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Abstract: We develop an assimilation method of high horizontal resolution sea surface 
temperature data, provided from the Moderate Resolution Imaging Spectroradiometer 
(MODIS-SST) sensors boarded on the Aqua and Terra satellites operated by National 
Aeronautics and Space Administration (NASA), focusing on the reproducibility of the 
Kuroshio front variations south of Japan in February 2010. Major concerns associated with 
the development are (1) negative temperature bias due to the cloud effects, and (2) the 
representation of error covariance for detection of highly variable phenomena. We treat 
them by utilizing an advanced data assimilation method allowing use of spatiotemporally 
varying error covariance: the Local Ensemble Transformation Kalman Filter (LETKF). It 
is found that the quality control, by comparing the model forecast variable with the 
MODIS-SST data, is useful to remove the negative temperature bias and results in the 
mean negative bias within −0.4 °C. The additional assimilation of MODIS-SST enhances 
spatial variability of analysis SST over 50 km to 25 km scales. The ensemble spread  
variance is effectively utilized for excluding the erroneous temperature data from the  
assimilation process. 
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1. Introduction 

Sea Surface Temperature (SST) is one of the important geophysical variables, acting as a medium 
between atmospheric and oceanic variations through activation of coupling mechanisms [1]. The small 
scale SST field is characterized by many types of oceanic front variability. The high-resolution satellite 
SST observation data have been used for detection of the SST frontal variability. One of difficulty in 
using the high-resolution satellite SST is the noise of infrared radiometers due to the cloud effects [2,3].  

Several methods have been developed to exclude the noise and recover the missing data due to 
noise. For example, temporal composite of the infrared sensors data is adopted to provide a  
high-resolution SST product for regional weather applications [4]. Spline interpolation, e.g., [5], 
optimum interpolation, e.g., [6], and empirical orthogonal functions, e.g., [7], are also used for 
reconstruction of the missing SST data. Statistical merging of infrared (higher-resolution and sensitive 
to clouds) and microwave (lower-resolution and cloud free) sensors data has been proposed to respond 
to the cloud noise problem [8,9]. All the methods mentioned above can be interpreted as the statistical 
interpolation of physical variables. Physical consistency in the reconstructed variables is indirectly 
guaranteed through proper specification of the statistical parameters associated with the interpolation.  

Recent developments of oceanic data assimilation combined with numerical ocean models are 
fundamentally based on intensive use of satellite data including SST, e.g., [10]. A proper combination 
of advanced data assimilation methods and high-resolution ocean models could contribute to 
production of the noise-free SST analysis with a high resolution because dynamic interpolation of 
physical variables is one of important roles of the data assimilation. Though the dynamic interpolation 
using numerical ocean models requires much more computational resources than the statistical 
interpolation, it allows physical consistency in the reconstructed variables more directly than the 
statistical interpolation. The dynamic interpolation of remote sensing data by the data assimilation is 
not only limited on surface area of missing data but also works in a vertical direction. Estimation of the 
unobserved subsurface variables from the observed surface information (vertical projection; [11]) is 
also included in the aims of the oceanic data assimilation.  

Most applications of the oceanic data assimilation have mainly used the satellite SST products that 
were carefully sampled for removing the noise. In this study, we aim to evaluate the feasibility of the 
relatively raw data prior to the rigorous sampling, which keep the high horizontal resolution of  
O (1 km) but potentially involve the noise. Careful treatment of the infrared sensors SST data 
including, cloud noise, is required for the effective data assimilation. As a first step, focusing on the 
SST front variability affected by the internal ocean dynamics, we examine the winter SST condition 
rather than the summer SST condition, in which the SST front tends to be undetectable due to 
increased solar insolation [12]. We adopt the Ensemble Kalman Filter (EnKF) [13], which may be 
suitable for the fine representation of the front variability, because EnKF allows spatiotemporally 
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varying ‘flow-dependent’ error covariance working to reasonably conserve the sharp front property 
without unrealistic smoothing, given that the model resolves the associated front variability [10].  

This paper is organized as follows. Section 2 describes the data assimilation procedure and design 
of sensitivity experiments. The Local Ensemble Transformation Kalman Filter (LETKF) [14] is a main 
tool for the EnKF implementation, and the Moderate Resolution Imaging Spectroradiometer (MODIS) 
SST data are assimilated into an ocean model of the south of Japan. Section 3 discusses the results of 
the sensitivity experiments. Section 4 is devoted to a final conclusion. 

2. Data Assimilation of Satellite Sea Surface Temperature 

2.1. Ensemble Kalman Filter (EnKF) for the Kuroshio Variation South of Japan 

We examine the assimilation effects of high-resolution SST data using an EnKF system developed 
for investigation of the Kuroshio variation south of Japan [10]. The EnKF system utilizes twenty 
members of ensemble simulations, calculated by a sigma-coordinate ocean circulation model covering 
a region south of Japan: 30°–35°N, 133°–140°E (Figure 1) with horizontal 1/36° resolution and 31 
vertical levels, which was developed on the basis of a parallel calculation code of the Princeton Ocean 
Model (sbPOM) [15]. Note that sbPOM in this study does not use a second order baroclinic pressure 
gradient scheme used in our previous study [10] but uses a fourth order one [16]. The EnKF algorithm 
is based on the Local Ensemble Transformation Kalman Filter (LETKF) [11,17].  

Figure 1. (Left): Positions of the observation data without Moderate Resolution Imaging 
Spectroradiometer (MODIS-SST). Thick lines: sea surface height anomaly, crosses: satellite 
sea surface temperature, triangles: in situ temperature, squares: in situ salinity. Contours 
denote iso-depth lines: 10, 20, 30, 40, 50, 100, 200, 500, 1,000, 2000, 3000, 4,000, and 5,000 
m. (Right): Snapshots of MODIS-SST gridded on the model grid for visualization. Note that 
the assimilated data with approximately 1 km resolution themselves are not gridded on  
the model grid of 1/36  resolution. Interval of thin (thick) contours is 1 °C (5 °C).  
(a,b): 14 February 2010. (c,d): 20 February 2010. (e,f): 26 February 2010. The abbreviations 
in (f) represents locations: KC (Kii Channel) and II (Izu Islands). 

 (a) (b) 
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Figure 1. Cont. 

 

The original EnKF system [10] assimilates sea surface height anomaly (SSHA) obtained from two 
altimeter satellites: Jason-1 and -2, satellite SST, and in situ temperature and salinity with a time 
interval of two days, e.g., Figure 1 (a,c,e). The satellite SST data come from two types of sensors: 
Advanced Very High Resolution Radiometer (AVHRR) with relatively high horizontal resolution of  
1 km and the Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E) with 
relatively moderate resolution of 25 km. The SST data from the former one are retrieved using Multi 
Channel SST (MCSST) algorithm [18] and resampled by the Fleet Numerical Meteorology and 
Oceanography Center (FNMOC) and the Naval Oceanographic Office (NAVOCEANO). As a result of 
resampling with carefully designed quality control algorithms, spatial resolution of MCSST becomes 
relatively coarse, 8 km [19]. We call them the resampled MCSST (RMCSST). A typical distribution of 
RMCSST is depicted in near-shore regions of Figure 1(c). AMSR-E points show a gridded-like 
distribution in offshore region especially shown in Figure 1(e). We expect that the high-resolution 
MODIS-SST data (Figure 1(b,d,f)); their detail is described in Section 2.2) to show more detailed 
features of the surface oceanic condition than the observation data indicated in Figure 1(a,c,e). In this 

(c) 

(e) 

(d)

(f)
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II 
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study, the EnKF system assimilates only sea surface height anomaly and satellite SST, and the in situ 
data are not assimilated into the system but used only for validation of the assimilation products. 

The LETKF system assimilates the observation data during a target period from 8 February to  
28 February 2010 [10]. Parameters of LETKF are summarized in Table 1, for reader reference. Detail 
on the parameters is described in our previous paper [10]. The original EnKF system involves a quality 
control method of the assimilation data as following: 

 (1)

where SSTo(SSHAo) and SSTf(SSHAf) denote observation and forecast values of SST(SSHA), respectively. 

Table 1. Parameters used in Local Ensemble Transformation Kalman Filter (LETKF). 

Parameters Values 
Horizontal localization scale (σobs; number of grids) 12 (1/3°) 

Vertical localization scale (σobsv; m) 2000 
Covariance inflation parameter (%) 21 

Observation error of sea surface height anomaly (m) 0.2 
Observation error of sea surface temperature (°C) 1.0 
Time window of sea surface height anomaly (day) ± 4 

Time window of sea surface temperature (day) ± 1 
Time interval of LETKF (day) 2 

2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Sensors—SST 

The MODIS SST data are additionally assimilated into the model in this study. The MODIS sensors 
are major sensors aboard the Terra and Aqua satellites launched by National Aeronautics and Space 
Administration (NASA) in December 1999 and May 2002, respectively. They are viewing the entire 
Earth’s surface every 1 to 2 days, acquiring data with approximately 1 km resolution.  

The raw data are directly received from the satellites by Tokai University Research & Information 
Center, and then sea surface temperature is retrieved by Earth Observation Research Center of Japan 
Aerospace Exploration Agency using an algorithm: MODIS Near-real-time Algorithm Version 3, 
developed by Hosoda et al. [2]. Root Mean Square Error (RMSE)s for in situ data under the clear sky 
condition are 0.70 K/0.65 K for daytime (Aqua/Terra) and 0.65 K/0.66 K for nighttime, respectively. 
The retrieval error could be enhanced under the weak wind condition. The aerosol contamination also 
could be a possible cause of the error. One of most serious problems in the retrieval of SST is the cloud 
contamination as it causes significantly negative noise in the SST fields. The errors of SST including 
near-cloud areas could be as poor as 2–5 °C [3]. Though more sophisticated cloud screening 
algorithms are recently proposed, e.g., [3], we assimilate the MODIS-SST data masked by the 
traditional cloud screening algorithm (See Table 1 in [2]), which cannot completely remove the pixels 
contaminated by the clouds [3].  

 Addition of MODIS-SST into the assimilation data archive considerably increases spatial density 
of sea surface temperature data (Figure 1(b,d,e)). Atmospheric conditions including the existence of 
clouds affect the data availability. Detailed front structures associated with the Kuroshio variations are 
clearly represented by MODIS-SST in the case of clear sky condition (Figure 1(d)). Open ocean south 

)2(10)()()( mCSSTSSTSSHASSTifSSHASSTExclude ofoooo >−
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of 32 °N is characterized by relatively warm temperatures around 18 °C. In contrast, unrealistic low 
temperature data are found in a case of cloudy sky conditions (see around the lower right corner of 
Figure 1(f)).  

A scatter plot of MODIS-SST in a relatively clear sky condition (Figure 2(b)) indicates a shape of 
SST gradient from open ocean (higher values around 18 °C at lower latitudes) to coastal seas (lower 
values around 7 °C at higher latitudes), which is distorted in cloudy sky conditions (Figure 2(a,c)). 
Variability of SST at each latitude is relatively large even in the clear sky case and its range exceeds 
5 °C (Figure 2(b)). Comparison of the plots between clear (Figure 2(b)) and cloudy sky (Figure 2(a,c)) 
conditions suggests that a large part of the noise is characterized as lower temperature bias [3]. Note 
that we simultaneously assimilate both of them at the analysis time since Figure 2 does not show any 
systematic difference between daytime and nighttime SST. 

Figure 2. Scatter plots of sea surface temperature at each latitude used for the analyses on 
14 February 2010 (a), 20 February 2010 (b), and 26 February 2010 (c). Crosses: daytime, 
X signs: night time. 

 
(a)       (b) 

 
(c) 

2.3. Data Assimilation Experiments 

We investigate effects of a quality control method that excludes erroneous sea surface temperature 
values using a following algorithm: 

 (2)pSSTSSTormSSTSSTifSSTExclude fofoo +>−−<−
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where SSTo and SSTf denote MODIS-SST and ensemble mean forecast SST values, respectively. 
Positive values m and p are control parameters. At first, we assimilate MODIS-SST using the default 
quality control algorithm (1) with a moderate criterion: m = 10 and p = 10 (mqc) and compare the 
result with a reference case with no MODIS-SST data assimilation (NO-MODIS). We also check an 
effect of larger observation error for MODIS-SST, 5 °C, in which the value is roughly suggested from 
Figure 2, than default value of 1 °C (5degerr). Then we examine five cases of different m and p values: 
(1) m = 3 p = 4 (m3p4), (2) m = 2 p = 2 (m2p2), (3) m = 1 p = 2 (m1p2), (4) m = 2 p = 10 (m1), and  
(5) m = 1 p = 10 (m2). The acceptable range of MODIS-SST could have asymmetric negative (m) and 
positive (p) maximum differences for the ensemble mean forecast SST, because the raw data include 
unrealistic low values due to the cloud effects (Figure 2). We call the four cases mentioned above 
(m2p2, m1p2, m1, m2) the static quality control cases. 

To utilize the information from the ensemble simulation, we conduct an additional four 
experiments with a different type of criterion, including the ensemble spread information (the dynamic 
quality control cases): (1) m = 2sprd p = 2sprd (dqc.m2p2), (2) m = sprd p = 2sprd (dqc.m1p2),  

(3) m=2sprd p=10 (dqc.m2), and (4) m=sprd p=10 (dqc.m1), where ∑ =
−= K

i
i

K
xxsprd

1

2)( , 

∑ =
= K

i
i
K

xx
1

, K = 20 is ensemble size, and ix denotes SST of an ensemble member forecast. The 

dynamic quality control tends to assimilate MODIS-SST more in cases of the relatively large forecast 
errors, because the ensemble spread is considered to be a qualitative indicator of the forecast error if 
EnKF works well [10].  

The final case (NO-SSHA) is the case ‘dqc.m1p2’ but with assimilation of only SST (RMCSST, 
AMSR, and MODIS-SST) designed to investigate roles of SST and sea surface height anomaly 
assimilations in the representation of the Kuroshio variation south of Japan in the present context. 
Table 2 summarizes the description of the all data assimilation experiments and another reference case 
of a simulation without any kind of data assimilation (NO-ASSIM). 

Table 2. Description of model experiments. 

Case Quality Control (Equation (2)) Assimilated data 
NO-ASSIM - - 
NO-MODIS m = 10, p = 10 RMCSST,AMSR-E,SSHA 

mqc m = 10, p = 10 RMCSST,AMSR-E,MODIS,SSHA 
5degerr m = 10, p = 10 (observation error = 5 °C) RMCSST,AMSR-E,MODIS,SSHA 
m3p4 m = 3, p = 4 RMCSST,AMSR-E,MODIS,SSHA 
m2p2 m = 2, p = 2 RMCSST,AMSR-E,MODIS,SSHA 
m1p2 m = 1, p = 2 RMCSST,AMSR-E,MODIS,SSHA 

m2 m = 2, p=10 RMCSST,AMSR-E,MODIS,SSHA 
m1 m = 1, p = 10 RMCSST,AMSR-E,MODIS,SSHA 

dqc.m2p2 m = 2sprd, p = 2sprd RMCSST,AMSR-E,MODIS,SSHA 
dqc.m1p2 m = sprd, p = 2sprd RMCSST,AMSR-E,MODIS,SSHA 

dqc.m2 m = 2sprd, p = 10 RMCSST,AMSR-E,MODIS,SSHA 
dqc.m1 m = sprd, p = 10 RMCSST,AMSR-E,MODIS,SSHA 

NO-SSHA m = sprd, p = 2sprd RMCSST,AMSR-E,MODIS 
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3. Results and Discussions 

3.1. Quality Control of MODIS-SST 

Comparison of mean error (bias) for the in situ temperature profiles (Figure 3) exhibits that the 
assimilation of MODIS-SST, with the default quality control (mqc), actually causes lower temperature 
bias of the model product, in which the spatial averaged value (Table 3) is larger than those in the 
genuine simulation (NO-ASSIM) and the NO-MODIS case. An artificial cyclonic eddy due to the 
assimilation of erroneous low MODIS-SST appears around 31°N, 134°E (Figure 3(b)). The 
assimilation of MODIS-SST with the higher observation error (5degerr) reduces the low temperature 
bias but fails to remove the erroneous cyclonic eddy around 31°N, 134°E (not shown). All cases of the 
static (m3p4, m2p2, m1p2, m2, m1) and dynamics control (dqc.m2p2, dqc.m1p2, dqc.m2, dqc.m1) 
reduce the bias (Table 3). Reduction of T-RMSE in the cases with p = 10 (m2, m1, dqc.m2, dqc.m1) as 
compared to the cases with smaller p values (m3p4, m2p2, m1p2, dqc.m2p2, dqc.m1p2) suggests the 
validity of the default criterion (p = 10) for higher MODIS-SST than forecast SST. Table 3 also 
indicates that all the MODIS-SST cases except for the two dynamic control cases: dqc.m1 and dqc.m2 
result in larger T-RMSEs than that (1.20) in the reference case of NO-MODIS. The dynamic quality 
control cases (dqc.m2p2, dqc.m1p2, dqc.m2, dqc.m1) reduce RMSEs as compared to the static quality 
control cases (m2p2, m1p2, m2, m1). Exclusion of SSHA (NO-SSHA) from the assimilation increases 
RMSE for in situ temperature profiles. Correlation to the assimilated MODIS-SST in the cases with 
the moderate criterion values tends to be generally higher than that in the cases with the strict criterion 
values. We conclude that two cases of the static and dynamics quality control: m2 and dqc.m2 are 
acceptable in terms of the balances among preferable conditions: higher correlation to MODIS-SST, 
and smaller bias and RMSE to in situ temperature and salinity. 

Table 3. Averaged BIAS and RMSE of model experiments for the in situ temperature and salinity profiles. 

Case 
T-BIAS (°C), 
S-BIAS(psu) 

T-RMSE (°C), 
S-RMSE(psu) 

Correlation with Assimilated 
MODIS-SST 

NO-ASSIM −0.81, −0.039 1.83, 0.20 0.76* 
NO-MODIS −0.24, +0.012 1.20, 0.16 0.84* 

mqc −1.00, −0.068 1.63, 0.19 0.86 
5degerr −0.75, −0.041 1.40, 0.17 0.85 
m3p4 −0.56, −0.022 1.34, 0.19 0.85 
m2p2 −0.46, −0.015 1.30, 0.18 0.86 
m1p2 −0.12, +0.024 1.25, 0.19 0.85 
m2 −0.29, +0.013 1.23, 0.18 0.86 
m1 +0.03, +0.053 1.24, 0.20 0.84 

dqc.m2p2 −0.49, −0.002 1.25, 0.17 0.86 
dqc.m1p2 −0.19, +0.030 1.23, 0.18 0.84 
dqc.m2 −0.35, +0.006 1.17, 0.17 0.83 
dqc.m1 −0.05, +0.037 1.16, 0.17 0.80 

NO-SSHA −0.27, +0.030 1.28, 0.18 0.84 
*Correlation is calculated for MODIS-SST of which the deviation from forecast SST is smaller than 2 °C. 
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Figure 3. Contours indicate temperature at 100 m depth averaged for the period from 8 to 28 
February 2010. Closed circles denote all positions of the in situ observations in which 
numbers were larger than 4 and their colors indicate mean error (bias) between the 
reproduced and observed in situ profiles. (a) NO-MODIS. (b) mqc. (c) dqc.m2. 

 
(a)      (b) 

 
(c) 

3.2. Effects of High-Resolution SST 

Comparison between the cases with and without MODIS-SST assimilation (Figure 4) indicates that 
MODIS-SST assimilation actually modifies the representation of the Kuroshio front variation by 
slightly changing the front position and adding smaller scales features, which are apparent in two 
regions: the Kii Channel and the Izu Islands (See Figure 1f for locations). In particular, representation 
of the front movement toward inside of the Kii Channel shown during the period [10] is improved as a 
result of MODIS-SST assimilation. Modification of the front is still found at the time (26 February 
2010; Figure 4(f)) on which the number of MODIS-SST data was comparatively low due to the cloudy 
sky condition (Figure 1(f)). Note that no anomalous low temperature region is represented in the 
MODIS-SST assimilation products.  
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Figure 4. Snapshots of ensemble mean sea surface temperature (shade and contours) and 
flows (vectors). Interval of thin (thick) contours is 1 °C (5 °C). (Left): NO-MODIS. 
(Right): dqc.m2. (a,b): 14 February 2010. (c,d): 20 February 2010. (e,f): 26 February 2010. 

 
(a)      (b) 

 
(c)      (d) 

 
(e)     (f) 

 

To confirm changes in the representation of the front variability, resulting from MODIS-SST 
assimilation, we compare one-dimensional cross-shore wavenumber spectra of SST (Figure 5). The  

NO-MODIS                                               dqc.m2 
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NO-MODIS case (Figure 5(a)) shows a smoothed property with a ~k−3 slope, and the full assimilation of 
MODIS-SST (mqc) formally represents a more shallow ~k−2 slope (Figure 5(b)), which is a typical 
feature of the meso to sub-mesoscale transition [20,21]. However, the 1/36° (~3 km) grid of the present 
model may still be too coarse to keep the ~k−2 slope around 10 km scale (0.1 at the horizontal axis of 
Figure 5). The SST structure represented in the full assimilation of MODIS-SST (mqc) involves not only 
anomalous low temperature regions but also unrealistic noisy patterns (not shown). The assimilation with 
the stricter quality control (dqc.m2; Figure 5(c)) represents the ~k−2 slope in a wavenumber range from 
0.02 (50 km) to 0.04 (25 km), which could be reasonably resolved by the model grid.  

Figure 5. One-dimensional analysis SST spectra (solid curves) along cross-shore direction 
averaged in the model region south of 33°N and during the period from 8 February to  
28 February, 2010. Spectra are normalized by their respective maximum values. The  
~k−3 (~k−2) slopes are displayed by dashed (dashed double-dotted) lines. (a) NO-MODIS.  
(b) mqc. (c) dqc.m2. 
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(c) dqc.m2 

The dynamic quality control is designed so that it facilitates modification of erroneous regions 
more than non-erroneous region. A snapshot from a static quality control case (m2; Figure 6(a)) shows 
similar patterns of the front variability to the dynamic quality control case (dqc.m2; Figure 4(d)) but 
shows noisy features that are not represented in the dynamic quality control case. To examine the 
difference between the static and dynamic cases in detail, we compare the impact signals of the two 
cases (Figures 6(b) and 7(a)). The impact signal (IS) is defined as: 
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where oww xx /−  is difference of ensemble mean variables between with (w) and without (w/o) the 
assimilation of the observation data: MODIS-SST in this case, K is ensemble size (=20), and t95% is a 
critical t-distribution value of 95% significance with K-1 degree of freedom [22]. Comparison of 
Figure 6(b) and Figure 7(a) confirms that the static case (m2; Figure 6(b)) modifies SST more in open 
ocean than the dynamic case (dqc.m2; Figure 7(a)). Modification in the dynamic case is confined in 
regions with comparatively large magnitude of the ensemble spread (Figure 7) corresponding to 
potentially erroneous parts. The ensemble spread (Figure 7(b)) mainly represents variability associated 
with the Kuroshio northern edge front, recirculation of the Kuroshio, and winter channel fronts near the 
coast [10].  

Figure 6. (a) As in Figure 4(d) except for the case ‘m2’. (b) Impact Signal (IS; Equation (3)) 
of analysis SST in the case ‘m2’ on 20 February 2010 with and without MODIS-SST. 
Interval of contours is 1 °C.  

 
(a)      (b) 

Both of Figures 6(b) and 7(a) show that IS around the front regions represents un-isotropic shape 
along the front directions, suggesting the modification by EnKF consistent with the model dynamics. 
Forecast error covariance of SST between some grids around the fronts and surrounding grids (Figure 
8) exhibit un-isotropic shape and spatial dependence that are closely related to the local model 
dynamics. We emphasize that EnKF assimilates MODIS-SST without over smoothing across the 
fronts owing to the effects of spatially varying forecast error covariance. We note that the forecast 
error covariance represented by EnKF is not only spatially variable but also highly variable in time 
(not shown), related to the time evolution of the model dynamics. 
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Figure 7. (a) As in Figure 6b except for the case ‘dqc.m2’. (b) The ensemble spread of the 
case ‘dqc.m2’ for the EnKF analysis on February 20 2010. Shades (vectors) denote the 
spread of SST (surface current). 

 
     (a)       (b) 

Figure 8. The forecast error covariance between SST at a target point and SST at 
surrounding grids on 20 February 2010. Values on the grids with distance from the target 
point larger than a localized scale ( °2.1~23

10
obszerodist σ= ; [10]) are not shown. Target 

points: (a) 33.6°N, 135°E. (b) 33.6°N, 138°E. 

 
(a)      (b) 
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3.3. Roles of High-Resolution SST and Sea Surface Height Anomaly (SSHA) Data 

A common understanding on roles of SST and SSHA in the ocean data assimilation is that the SST 
(SSHA) is effective for correction of the model variables near the shallower seasonal (deeper main) 
thermocline depth, e.g., [11]. To examine this issue in a new context of high-resolution SST and 
advanced data assimilation, we compare two dynamic control cases with and without (dqc.m1p2 and 
NO-SSHA) SSHA assimilation. Figure 9 indicates that the assimilation of only SST data fails to 
correct the Kuroshio axis position where no data are available due to existence of the clouds  
(Figure 1(b)). In addition, note that the SST assimilation is not very effective for detection of the 
Kuroshio axis position even in the eastern part of the model region where the data are available. RMS 
latitudinal differences of the modeled and observed Kuroshio axis positions during the simulation 
period from 8 February to 28 February 2010, are 0.45° (dqc.m1p2) and 0.63° (NO-SSHA), 
respectively. The assimilation of SSHA is necessary for detection of the Kuroshio path position that is 
closely related to the proper estimation of temperature around the main thermocline depth. The present 
study again confirms the finding of the previous studies. 

Figure 9. Ensemble mean analysis temperature at 50 m depth (shade and contours) on  
14 February 2010. (a) dqc.m1p2. (b) NO-SSHA. Thick contours denote the Kuroshio path 
positions evaluated from the ensemble mean flows at 50 m depth by tracking grids with the 
strongest kinetic energy at each longitude. Open circles represent the weekly mean 
observed path positions provided from the Japan Coast Guard. The duration of the weekly 
mean period was daily updated and then all position data including the target day in their 
weekly mean periods were plotted 

 
(a)        (b) 

3.4. Discussion 

Figure 5 confirms that the 1/36° grid of the present model is coarser than a typical sub-mesoscale 
resolving grid distance of 1/100° [20], though the assimilation of MODIS-SST into the present model 
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partly contributes to the improvement in the representation of the meso to sub-mesoscale transition. 
We thus need to investigate the feasibility of the high-resolution SST data assimilation with horizontal 
resolution of around 1/100°. More studies using updated versions of the models with higher resolutions 
are required for further development of the MODIS-SST assimilation methods. 

Probability distribution of the MODIS-SST data with lower temperature bias (Figure 2) could be 
considered as one of the non-Gaussian probability distributions. The present study practically deals 
with the observation data bias by using the data quality control prior to the EnKF assimilation. The 
basic framework of EnKF is designed on the basis of the assumptions of the Gaussian probability 
distributions of the model and data errors [13]. Recent advance of the data assimilation literature 
involves various types of extension toward the generalized filters suitable for the non-Gaussian type 
probability distributions, e.g., [23], which would be systematically used for the MODIS-SST data 
assimilation in the future.  

The present study demonstrates the feasibility of MODIS-SST data assimilation into the  
high-resolution ocean models. We need to conduct more experiments covering longer periods and 
different regions to obtain more reliable results, with validated by more in situ data. In addition, the 
feasibility of MODIS-SST data assimilation in more economical data assimilation frameworks 
including 3-dimensional variational assimilation, e.g., [24], should be examined in near future. The 
results reported here could be a reference for future advanced studies. 

4. Conclusions  

The high-resolution sea surface temperature data obtained from the Moderate Resolution Imaging 
Spectroradiometer are assimilated into the three-dimensional ocean circulation model of south of Japan 
using the Local Ensemble Transformation Kalman Filter. Anomalously low temperature data, which 
characterize a large part of the noise associated with the clouds, are excluded prior to the assimilation 
by adopting the quality control method comparing the data with the ensemble mean forecast values. 
Addition of the high-resolution sea surface temperature actually enhances the spatial variability of 
analysis sea surface temperature over 50 km to 25 km scales, which are reasonably resolved by the 
present model. Spatiotemporally varying error covariance allowed by the Kalman filter contributes to 
detecting the highly spatiotemporally variable surface front variability. The ensemble spread 
information provided by the ensemble Kalman filter could be used for the effective detection of the 
phenomena that are well simulated by the present model. It is confirmed that the assimilation of only 
satellite sea surface height anomaly data is more suitable for detection of the large scale subsurface 
structure associated with the main thermocline variation such as the position of the Kuroshio main axis 
than the assimilation of only sea surface temperature. 
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