
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 133.56.199.32

This content was downloaded on 20/08/2014 at 01:58

Please note that terms and conditions apply.

Primary mode changes due to longitudinal wall oscillation in two-dimensional channel flow

View the table of contents for this issue, or go to the journal homepage for more

2014 Fluid Dyn. Res. 46 025502

(http://iopscience.iop.org/1873-7005/46/2/025502)

Home Search Collections Journals About Contact us My IOPscience

This document is provided by JAXA.

iopscience.iop.org/page/terms
http://iopscience.iop.org/1873-7005/46/2
http://iopscience.iop.org/1873-7005
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


The Japan Society of Fluid Mechanics Fluid Dynamics Research

Fluid Dyn. Res. 46 (2014) 025502 (12pp) doi:10.1088/0169-5983/46/2/025502

Primary mode changes due to longitudinal
wall oscillation in two-dimensional
channel flow

Takashi Atobe

Japan Aerospace Exploration Agency, Jindaiji-Higashi, Chofu, Tokyo 182-8522, Japan

E-mail: atobe.takashi@jaxa.jp

Received 4 April 2013
Accepted for publication 7 January 2014
Published 5 February 2014

Communicated by M Asai

Abstract
The stabilizing effect of longitudinal wall oscillation on two-dimensional
channel flow is analytically investigated. Because the flow field has temporal
periodicity, stability can be described by the Floquet theory. To do so,
a monodromy matrix is derived from a time-dependent Orr–Sommerfeld
equation using the collocation method, and then stability is determined by
the use of the Floquet exponents. Systems of this kind are governed by the
frequency and amplitude of wall oscillation and by the Reynolds number
Re, which is determined by the maximum velocity of flow and half the
distance between two walls. For Reynolds numbers in the range 6000–10 000,
there is a region where a stable Tollmein–Schlichting (TS) mode appears in
the parameter space. When the amplitude of wall oscillation increases, the
disturbance wave is generally stabilized. This effect is large, especially for the
TS mode. Consequently, the primary mode of unstable disturbance is changed
from the TS mode to oblique modes.

1. Introduction

Drag reduction is one of the most important issues for the physical efficiency of public
transport systems. For aircraft, the influence of skin friction on total drag is relatively large.
The magnitude of skin friction depends on the condition of the boundary layer flow. In general,
skin friction is large when the boundary layer flow is turbulent. Thus, from the viewpoint of
flow control, our interest is how to delay laminar–turbulent transition and how to decrease
turbulent shear stress.
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Many methods have been proposed for achieving the above purpose. The most
fundamental solution is to optimize the shapes of objects. Passive flow-control devices, such
as ‘sharkskin’, ‘riblets’ and microvortex generators, can be effective in practical use. However,
a time-periodic flow can be expected to reduce friction drag directly because it seems that flow
is stabilized by periodicity.

Flow periodicity is of significant theoretical interest. Many studies have been conducted
on time-periodic flows such as the Stokes-boundary layer, plane Poiseuille flow, plane Couette
flow and pipe flow. In particular, plane Poiseuille flow, a two-dimensional (2D) channel
flow, is known to be a realistic model that yields useful information by its description as an
exact solution of a linear equation derived from the Navier–Stokes equation; theoretical and
numerical investigations have elucidated its essential features (Orszag 1971, Kim et al 1987).
For this reason, various studies aimed at drag reduction use plane Poiseuille flow. As passive
controls, wavy walls and rough surfaces have been investigated (Floryan 1997, Selvarajan
et al 1999). As active controls, rippling walls, vibrating walls and sucking and blowing walls
have been studied (Choi et al 1994, Sumitani and Kasagi 1995, Floryan et al 2002). From
the biomechanical viewpoint, pulsatile flow is also studied because it is very important in the
blood flow in arteries. Zamir (2000) summarized the fundamentals of the hydrodynamics of
the blood flow.

Among the studies of active controls, Jung et al (1992) first demonstrated a reduction
in wall shear stress from turbulent channel flows by spanwise wall oscillation. A follow-up
study by Quadrio and Ricco (Choi 2002) numerically demonstrated a 44.7% reduction in
friction drag reduction, which corresponds to net energy savings of 7.3%. Flow modified by
spanwise wall oscillation not only offers reduced drag but also is analogous to simple coupling
of channel flow in the Stokes layer. For these reasons, considerable effort has been devoted to
this problem (Quadrio and Ricco 2004, Jovanovic 2008, Ricco and Quadrio 2008).

Although this modified channel flow with spanwise wall oscillation can be simplified
on the basis of the Stokes layer, its base flow is fundamentally a three-dimensional (3D)
flow. Thus, for the purpose of simplification, the present study focuses on the stabilization of
the plane Poiseuille flow by longitudinal wall oscillation. Thus, previous studies about wall-
oscillating channel flows will be helpful to review. Grosch and Salwen (1968) showed that
flow is stabilized when the amplitude of the wall oscillation is relatively smaller than the mean
flow. Herbert (1972) attributed this phenomenon to energy transfer on the wall and concluded
that oscillation of the base flow can suppress energy transfer. Hall (1975) used Floquet
theory to predict that wall oscillation could act as a stabilizer under a very high frequency
condition. Davis (1976) gave a broad survey of the effects of time periodicity on flow stability.
Subsequent studies have likewise shown very interesting results. A detailed follow-up to
Grosch and Salwen (1968) by Von Kerczek (1982) discovered a small discrepancy in threshold
values. Blennerhassett and Bassom (2002) used Floquet theory to discuss the structure of the
eigenfunction that links wall velocities. Thomas et al (2011) investigated this type of flow as
a perturbation of small channel flow on the Stokes layer and thereby showed that stationary
neutral modes do not exist.

The above-mentioned studies offer valuable knowledge, but the determined critical values
of stability differ among them. In addition, previous studies considered the stability of 2D
disturbances. In general, the oblique Tollmein–Schlichting (TS) wave and other 3D waves
also play an important role in flow stability. Thus, the present study aims to confirm the
structure of stability in the parameter space and investigates the effect of wall oscillation
on 3D disturbance waves.

In section 2, the model flow and the formulation of the Floquet analysis using a time-
dependent Orr–Sommerfeld equation are explained with an idea based on the collocation
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Figure 1. Schematic view of the modified channel flow.

method. In section 3, the stabilizing effects of wall oscillation is discussed by using the
Floquet exponents. Primary mode changes are also discussed. Finally, conclusions are given
in section 4.

2. Formulation of Floquet analysis

2.1. Model flow

Figure 1 shows the flow model under consideration. Here, � and Uw are the frequency and
amplitude of the longitudinal wall oscillation, respectively. Thus, this system is described by
�, Uw and the Reynolds number. The Reynolds number Re is defined as h · Umax ν−1, where
Umax is the maximum velocity of the mean flow in the absence of wall oscillation, ν is the
kinematic viscosity and h is half the distance between two walls.

The coordinate system (x, y, z) corresponding to the physical space is adopted, where
x is the streamwise direction, y is the direction normal to the wall and z is the spanwise
direction. Because the Stokes layer is also an exact solution of a linear equation derived
from the Navier–Stokes equation and the plane Poiseuille flow can be likewise described,
this modified flow can be described as a superposition of those two exact solutions. From
this description, linear stability analysis using Floquet theory is applied with the collocation
method. Formally, the modified flow considered here is a superposition of the exact solutions
of linear governing equations as follows:

∂U

∂t
− ν

(
∂2U

∂y2
+

∂2U

∂z2

)
= −

1

ρ

∂p

∂x
. (1)

Here, ρ is the density. This equation is derived from the incompressible Navier–Stokes
equation under the parallel flow assumption. In this context, the flow can be represented as
U = U(U (y, t), 0, 0), where U(y, t) is

U (y, t) = 1 − y2 + UwRe

[
cosh(ky)

cosh(k)

]
exp (i�t). (2)

Here, k ≡
√

�/2ν, and i denotes the imaginary unit. Equation (2) consists of the plane
Poiseuille flow and the Stokes layer. In the Floquet analysis, equation (2) is used as the base
flow. The velocity profiles calculated by equation (2) for Uw = 0.5 at each 1/8 period are
shown in figure 2. Because the velocity field is symmetric, only half of the field is shown.
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Figure 2. Velocity profile calculated from equation (2).

2.2. Time dependent Orr–Sommerfeld equation

When the flow field is described by the base flow U and small disturbances u′ and p′, the
linearized disturbance equation for u′ can be derived from the Navier–Stokes equation as
follows:

∂u′

∂t
+ (u · grad)u′ + (u′

· grad)u = −
1

ρ
gradp′ + ν∇

2u′. (3)

Now, we assume that the small disturbance can be described as a modal plane wave

u′(x, y, z, t) = û(y, t)exp [i(αx + γ z)], (4)

where α and γ are real wave numbers in the x and z directions, respectively. Substituting
equation (4) into (3) with the equation of continuity, we obtain a time-dependent
Orr–Sommerfeld equation, which takes the form[(

∂

∂t
+ iαU (y, t)

)
(D2

− α2
− γ 2) − iαD2U (y, t)

]
v̂(y, t)=

1

R
(D2

− α2
− γ 2)2v̂(y, t),

(5)

where D is the differential operator with respect to y.

2.3. Floquet exponents

If equation (5) can be rewritten in the form

∂

∂t
v̂(y, t) = G(y, t)v̂(y, t) (6)
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because of the periodicity of function G, we can expect from Floquet theory that the solution
of equation (6) can be described as

v̂i (y, t) = eµi tϕi (y, t) (i = 1, 2, . . .). (7)

Here, φi (y, t) is a periodic function with period T and µi is a complex number, called a
Floquet exponent in this context. If the real part of µi is positive, then the system will be
unstable.

Thus, in order to rewrite equation (5)in the form of equation (6), the Chebyshev spectral
collocation method is employed. For this, Gauss–Lobatto scheme (Canuto et al 1988) is
adopted for the collocation points

y j = cos
π j

N + 1
( j = 0, 1, 2, . . . , N ). (8)

Then, equation (5) can be rewritten as

(
D(2)

i j − α2
− γ 2

) d

dt


v̂(y0, t)
v̂(y1, t)
:
v̂(yN , t)

 = gi j


v̂(y0, t)
v̂(y1, t)
:
v̂(yN , t)

 , (9)

where D(2)
i j is the differential matrix of order (N + 1)× (N + 1). If the inverse matrix of

(D(2)
i j − α2

− γ 2) exists, then equation (9) can be written in the form

d

dt
v̂(y j , t) = G i j v̂(y j , t). (10)

When the function v̂ is expanded to N + 1, equation (9) is written as follows:

d

dt


v̂1(y0, t)
v̂1(y1, t)
:
v̂1(yN , t)

. . .

. . .

:
. . .

v̂N+1(y0, t)
v̂N+1(y1, t)
:
v̂N+1(yN , t)

 = G i j


v̂1(y0, t)
v̂1(y1, t)
:
v̂1(yN , t)

. . .

. . .

:
. . .

v̂N+1(y0, t)
v̂N+1(y1, t)
:
v̂N+1(yN , t)

 . (11)

If equation (11) is simply described as

d

dt
F(t) = G(t)F(t) (12)

from the Floquet theory, then we can expect that the solution of equation (12) has the form

F(t) = eQt8(t). (13)

Here, Φ(t) is an arbitrary periodic function with period T, eQt is a monodromy matrix for
F(t) and Q consists of N + 1 Floquet exponents. Because of the character of the periodic
function Φ(t)

F(0) = 8(0) ≡ I. (14)

Thus

F(T ) = eQT 8(T ) = eQT . (15)
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Figure 3. Variation of ωi during one period with Re = 10 000, (α, γ ) = (1, 0), � = 0.1
and Uw = 0.1, 0.3, 0.5 and 0.7.

Therefore, the Floquet exponents are obtained as

Q =
1

T
ln F. (16)

By denoting the eigenvalues of the matrix Q as µ and the eigenvalues of F as σ , we can obtain
the Floquet exponents in the form

µ =
1

T
ln σ. (17)

Thus, if we know the matrix F, the Floquet exponents are obtained from equation (17).
In general, the matrix F can be obtained by numerically integrating equation (12) over the
period T. In the present study, the Crank–Nicolson method is employed for this process.

3. Results and discussion

3.1. Basic features of the eigenvalue

First, to confirm the features of the present system, the instantaneous amplification rate
during the period drawn in figure 2 for the case of the TS wave—that is, the mode
characterized by (α, γ ) = (1.0, 0.0)—is plotted in figures 3 and 4 for various parameter
values. The amplification rate is obtained as the imaginary part of the eigenvalue ωi of
the Orr–Sommerfeld equation. If the sign of this value is positive, the disturbance will be
amplified exponentially. The case estimated here is for Re = 10 000, which corresponds to the
supercritical condition (under the present definition, the critical Reynolds number is 5772).
Figure 3 is obtained by � at 0.1 and Uw at each of 0.1, 0.3, 0.5 and 0.7. Figure 4 is obtained
by Uw at 0.7 and � at each of 0.1, 1.0, 1.5 and 2.0. The straight line plotted in these figures
corresponds to the eigenvalue obtained by Orszag (1971) for the non-oscillating case. The
sign of the eigenvalue changes periodically around zero. This means that the stability also
alternates during the period of the wall oscillation, and it is not clear from this analysis
whether the system is ultimately stable. Furthermore, these two figures show that the interval
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Figure 4. Variation of ωi during one period with Re = 10 000, (α, γ ) = (1, 0), Uw = 0.7
and � = 0.1, 0.5, 1.5 and 2.0.

Table 1. Comparison of amplification rate of TS wave.

Floquet exponent µ (present) 0.003 739 7

Imaginary part of ωi (Orszag 1971) 0.003 739 6

of stability (or instability) cannot be determined from the phase of the wall oscillation alone.
Thus, Floquet analysis is an effective means for analyzing such systems.

Before proceeding with Floquet analysis, the validity of the present approach is confirmed
by comparison of the Floquet exponent µ obtained by equation (17) with the eigenvalues ωi of
the usual Orr–Sommerfeld equation. Since the case Uw = 0 can be regarded as non-oscillating,
the Floquet exponent µ should coincide with the eigenvalue given by Orszag (1971). Table 1
shows the result of comparing these values. These amplification rates agree well with each
other.

3.2. Stabilizing effects on 2D disturbances

Von Kerczek (Davis 1976) demonstrated stabilizing effects of wall oscillation when Uw is
larger than some threshold. Figure 5 showed a Uw dependence of the stabilizing effect for
some Re, consistent with those results. The stabilizing effects seem to increase when Uw

is increased. To understand this more deeply, Uw dependence is investigated for different
frequencies with Re at 10 000; the results obtained are shown in figure 6. Thus, wall oscillation
does not universally stabilize. � dependence is also shown in figure 7 for some different values
of Uw. The stabilizing effect changes as � changes, and eventually destabilization occurs.
Thus, it seems that the critical value of stability depends on the flow parameters Uw and �.
To provide a general view of this phenomenon, the contour of the Floquet exponent is shown
in figure 8. The light region represents the area where the Floquet exponent is positive, which
corresponds to the unstable region; the dark area represents negative Floquet exponents, which
corresponds to the stable regions. The dash-dotted contours are drawn for steps of 0.002 in the

7
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Figure 5. Uw dependence of the Floquet exponent for (α, γ ) = (0.85, 0) at some Re,
for comparison with Davis (1976).

Figure 6. Uw dependence of the Floquet exponent for Re = 10 000, (α, γ ) = (1, 0) and
� = 0.05, 0.2 and 0.4.

Floquet exponent. A solid line in this figure represents the zero value of the Floquet exponent:
the neutral curve. It is clear from the figure that the TS wave is stabilized depending on the
value of the parameters even when the condition is supercritical. Furthermore, the valley
of stable is deep. Thus, it is expected that the laminar–turbulent transition is delayed if the
parameter values lie in the valley.

To examine the above features for other values of Re, the Re dependence of the Floquet
exponents are estimated and shown in figure 9. In most cases, the stabilizing effect increases as
Re increases, but at some parameter values significant stabilizing effects are seen. The neutral
curves for several Re are shown in figure 10. When Re exceeds the critical value of 5772, the
stable region immediately appears. Although the width of the stable region decreases as Re

increases beyond the critical value, it seems that the deep valley of stability along � near 0.05
does not disappear.

3.3. Primary mode changing

In this study, a 2D disturbance, specifically TS mode, has been investigated to show the basic
aspects of the stabilizing effect on the present modified flow because it is well known from

8
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Figure 7. � dependence of the Floquet exponent for Re = 10 000, (α, γ ) = (1, 0) and
Uw = 0.05, 0.2 and 0.4.

Figure 8. Contour of the Floquet exponent. The white area corresponds to the unstable
region and the area black to the stable region. The solid line represents the neutral curve.

Squire’s theorem that 2D disturbances show the most immediate effect. In this subsection,
however, the stabilizing effect in oblique modes is investigated to develop a thorough
understanding of this system. Tables 2–4 show the Floquet exponents for the non-oscillating
cases where Uw = 0.0, (Uw, �) = (0.05, 0.15) and (Uw, �) = (0.1, 0.15), respectively. In
non-oscillating cases, TS mode shows the most unstable features, which is consistent with
Squire’s theorem. In contrast, for the oscillating case, when Uw increases the Floquet exponent
of the TS wave decreases and finally the sign becomes negative. Although the Floquet
exponents for the 3D mode also decrease as Uw increases, the ratio of decrease is relatively
small. To understand this more deeply, the Floquet exponents of TS and oblique disturbances
both with and without wall oscillation are shown in figure 11. The two upper lines correspond
to the case without oscillation. When Re is not large, the TS wave of the Floquet exponent
is large and the exponent first exceeds 0. This means that the TS wave appears before the
oblique wave. However, for the lower two lines, where oscillation is present, the value that

9
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Figure 9. Re dependence of the Floquet exponent for (α, γ ) = (1.0, 0), (Uw, �) =

(0, 0), (0.2, 0.2), (0.4, 0.4), (0.4, 0.2) and (0.2, 0.2).

Figure 10. Neutral curves of the Floquet exponent for several Re.

Table 2. The Floquet exponents for the case of non-oscillation and Re = 10 000.

α = 1.0 α = 0.9 α = 0.8

γ = 0.0 0.003 74 0.003 62 0.000 13
γ = 0.1 0.003 61 0.003 65 0.000 34
γ = 0.2 0.003 18 0.003 70 0.000 90
γ = 0.3 0.002 34 0.003 63 0.001 62

exceeds 0 value first is from the oblique wave. Consequently, wall oscillation makes oblique
modes more unstable and induces primary mode changing. This result suggests that oblique
waves can appear first in oscillating flow.
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Table 3. The Floquet exponents for the case (Uw, �) = (0.05, 0.15) and Re = 10 000.

α = 1.0 α = 0.9 α = 0.8

γ = 0.0 0.002 69 0.002 85 −0.000 43
γ = 0.1 0.002 56 0.002 89 −0.000 22
γ = 0.2 0.002 13 0.002 95 0.000 34
γ = 0.3 0.001 30 0.002 89 0.001 08

Table 4. The Floquet exponents for the case (Uw, �) = (0.1, 0.15) and Re = 10 000.

α = 1.0 α = 0.9 α = 0.8

γ = 0.0 −0.00 018 0.000 67 −0.002 09
γ = 0.1 −00 030 0.000 72 0.001 86
γ = 0.2 −0.00 071 0.000 81 −0.001 26
γ = 0.3 −0.00 151 0.000 81 −0.000 46

Figure 11. Re dependence of the Floquet exponent for (α, γ ) = (1, 0), (0.95, 0.05) and
(Uw, �) = (0, 0), (0.2, 0.2).

4. Conclusion

The effect of longitudinal wall oscillation on 2D channel flow was analytically investigated.
Because this system has time periodicity from wall oscillation, Floquet theory was employed.
Thus, stability was described by the Floquet exponents. For the Floquet analysis, a
monodromy matrix was derived from a time-dependent Orr–Sommerfeld equation using
the collocation method. The governing parameters of this system were the frequency and
amplitude of wall oscillations and the Reynolds number which is determined by maximum
velocity of mean flow and half the distance between two walls. For Reynolds numbers in the
range 6000–10 000, the TS mode became stable depending on the parameters even when the
system was under the supercritical condition. These parameters formed a deep valley stable
region on the parameter space. Furthermore, it was shown that an increase in the amplitude
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of wall oscillation decreased the stabilizing effect, especially for 2D TS mode. Thus, 3D
mode also became more unstable. Consequently, primary mode changing occurred, contrary
to Squire’s theorem.
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