds to the capacity dimension, is shown in

Fig. 6 as a function of /. With increasing /, f(a)max gradu-

ally decreases, reaching 2.4 when combustion oscillations

with slow amplitude modulation appear. Generally, the Lor-

enz model is not appropriate as a platform for considering

combustion instability in real systems because it is an over-

simplified physical model derived from the Boussinesq equa-

tions under a free-boundary condition to purify the dynamic

behavior in unstable phenomena generated by buoyancy-

driven hydrodynamic instabilities. Nevertheless, the Lorenz

model is useful for the purpose of our study because it ena-

bles us to discuss the degree of complexity of dynamic insta-

bility.26 The translation error for combustion oscillations

with slow amplitude modulation is close to that for the low-

dimensional deterministic chaos produced using the Lorenz

equations.26 Although f(a)max for combustion oscillations

with slow amplitude modulation is larger than that for the

Lorenz equations, on the basis of the result obtained using

the translation error26 and multifractal analysis, it is con-

cluded that the dynamic behavior of combustion oscillations

with slow amplitude modulation is low-dimensional chaos.

The multifractality Da as a function of / is shown in Fig. 7.

Da gradually decreases with increasing /, which means that

the multifractality of the dynamic behavior of pressure fluc-

tuations decreases as combustion oscillations with slow am-

plitude modulation occur. That is, the multifractality of

combustion instability near lean blowout becomes stronger.

As mentioned in Sec. I, the correlation dimension of trajecto-

ries in the phase space obtained by the GP method21 has

recently been used more frequently to quantify the fractal

structure of thermoacoustic combustion oscillations in a

ducted premixed combustor.11–13 It has also been used to

characterize the dynamic behavior of flame front instabil-

ity.54,55 However, the results obtained in this work suggest

that multifractal analysis is a more suitable analytical

method of extracting details of fractal structures than the cor-

relation dimension method of estimating a single fractal

FIG. 5. Singularity spectra f(a) as functions of singularity strength a at

equivalence ratios /¼ 0.43 and 0.45. The experimental conditions of heated

inlet air flow are the same as those in Fig. 3. The shapes of f(a) for /¼ 0.43

and 0.45 are unimodal and downward concave, which indicates the existence

of a multifractal structure.

FIG. 6. Variation in maximum singularity spectrum f(a)max as a function of

equivalence ratio /. The experimental conditions of preheated inlet air flow

are the same as those in Fig. 3. The capacity dimension reaches 2.4 with the

onset of combustion oscillations with slow amplitude modulation, indicating

chaotic oscillations.

FIG. 7. Variation in multifractality Da as a function of equivalence ratio /.

The experimental conditions of preheated inlet air flow are the same as those

in Fig. 3. The multifractality of the dynamic behavior of pressure fluctua-

tions decreases with the onset of combustion oscillations with slow ampli-

tude modulation.
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dimension and is of great importance for the combustion

community.

A well-known feature of fractional Brownian motion is

that the degree of inconsistency between predicted and actual

dynamic behaviors significantly increases with time. In other

words, evidence of fractional Brownian motion is provided

by one-step-ahead and multistep-ahead predictions of suc-

cessive pressure fluctuations. If the following scaling law is

satisfied, the dynamic behavior of pressure fluctuations can

be said to exhibit fractional Brownian motion with the scal-

ing exponent H (0<H< 1). Note that H corresponds to the

Hurst exponent

EpðTÞ
Epð1Þ

¼ TH: (16)

Here, Ep is the prediction error and T is the prediction step.

Equation (16) can be rewritten as

ln
EpðTÞ
Epð1Þ

¼ HlnT: (17)

H can be estimated as the slope of the ln [Ep(T)/Ep(1)] �
ln T plot. The algorithm based on the scaling properties of

fractional Brownian motion was first introduced by Tsonis

and Elsner.36 It has been used in previous studies of crystal

growth38 and a blast furnace.46 As was shown in the result of

multifractal analysis, the dynamic behavior of combustion

instability near lean blowout (/¼ 0.43) may exhibit frac-

tional Brownian motion. To see whether or not pressure

fluctuations at /¼ 0.43 have this feature of fractional

Brownian motion, a log-log plot of the prediction error

Ep(T)/Ep(1) against T is shown in Fig. 8. Here,

EpðTÞ ¼ 1
re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

i¼1

�
p0ðti þ TDtÞ � p̂0ðti þ TDtÞ

�2

vuut , where

re is the standard deviation of the measured pressure fluctua-

tions and Np is the number of predicted points of pressure

fluctuations obtained using the GRBF neural network. As

shown in Fig. 8, the ln [Ep(T)/Ep(1)] � ln T plot exhibits a

linear correlation although the data appears to be scattered.

The scaling exponent is inferred to be H¼ 0.18. H ranges

from 0 to 0.5 for positively correlated time series data, i.e.,

an antipersistent process, while it ranges from 0.5 to 1.0 for

negatively correlated data, i.e., a persistent process. This

result shows that the dynamic behavior of combustion insta-

bility near lean blowout (/¼ 0.43) exhibits fractional

Brownian motion dominated by an antipersistent process.

The permutation entropy of fractional Brownian motion has

recently been investigated by Zunino et al.56 They showed

that permutation entropy gradually decreases with increasing

Hurst exponent. According to the theoretical curve of permu-

tation entropy at an embedding dimension of D¼ 3 in terms

of the Hurst exponent, the permutation entropy �h is approxi-

mately 0.99 at H¼ 0.2.55 In our preliminary test, the value of
�h estimated for /¼ 0.43 is approximately 0.98 at D¼ 3,

which corresponds to that obtained by Zunino et al.56 This

means that permutation entropy is an important physical

quantity for capturing the existence of fractional Brownian

motion dominated by an antipersistent process near lean

blowout as well as nonlinear forecasting based on a neural

network. On the basis of the results obtained by permutation

entropy, multifractal analysis, and nonlinear forecasting

based on a neural network, it is concluded that the dynamic

behavior of combustion instability near lean blowout exhib-

its a self-affine structure, indicating fractional Brownian

motion dominated by an antipersistent process. To the best

of our knowledge, this finding has not been discussed in pre-

vious studies of combustion instability in a lean premixed

gas-turbine model combustor. The characteristics of the

combustion dynamics in ducted premixed combustors have

recently been quantified by Kabiraj and co-workers11,12 and

Noble et al.13 from the viewpoint of nonlinear dynamics,

which is evidence of the importance of nonlinear time series

analysis in the treatment of combustion instability. In these

studies,11–13 the GP method without the surrogate data

method was used to reveal the nonlinear characteristics of

complex dynamic behavior. The fractional Brownian motion

stemming from the stochastic process appears to behave cha-

otically, but the GP method cannot distinguish the difference

between fractional Brownian motion and chaos even if a suf-

ficiently large amount of time series data is available.22

Although the use of the conventional GP method to quantify

fractal structures may still be important for the combustion

community, we consider it unsuitable for the treatment of

combustion instability near lean blowout. In this sense, the

nonlinear time series analysis we applied in this work,

including the translation error,26 is progressive and valid for

quantifying the nonlinear nature of combustion instability in

a lean premixed gas-turbine model combustor.

V. CONCLUSIONS

The complexities in combustion instability in a lean pre-

mixed gas-turbine model combustor have been characterized

from the viewpoint of nonlinear dynamics, focusing on

FIG. 8. Log-log plot of prediction error Ep(T)/Ep(1) as a function of predic-

tion step T at equivalence ratio /¼ 0.43. The experimental conditions of

preheated inlet air flow are the same as those in Fig. 3. The gradient of linear

correlation between the ln [Ep(T)/Ep(1)] and ln T plots, which is the Hurst

exponent, is 0.18, indicating fractional Brownian motion dominated by an

antipersistent process.
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characterization of the dynamic behavior of combustion

instability close to lean blowout. The dynamic behavior of

combustion instability near lean blowout exhibits a self-

affine structure, indicating fractional Brownian motion. It

significantly changes to chaotic oscillation when combustion

oscillations with slow amplitude modulation appear with

increasing equivalence ratio. This is clearly demonstrated by

nonlinear time series analysis involving permutation entropy

in combination with a surrogate data method, multifractal

analysis, and nonlinear forecasting based on a neural net-

work. The characteristics of complexities in combustion

instability near lean blowout, revealed using nonlinear time

series analysis, have not been reported in previous research

on combustion instability in gas-turbine combustors. The

nonlinear time series analysis we applied in this work and

our previous work26 was shown to be valid for the treatment

of combustion instability in a lean premixed gas-turbine

model combustor.

OH* and CH* chemiluminescence emission intensity,

which is indicative of fluctuations in the heat release rate in

an unstable combustion mode, is also an important physical

quantity when considering the dynamic behavior of combus-

tion instability, as has been shown by Kabiraj et al.,11 who

investigated the characteristics of the Poincare section of an

attractor constructed from the temporal behavior of the CH*

chemiluminescence emission intensity of thermoacoustic

combustion oscillations. The geometrical structure and or-

bital instability of the attractor constructed from the time se-

ries of OH* and CH* chemiluminescence emission intensity

remain to be elucidated; thus, we will investigate them in

terms of the permutation entropy, multifractal structure, and

nonlinear forecasting in a future study.
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