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Aerodynamics of cambered airfoils are investigated numerically, using NACA four-digit

series of 6% thickness at low Reynolds number Re = 10, 000, and moderate Mach number

M = 0.2, by focusing on the relation of aeroacoustic effects and hydrodynamic flow unsteadi-

ness. Two-dimensional numerical simulations show that the onset of an acoustic feedback

loop (AFL) leads to an abrupt increase in lift force. Associated with the feedback process,

the evolution of two-dimensional vortices in the suction-side boundary layer shifts a separa-

tion bubble toward the leading edge, which causes a relatively steep pressure recovery near

the trailing edge. Through a parametric study on airfoil shape, the aerodynamically favor-

able feature of aft camber is further enhanced with the presence of an AFL. In addition,

the aft camber airfoil successfully forms a laminar separation bubble in three-dimensional

calculations at the present Reynolds number, developing transitional behavior on the suc-

tion side, supposedly prompted by the airfoil tones. Although the boundary layer shows

three-dimensional complexity, still the formation of an AFL is strongly suggested, via the

comparison of spanwise correlations.

I. Introduction

For low-speed, small unmanned aerial vehicles, suited for hobby use or surveillance activity, the Reynolds

number Re based on flight velocity and airfoil chord length reduces down to the order of 105 or less. Due to

the laminarization of the flow near airfoil surface, the boundary layer would easily separate at small angle

of attack, with only a moderate adverser pressure gradient. The aerodynamic performance of an airfoil is

lowered significantly, and also depends greatly on Reynolds number. These low-Reynolds-number character-

istics modify an airfoil design process which has been established on the assumption of a mostly attached,

turbulent boundary layer at sufficiently high Reynolds number. The flight in low atmospheric density, such

as ultra high-altitude cruise at 20–30 km from sea level, also attracts the concern of aerodynamics at low

Reynolds number [1, 2, 3]. Since dynamic pressure reduces due to low atmospheric density, airfoil design

needs additional care to attain required operational lift at a target range of Reynolds number, at relatively
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high flight velocity, where compressible effects should be considered as well. For instance, since the atmo-

spheric density at 30 km high reduces down to 1/100 of that at the surface level, the chord-length Reynolds

number of a small aircraft could be the order of 104, or possibly even lower, at the altitude in subsonic flight.

More recently, Mars atmospheric flight has been of engineering interest for scientific research as similar

low-Reynolds-number environments [e.g., 4, 5].

It is often distinctively discussed that a laminar separation bubble formed on the suction side has a great

effect on aerodynamic performance at low Reynolds number [e.g., 6, 3, 7]. Once a laminar boundary layer

separates behind the leading edge, the separated shear layer is highly receptive, and may cause laminar-

turbulent transition, depending on various conditions, such as Reynolds number, instability of the shear

layer, receptivity and magnitude of external disturbances, and so on. Then, the resultant turbulent shear

layer induces reattachment somewhere on the chord. As a crude estimation, the lower bound of Reynolds

number is proposed as about 5 × 104 to form a laminar separation bubble [1, 8]. At this Reynolds number,

the numerical work by [9] closely investigated the receptivity of acoustic disturbances on a laminar separation

bubble formed on the suction side of an NACA0012 airfoil, concluding that the aerodynamic noise reproduced

in their direct simulation was a sufficient stimulus for transition.

At even lower Reynolds number, still acoustic effects can be non-negligible on aerodynamic characteristics

at moderate Mach numbers. In a numerical study of present authors [10], trailing-edge noise causes acoustic

resonance via the instability mechanism of a separated boundary layer, forming an acoustic feedback loop

(AFL) at Re = 104. The acoustic pressure is rather amplified through the resonance, acting as unsteady

force exerted on the surface. At moderate Reynolds number, the onset conditions of an AFL have been

studied both experimentally and numerically [e.g., 11, 12, 13, 14, 15, 16, 17, 18], as a major tonal noise

emitted from airfoil flow. In our case at Re = 104, however, the shedding frequency may become as low as

the order of one, normalized by chord length and mean velocity. The lower frequency variation has a further

impact on the aerodynamic characteristics of airfoil design. Although the presence of airfoil camber reduces

the instability of a boundary layer [10], an AFL is still prompted by increasing an angle of attack.

In this paper, we conduct a parametric study of aerodynamic characteristics using cambered four-digit

NACA airfoils. We would focus on the camber effect and its relevance with aeroacoustic resonance, by

altering maximum camber height and its location, at Re = 10, 000. A higher-order computational code is

employed to directly solve compressible Navier-Stokes equations, including aeroacoustic phenomena. Then,

acoustic resonance should be reproduced properly. To consider aeroacoustic effects, low, but moderate inflow

Mach number, M = 0.2 is employed throughout this paper in numerical simulations.

II. Numerical Conditions and Approaches

In the present study, NACA four-digit airfoils with 6% thickness are examined. The parameter set of four

digits represents maximum camber height, its location, and maximum thickness, for this family of NACA

airfoils. At low Reynolds number, it is well known that a thinner airfoil should exhibit a better aerodynamic

performance [19, 20]. However, from a practical point of view, a certain level of thickness must be ensured to

attain minimal structural strength. Here, 6% of chord length is provided as the airfoil maximum thickness.

In two-dimensional numerical simulations, four maximum camber heights and locations are parametrically

studied, respectively: as maximum camber height, 2%, 4%, 6%, and 8% of chord length; as the location of

maximum camber height, 20%, 40%, 60%, and 80% chord. Therefore, the present parametric study covers a
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16-point matrix of NACA 4-digit series, also for a range of angles of attack: α = 0°–10°. Airfoil configurations

are summarized in Table 1. In addition, an uncambered NACA0006 airfoil is used as a reference [10].

Table 1. NACA four-digit cambered airfoils examined in the present study.

8x06

6x06

4x06

2x06

x206 x406 x606 x806

By using a computational code, compressible Navier-Stokes equations are solved. Fluid property is

assumed to be of air; its specific-heat ratio is treated to be constant, 1.4. The chord length L is used as the

characteristic length scale. The trailing edge of each airfoil is placed at the origin in the two-dimensional,

x-y coordinates. The airfoil is tilted by the angle of attack, α to the streamwise, x direction. The uniform

flow U∞ is enforced in the x direction at the outer boundaries. The Reynolds number based on L and U∞ is

chosen to be 10, 000. In the normalization of numerical quantities, L and U∞ are employed, unless otherwise

noted. The mean-flow Mach number of the present simulations is fixed at M = 0.2, as mentioned in the

introduction. In addition to the global x-y coordinates, we introduce the local X-Y coordinates, whose

origin comes to the leading edge, and X axis is aligned to the chord direction. They will be used when

the distribution near the airfoil is of interest, regardless of angle of attack. The schematic of geometrical

configurations is shown in Fig. 1.

Figure 1. Schematic of numerical configurations.

For spatial discretization, a C-grid topology is employed by applying a tri-diagonal sixth-order compact

scheme to both convection and viscous terms. A standard fourth-order Runge-Kutta scheme is implemented

for time advancement. The numerical domain is extended to 20L in both the radial and downstream

directions with a non-reflecting boundary condition applied to all outer boundaries. Also to minimize

unfavorable acoustic reflection, a sponge layer [21] is introduced for about 3L from the boundaries. The

details of the implementation of numerical schemes and the verification studies of the present computational

code are summarized in [22]. In a two-dimensional parametric study, the number of grid cells is 800 in

the circumferential direction (400 around the airfoil surface; 400 in the wake region) and 200 in the wall

normal direction, which leads to 1.6 × 105 cells for two-dimensional grid. Grid convergence was confirmed
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by monitoring the resultant unsteady aerodynamic forces and the variance of velocity field on various grid

sizes on two-dimensional cases.

In only limited cases, we also conducted three-dimensional calculations. The cases are selected by in-

specting the two-dimensional results of the 16-point matrix at relatively high angles of attack, α ≥ 7°. At

a lower angle of attack, flow is expected to be practically two-dimensional. In the spanwise direction, a

periodic boundary condition is imposed with the length 1L, discretized by 128 cells. The number of cells

around the airfoil surface is increased to 600, and numerical cells are closely clustered on the upper surface

to resolve three-dimensional eddies if any arise; approximately 2/3 of the cells are gathered on the upper side

of the airfoil. In total, 2.6× 107 numerical cells are employed in the three-dimensional cases. The minimum

cell height is 1×10−3L adjacent to the wall. In wall units, the normalized height is less than 1 on the suction

side of the airfoil, whereas the normalized cell widths in the chord and spanwise directions are less than 5

and 8, respectively. As will be shown later, resolved eddies can be seen in the region within about 0.3L in

the wall-normal direction, from the suction-side surface. The maximum wall-normal cell height in the region

is about 0.01L, which corresponds approximately to 10 in wall units.

III. Summary of the Results

We conducted two-dimensional compressible flow simulations for 16 cambered airfoils, varying angle of

attack α from 0° to 10° with one degree increments; 176 cases were run in total. Most cases show unsteadiness

with vortex shedding except for a few with the smallest camber height of 2% chord length, at low angles of

attack. To reach a sufficiently developed unsteady state, usually 20–30 non-dimensional time was necessary.

However, when an AFL formed very slowly, some cases required more than 100 non-dimensional time to

achieve a final state.

As three-dimensional simulations, we only ran the following 8 cases: NACA4606 and 6806 at α = 7°;

NACA4202, 4406, and 4806 at α = 8°; NACA4406, 4806 and 8606 at α = 10°. As for initial states, instan-

taneous flow fields of corresponding two-dimensional results were employed. To initiate three-dimensional

flow motions, sufficiently small amplitude of volumetric forcing, composed of several temporal and spanwise

Fourier modes, was applied near the leading edge, for about first 2 non-dimensional time. Owing to the insta-

bility in the suction-side boundary layer and the wake, the synthetic disturbance grows spatially. Then, after

the forcing is turned off, self-sustaining three-dimensional flow may develop if the boundary layer bears ad-

equate instability for given spanwise fluctuations. If sufficiently random three-dimensional motions develop,

it can be considered as a statistically independent state which should not depend on initially added forcing

modes. In the present case, 20–30 non-dimensional time was run before statistical samples were taken in the

three-dimensional simulations. However, in the cases of NACA4606 and 6806 at α = 7°, as three-dimensional

disturbances gradually decayed, two-dimensional states were retrieved eventually. Since inadequate spanwise

length of computational domain often damps three-dimensional motions, it was extended up to 4L in the two

cases, to confirm that only two-dimensional motions were maintained in the present numerical conditions.

IV. Unsteadiness of Two-dimensional Flow

In our previous numerical study [10], airfoil tones were examined for NACA0012, 0006 and 4406 airfoils,

by changing angles of attack. Here, primary vortex shedding frequencies are summarized for the present

airfoils, sampled at 0.1L above the trailing edge, as well as NACA0006 in Fig. 2. In the figure, only non-zero,
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Figure 2. Primary vortex shedding frequencies sampled at 0.1L above the trailing edge of: (a) NACA2x06 and

0006; (b) 4x06; (c) 6x06; (d) 8x06 airfoils.
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Figure 3. Instantaneous ωz vorticity distributions of NACA4206 airfoil at: (a) α = 4°; (b) α = 5°. Gray scale

ranges between −5 ≤ ωzL/U∞ ≤ +5 from black to white.

(a) (b)

Figure 4. Instantaneous pressure fluctuations of NACA4206 airfoil at: (a) α = 4°; (b) α = 5°. Gray scale ranges

between −1 × 10−2 ≤ p′/ρ∞U 2
∞ ≤ +1 × 10−2 from black to white. Superposed contour lines denote the pressure

difference ∆p′ = 2 × 10−3ρ∞U 2
∞.

primary peak frequencies are shown. In several cases, typically at a higher angle of attack, clear peaks cannot

be found in power spectra with irregular vortex shedding. They are excluded from the present figure.

For the symmetric NACA0006 airfoil, vortex shedding patterns drastically change from α = 4° to 5° at

M = 0.2, along with the formation of an AFL [10]. With the presence of airfoil camber, similar transition

still occurs. An example is shown in Fig. 3 for NACA4206 airfoil. At a lower angle of attack α = 4°,

alternating vortex shedding is observed, induced primarily by wake instability with a separation bubble near

the trailing edge. By increasing α to 5°, vortex formation occurs rather upstream as shown in Fig. 3-(b). A

pair of closely coupled vortices is formed as shed into the wake, enhancing transverse velocity fluctuations

near the trailing edge. This also amplifies the intensity of scattered aerodynamic sound, which is eventually

fed back upstream as a hydrodynamic disturbance that develops into an appreciable vortical motion in the

boundary layer. This is a typical form of an AFL, reproduced in two-dimensional numerical simulations at

the present Reynolds number, 10, 000. Associated acoustic scattering, or instantaneous pressure fluctuation

p′ is presented in Fig. 4. The onset of an AFL also lowers the shedding frequency due to the difference of

instability mechanisms between the wake and the upper-side boundary layer [17]. In Fig. 2-(a), a similar
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Figure 5. Half width of velocity deficit, ∆y measured in the time-averaged wake at α = 2° for: (a) NACA4x06;

(b) NACA8x06.

frequency fall-off can be seen for all other airfoils at α = 6°.

In fact, the state shown in Fig. 3-(a) at α = 4° should be considered to be a weak form of an AFL as well,

as vortices start to develop in the suction-side boundary layer, which increases the magnitude of acoustic

pressure scattered at the trailing edge. As will be shown in Fig. 6, the lift fluctuation becomes already

significant at α = 4°. However, the vortex-shedding pattern observed in the figure strongly suggests the

dominant effect of wake instability. The frequency selection mechanism of this case will be discussed in

Section V.

By further increasing camber height, however, frequency variation becomes more dependent upon maxi-

mum camber location. For the most forward cambered airfoils, NACAx206, the change in vortex shedding

patterns occurs at a lower angle of attack, as increasing camber maximum height, shown in Figs. 2-(a) to

(d). Furthermore, once an AFL is formed, the shedding frequency seemingly settles at particular discrete

values on α. The set of the most aft cambered airfoils, NACAx806, also shows a relatively clear fall-off,

which corresponds to the onset of an AFL. However, the critical angle for the occurrence of an AFL be-

comes higher as increasing camber height. In other families of camber location, a discontinuous change of

frequencies becomes less obvious as camber height increases. In fact, NACA8406 does not show an apparent

pattern change in the present range of angles of attack.

We should also notice that the shedding frequencies of aft cambered airfoils are higher than those of

forward cambered ones at low angles of attack, compared at the same camber height. As the unsteadiness

is governed by the wake instability for small α, the frequency can be closely correlated with wake width, if a

similarity law holds for wake velocity profiles. The aft camber generally restricts the size of a trailing-edge

separation bubble, which limits the width of wake velocity deficit. The same reason applies to the frequency

decrement, as increasing camber height without the onset of an AFL. To represent the wake width scale,

half width of wake velocity deficit is often adopted, as in [23]. Fig. 5 compares the wake parameter in the

streamwise direction, for 4% and 8% maximum camber heights at α = 2°. For NACA4x06 airfoils at the

angle of attack, all the cases show a reverse flow region behind the trailing edge, which prompts vortex

shedding via wake instability. The half-width profiles are very similar; their local minima simply decrease as
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Figure 6. Comparison of lift coefficients between two-dimensional simulation results of NACA4x06 airfoils:

(a) time-averaged lift curves; (b) the rms fluctuations. Filled markers denote three-dimensional simulation

results.

the maximum camber location moves backward, correspondingly to the increments in the vortex-shedding

frequency. For NACA8x06 airfoils, however, only NACA8206 shows a peculiar profile, with no reverse flow

in the wake. It is the consequence of direct vortex shedding from the suction-side boundary layer, on the

formation of an AFL, as seen in the case of α = 5° in Fig. 3. The relation between wake velocity profiles and

the resultant vortex-shedding frequencies will be examined in more details in Section V.

The onset of an AFL also affects aerodynamic forces acting on airfoil surface. Fig. 6 compares time-

averaged lift curves of 4% camber-height airfoils and their rms fluctuations. Lift is approximately linearly

proportional to α at lower angles of attack. However, all four airfoils present discontinuous jumps of lift,

between α = 5° and 8°, which corresponds to the transition of vortex shedding patterns shown in Fig. 3, in the

present two-dimensional study. Lift fluctuations are also amplified significantly, simultaneously with, or just

before the lift jump. In a low frequency limit, the time derivative of lift is directly associated with far-field

sound pressure, perceived as trailing-edge noise. Therefore, the increments in lift fluctuations approximately

represent an aerodynamic noise increase. Its quadrupole sound source is primarily the fluctuation of vorticity

near the trailing edge, via vortex shedding. Eventually, the rms fluctuation of lift may exceed 10% of lift

force itself.

Some of the three-dimensional results are also included in Fig. 6. In the airfoil set of 4% camber height,

six cases were run. Among them, NACA4606 at α = 7°, where the lift jump occurs with the AFL formation,

resulted in two-dimensional final state. The other three airfoils were examined at α = 8°; two additional

runs were performed at α = 10°. At α = 8°, similarly to the NACA4606 case at α = 7°, the aft cambered

airfoil NACA4806 successfully reproduces the non-linear lift gain in a three-dimensional simulation, while

the lift slightly decreases by further increasing an angle of attack to α = 10°. On the other hand, the

other two forward cambered airfoils significantly decrease the lift, which eventually lowers their aerodynamic

performances, compared to the two-dimensional solutions. The AFL, if any exist in these cases, does not

help in increasing lift when three-dimensional motions develop. However, the lift fluctuations of the airfoils

with forward camber reach nearly 10% of the lift at α = 8°. Significant aerodynamic sound should be present
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Figure 7. Alternating vortex patterns retrieved at a relatively higher angle of attack: (a) NACA4806 at α = 9°;

(b) NACA6806 at α = 10°. Also see the caption of Fig. 3.
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Figure 8. Power spectral density of v-velocity, sampled at 0.1L above the trailing edge over the non-dimensional

time 30 ≤ t ≤ 60, for NACA4206 at: (a) α = 3°; (b) α = 5°.

in these cases, too. More detailed analysis of this difference is continued in the subsequent sections.

As an interesting finding on two-dimensional unsteadiness, ∆Clrms suddenly drops for NACA4806 at

α = 9°, in the diagram of the rms fluctuation of Fig. 6. At this angle of attack, a vortex shedding pattern

is altered again. Still the AFL mechanism is supposedly held with significant vortex development on the

suction-side of the airfoil, Karman vortex-like alternating patterns are regained in the wake. Fig. 7 shows

two of those examples. In the present simulations, we found several similar cases: NACA4806, 6606, and

6806. In these cases, shedding frequency also becomes higher.

V. Frequency Selection Mechanism

As shown in Fig. 2, most of the present two-dimensional cases reach vortex shedding of narrow-band

behavior, through either the absolute instability mechanism of wake flow, or the acoustic feedback process

that involves the convective instability of the suction-side boundary layer. In Fig. 8, two such examples of

spectral peaks are shown, sampled in the NACA4206 cases. In the estimation of the power spectral density

throughout the present paper, the Hamming window function is applied to the time history data sampled
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Figure 9. Power spectral density of NACA4206 at α = 4°. Dashed line is the data sampled over 30 ≤ t ≤ 60,

while solid line denotes the period 170 ≤ t ≤ 200. Also see the caption of Fig. 8.

at normalized time interval ∆t = 1.4 × 10−3. Most of the present cases show the behavior similar to Fig. 8:

Only the primary peak of vortex shedding, and its higher harmonics are depicted, regardless of the frequency

selection mechanisms, wake instability or feedback process. One of a few exceptions is the case of NACA4206

at α = 4°, as shown in Fig. 9; an instantaneous snap-shot was presented in Fig. 3-(a). In the spectral diagram,

the two data sets are presented, sampled at different time stages. At an early stage of the simulation, the

spectra clearly exhibit auxiliary peaks, approximately equally spaced, ∆f ' 0.56, in addition to the primary

peaks, f = 2.3 and its higher harmonics, in the frequency domain. This is an indication of AFL formation as

discussed in [15]. However, these auxiliary peaks gradually disappear to an almost indistinguishable level as

the simulation is further continued, denoted by the solid line; the primary peaks are almost equivalent with

those at the earlier stage, still showing the slight evidence of auxiliary peaks, adjacent to the primary peak.

The development of vortices is clearly seen in the suction-side boundary layer in Fig. 3-(a), which implies

the presence of an AFL. The primary instability mechanism that attains a discrete frequency in this case is

discussed below.

When the unsteadiness is governed by the global instability due to absolute instability nature of wake

velocity profile, the frequency can be predicted as saddle-point singularities of a dispersion relation in the

framework of linear stability theory [e.g., 24]. For the singular point to be absolutely unstable, the imaginary

part of the complex frequency ωs must be positive at the saddle point in the complex wave number plane.

In the present study, the cusp-map method [e.g., 9, 17] is employed to identify saddle-point singularity, by

applying the Rayleigh equation to a velocity-deficit profile. We also seek the most convectively unstable

frequency on the velocity profiles of the suction-side boundary layer on the basis of the Orr-Sommerfeld

(O-S) equation, to identify the frequency associated with an AFL, as in [25]. Similarly to the Rayleigh

equation, incompressible and locally parallel base flow is assumed, extracted from the time-averaged velocity

profiles along the axis normal to the wall. Then, N factor is obtained by numerically integrating the spatial

growth rate solved successively, down to 90% chord, where the frequency of the most amplified disturbance

is determined.

While the frequency of wake instability shows dependence on wake width, the occurrence of absolute

10 of 25

American Institute of Aeronautics and Astronautics

This document is provided by JAXA.



0 0.05 0.1 0.15 0.2 0.25 0.3
0.04

0.06

0.08

0.1

0.12

0.14

0.16

x/L

∆
y
/
L

 

 

 α = 2.0
 α = 3.0
 α = 4.0
 α = 5.0

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x/L

U
m

in
/
U
∞

 

 

 α = 2.0
 α = 3.0
 α = 4.0
 α = 5.0

(a) (b)

Figure 10. Comparison of wake velocity profiles of NACA4206 for 2° ≤ α ≤ 5° : (a) half width of velocity

deficit; (b) minima of streamwise velocity.
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Figure 11. Comparison of absolutely unstable frequency of the wake, Re(ωs)/2π (©), the most convectively

amplified frequency in the suction-side boundary layer (4), and vortex shedding frequency observed in the

present simulations (5) for the NACA4206 airfoil.
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Figure 12. Imaginary part of complex singular frequencies ωs detected at x/L = 0.01 in the NACA4206 wake.

At α = 5°, real part of the stable singular frequency Re(ωs)/2π is 1.54.

instability greatly depends on the minimum velocity in the wake. The presence of reverse flow is more

favorable for the onset of a self-induced unsteady state. Fig. 10 compares the wake velocity profiles of

the NACA4206 cases for α = 2°–5°, on the streamwise distributions of half width of velocity deficit, and

minimum streamwise velocity. For non-parallel, inhomogeneous wake, singular frequency shows streamwise

dependence, if the Rayleigh equation is solved locally. The preceding studies on the global instability of

wake flows [26, 27, 28] proposed a frequency-selection mechanism for nonlinear global modes in the spatially

developing wake. That is, when the global mode grows very rapidly into its nonlinear saturation stage in

the region of absolute instability and forms a steep front of the developing disturbance, the wave front at

the upstream boundary may operate as a wave-maker. Then, the frequency of the global mode can be

determined by the local absolute frequency at the upstream end of the absolutely unstable region: Also

see the review by Chomaz [29]. In recent experimental work [30], the shedding frequency in the wake was

found to be very close to the frequency predicted by this model. In the wake profiles shown in Fig. 10,

the absolutely unstable region is considered to start immediately downstream from the trailing edge of the

airfoil, except for the case α = 5°. Therefore, we examine the absolutely unstable modes for wake velocity

profiles at the nearest location, x/L = 0.01, on the basis of the Rayleigh inviscid stability equation. Among

the compared wakes, the case α = 5° shows the configuration most affected by an AFL, directly emitting

vortices from the boundary layer, as shown in Fig. 3-(b). Wake width is widened significantly, and no reverse

flow is present. In fact, no absolutely unstable mode is found in this velocity profile. Also, the case α = 4°

shows a slightly different tendency from two other lower angles of attack, presumably due to the presence

of a weak form of an AFL. Nevertheless, absolute instability nature appears in the three cases with reverse

flow, as summarized in the following.

In Fig. 11, the frequencies determined by two linear stability analyses on wake and boundary-layer

velocity profiles, and the primary vortex shedding frequencies observed in the simulations, are compared.

The O–S equation was solved for the most convectively amplified frequency for the cases α = 3°–5°, while

absolutely unstable frequency was found only for α = 2°–4°; the imaginary part of the singular frequencies

ωs are shown in Fig. 12. The frequencies of absolute instability in the present analysis agree well with the
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vortex shedding frequencies at α = 2°–4°, while the most amplified frequencies on the boundary-layer velocity

profile exhibit a considerable difference. Especially at α = 4°, in spite of several implications of an AFL, the

vortex shedding frequency precisely coincides with that of the absolute instability in the near wake. On the

other hand, at α = 5°, the vortex shedding frequency is close to the most convectively amplified frequency.

Since an AFL can take only discrete frequencies [13], most amplified frequency may not necessarily coincide

with the observed tonal frequency. In the present case, the frequency spacing of two adjacent AFL modes

is supposedly ∆f ' 0.56, from Fig. 9. Now the frequency difference at α = 5° is less than 0.3, which is

in an acceptable range to presume the dominance of boundary-layer instability via an AFL mechanism in

frequency selection.

VI. Time-averaged Aerodynamic Forces
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Figure 13. Lift-drag polar diagrams of (a) NACA2x06 and 0006; (b) 4x06; (c) 6x06; (d) 8x06 airfoils from

α = 0° to 10°. Filled markers denote three-dimensional simulation results, shown in (b) and (d).

Here we examine the aerodynamic efficiency of the selected sets of cambered airfoils on the time average

solutions. Fig. 13 shows the lift-drag polar diagrams for α = 0°–10°. In practice, low Reynolds number
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Figure 14. Instantaneous vorticity fields of NACA4606 airfoil at: (a) α = 6°; (b) α = 7°. Also see the caption

of Fig. 3.

flight in low atmospheric density would require a relatively high operational lift coefficient. For instance, a

preceding study [2] suggests Cl = 1.5 for a high-altitude, long-endurance flight at Re ∼ O(105). Although

the present range of angles of attack would be insufficient for practical purpose of airfoil design, the results

provide helpful information on the operational condition. The present polar diagrams cover the data points

up to Cl ∼ 1.5. In the present range of α, an apparent stall does not arise in two-dimensional simulations.

An exception is the mode of alternate vortex shedding, as illustrated in Fig. 7, in the case of NACA6806 at

α = 10°, where a sharp drop of Cl is seen in Fig. 13-(c). In three-dimensional results, however, NACA4806

shows a slight decrement of lift, while drag significantly increases, between α = 8° and 10°. This can be

considered as a stall at low Reynolds number.

As for the effect of camber height on the aerodynamic force, the increase of camber height leads to higher

Cd, but it also increases attainable Cl, seen in the drag polar of Fig. 13. On the effect of maximum camber

location, the aft cambered airfoil generally shows favorable features at low Reynolds number, as was reported

in other studies [31, 20]. The aft camber reduces the size of a trailing-edge separation region at moderate α,

which effectively increases lift while suppressing drag. The most aft cambered airfoils, NACAx806 show a

better aerodynamic performance, attaining higher lift-to-drag ratios at α ∼ 5°, compared with other families

of airfoils. By further increasing α, however, NACAx606 airfoils achieve better lift-to-drag ratios at some

operating points. Especially, drag even reduces in NACA4606 at α = 7°, 6606 at α = 8°, and 8606 at α = 9°,

from the states at smaller α. These operating points correspond to the onset of an AFL, altering vortex

shedding patterns. The change of flow motions of NACA4606 is shown in Fig. 14. The AFL onset conditions

of NACAx606 airfoils also correspond to their maximum lift-to-drag ratios, L/D = 15–17.

The transition of vortex shedding patterns due to the onset of an AFL, is well related with the difference

of hydrodynamic instability mechanisms between wake and boundary layer [17]. Fig. 15 shows the change

of separation regions, and associated surface pressure distributions of the time-averaged fields of NACA4606

shown in Fig. 14. At α = 6°, the upper-side boundary layer separates at about 60% chord location which

corresponds to the maximum camber location, and forms a trailing-edge separation bubble of nearly dead-

fluid motion, which leads to a flat pressure distribution. On the other hand, at α = 7°, the boundary layer

separates almost at the leading edge, and reattaches at 60% chord, forming a very thin separation bubble.

The presence of reverse flow prompts Rayleigh’s inviscid instability. Especially, a separation bubble behind

the leading edge increases the receptivity of external disturbances. Introduced via an acoustic feedback

process at the leading edge, hydrodynamic instability waves develop into discernible vortical motions, shed
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Figure 15. Difference in time-averaged flow field of NACA4406 at α = 6° and 7°: (a) separation bubbles around

the airfoil; (b) time-averaged pressure coefficient.

into the wake. These two-dimensional vortices prevent trailing-edge separation, which significantly increases

the lift force. The attached boundary layer shows relatively steep pressure recovery toward the trailing edge;

this resembles the “separation ramp” concept as in [2], originally proposed to control the size of a trailing-

edge separation region. In the present case, however, it is attained by a leading-edge separation bubble, and

a subsequent, attached boundary layer near the trailing edge.

To examine the validity of aerodynamic properties evaluated in two dimensions, three-dimensional re-

sults should be referenced, especially when an AFL formation alters aerodynamic forces. NACA4606 and

NACA6806 airfoils both form an AFL at α = 7°, attaining maximum L/D. They were examined in three

dimensions, but resulted in two-dimensional time-periodic states. Since an AFL can be explained with a

two-dimensional mechanism [12, 17], the two-dimensional unsteady phenomenon can be dominant unless a

separated shear layer on suction side becomes sufficiently unstable. The other three airfoils of the NACA4x06

set, all reached self-sustaining, three-dimensional unsteady states at α = 8°. While the aft cambered air-

foil, NACA4806 attains the time-averaged lift and drag close to its two-dimensional solution, the other two

forward cambered airfoils result in an apparent decrease of lift. Another aft cambered airfoil, NACA8606

also realized aerodynamic forces close to those of the two-dimensional result at α = 10° in three dimensions;

the achieved lift coefficient, higher than 1.5, is about the maximum in the present parametric study. In the

rest of this section, we would discuss the difference of the results obtained in two and three dimensions,

respectively, by looking into the solutions of NACA4406 and 4806, relatively forward, and aft cambered

airfoils at α = 8°.

Figs. 16 and 17 compare the instantaneous vortex shedding patterns of each airfoil, in two and three di-

mensions. Two-dimensional flows are both somewhat similar on the development of vortices in the boundary

layer, forming an AFL. The vortex pairs are closely coupled, shed into the wake. However, their three-

dimensional solutions are rather different. In the NACA4406 case, the vortical motions calm down on the

suction side except near the trailing edge, in the three-dimensional snapshot. A larger separation bubble

arises on the aft part of the airfoil, leading to a trailing-edge stall. Vortices shed in the wake gradually break

down associated with the development of spanwise fluctuations. The three-dimensional result of NACA4206
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Figure 16. Instantaneous vorticity fields of NACA4406 airfoil at α = 8° obtained in two dimensions (left) and

in three dimensions on an x-y view (right). Also see the caption of Fig. 3.
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Figure 17. Instantaneous vorticity fields of NACA4806 airfoil at α = 8° obtained in two dimensions (left) and

three dimensions on an x-y view (right). Also see the caption of Fig. 3.

airfoil has many similarities with the present case. It also exhibits a large separation bubble at the trailing

edge, and reduces lift from its two-dimensional result. On the other hand, in the NACA4806 case, rather

complex vortex structures arise on the suction side behind the laminar shear layer at the leading edge. The

boundary layer does not seem fully turbulent; it is rather transitional. However, due to the sufficient com-

plexity of three-dimensional eddies, the transitional boundary layer induces reattachment in the middle, and

stays attached thereafter. This can be regarded as the extension of the laminar separation bubble, usually

supposed to arise at higher Reynolds number.

Fig. 18 directly compares the separation bubbles that form on the suction side of the two airfoils, depicted

on the time-averaged velocity fields, in both two and three-dimensional simulations. It is interesting that

the separation point of NACA4406 is modified from the leading edge in the two-dimensional result, to

about 30% chord in three dimensions. In contrast, NACA4806 shows a separation shear layer clearly at the

leading edge. Although the resultant separation bubble is more elongated in the three-dimensional case,

the transitional boundary layer prompts reattachment, which prevents the severe reduction of lift force.

The pressure distributions in Fig. 19 are also consistent with the observations above. The lift-force drop of

NACA4406 in three dimensions is primarily due to the flat pressure profile on the separation bubble. All

other cases show relatively flat Cp on the leading-edge separation bubble; then pressure recovery is achieved

toward the trailing edge, as was shown in Fig. 15.

As observed in the present cases with AFL formation, the presence of a leading-edge separation bubble can

drastically improve aerodynamic performance. An attached boundary layer that prevails behind a separation
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Figure 18. Comparison of separation bubbles in two and three dimensions at α = 8° for: (a) NACA4406; (b)

NACA4806.
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Figure 19. Comparison of surface pressure distributions in two and three dimensions at α = 8° for: (a)

NACA4406; (b) NACA4806.

bubble, attains a greater pressure recovery for lift increments. In the literature, however, the critical Reynolds

number is estimated as 50, 000–70, 000 for the occurrence of reattachment, to form a laminar separation

bubble [1, 8]. The present Reynolds number is even lower than the critical bound. This is presumably

due to the presence of a non-negligible acoustic disturbance in the numerical simulations at a moderate

Mach number. Since the sound pressure of two-dimensional acoustic scattering shows M1/2 dependence, its

velocity component obeys the dependence of M3/2, in addition to the amplification of dynamic pressure.

Usually, experimental studies of a low-Reynolds-number airfoil must be conducted at very low Mach number,

in laboratory environments at ground level. However, the magnitude of acoustic disturbances fed back into

a boundary layer grows very rapidly as the inflow Mach number increases, which may cause reattachment

via the development of an AFL, at the Reynolds number quite lower than 50, 000. In the numerical study

conducted at Re = 2.3 × 104 and M = 0.2 [5], boundary-layer reattachment also occurs on an NACA0012

airfoil at α = 6°, which contradicts the experimental observation referenced in their paper.

The significant difference of aerodynamic performance between NACA4406 and 4806 airfoils in three-

dimensional results can be explained from the view point of hydrodynamic instability of suction-side bound-

ary layers. The convex surface behind the leading edge would relax adverse pressure gradient, and associated
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Figure 20. Frequency dependence of N factor at 40 percent and 80 percent chord locations integrated from

the leading edge for NACA4406 and 4806 at α = 6°.

velocity profile, which stabilizes the shear layer. The leading-edge separation bubble of NACA4806 in Fig. 18

clearly indicates the augmented receptivity in the neighborhood. Again, we would conduct a linear stability

analysis on the O-S equation to clarify the frequency dependence of the suction-side shear layer instability.

However, the development of velocity fluctuations in the three-dimensional cases is highly non-linear, which

may invalidate the present linear analysis. Besides, the substantial reverse flow past the boundary-layer

separation destabilizes the iterative approach to solve for an eigenvalue of the O-S equation. Alternatively,

a more direct sensitivity study based on the forced Navier-Stokes equations, employed in [9, 16], would be

effective in these circumstances. Instead, we choose the flow field at relatively lower angle of attack, α = 6°,

where no leading-edge separation occurs in both cases, to ensure the solution of the O-S equation. Here,

time-averaged, two-dimensional solutions are employed as base flow.

Fig. 20 compares the frequency dependence of N factor, integrated to 40% chord, and 80% chord locations

for both NACA4406 and 4806 airfoils. Since NACA4406 holds a relatively large separation bubble at the

trailing edge, the maximum value of N factor is larger than that of NACA4806, when integrated throughly to

the trailing edge. However, down only to 40% chord, NACA4806 shows even greater N factor, especially in

a higher frequency range, due to the strong adverse pressure gradient at the leading edge. It can be inferred

that the convex upper surface on the front part of the chord should lower the growth rate of hydrodynamic

disturbances. The chordwise maximum N factor, shown in Fig. 21, is also consistent with the present

hypothesis. Fig. 22 presents the chordwise growth of rms tangential velocity fluctuation in logarithmic scale

at α = 8°. Due to the augmented instability by the presence of a leading-edge separation bubble in the three-

dimensional simulation, the magnitude of fluctuation in the NACA4806 case is even prominent in growth rate,

and quickly reaches a non-linear level toward the middle of the chord. On the other hand, the NACA4406

airfoil shows even moderate growth throughout the boundary layer, slightly exceeding the fluctuation of

NACA4806 near the trailing edge. The observation indicates that the forward cambered airfoils, such as

NACA4206 and NACA4406, delay boundary-layer transition due to the suppression of instability growth

near a leading edge. Rather, the relatively flat profile behind a leading edge stimulates the development of

small eddies, which induces the reattachment to form a laminar separation bubble. Eventually, the present

18 of 25

American Institute of Aeronautics and Astronautics

This document is provided by JAXA.



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

 X / L

M
ax

im
um

  N
  F

ac
to

r

 

 
 4406
 4806

Figure 21. Chordwise growth of maximum N factor at each X location for NACA4406 and 4806 at α = 6°.

aft cambered airfoil can attain better aerodynamic performance, especially at moderate to relatively high

angles of attack.

VII. Acoustic Feedback Loop in Three-dimensional Fields

The overestimate of lift force in several two-dimensional cases was investigated in comparison with three-

dimensional fields in the previous section. While some cases maintain two-dimensionality with an AFL that

holds off bulk separation, three-dimensional cases either successfully develop a transitional boundary layer

with a laminar separation bubble, or suffer a trailing-edge stall to lose lift. On the other hand, an AFL

with tonal noise generation is essentially a two-dimensional mechanism. The phase variation in the spanwise

direction, such as the development of three-dimensional eddies, would reduce the intensity of tonal noise

[11]. To form the resonance between hydrodynamic instability waves and acoustic disturbances scattered

at a trailing edge, a strong correlation in the spanwise direction is supposedly required. In this section, we

investigate the difference of the three-dimensionality observed in the aforementioned two cases, NACA4406

and 4806 airfoils at α = 8°, focusing on the tone noise generation and its relevance with an AFL mechanism.

Fig. 23 compares the instantaneous vortical structures in the suction-side boundary layer of each airfoil.

In both the cases, spanwise vortical motions develop in the shear layer separated at the leading edge. These

vortices are hydrodynamic instability waves reproduced in three dimensions, induced through the acoustic

feedback process, occurring near the leading edge. As inviscid, inflection-point instability is held by the

separated shear layer, these hydrodynamic disturbances quickly grow in magnitude, which resembles Kelvin-

Helmholtz instability. While the NACA4406 case retains the quasi two-dimensional vortices down to 60–70%

of the chord, they abruptly break down and merge into a longitudinal vortical structure that develops from

the middle of the chord. On the other hand, longitudinal vortices arise closer to the leading edge, as

spanwise vortices disappear, in the NACA4806 case. Still large-scale spanwise coherence can be recognized

in the figure. It will be discussed quantitatively below.

Fig. 24 visualizes the rms spanwise velocity fluctuation w′
rms, induced by the longitudinal vortical motions.

The difference between the two airfoils is recognized very clearly. In the NACA4406 case, the maximum of
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Figure 22. Chordwise growth of maximum magnitude of rms tangential velocity fluctuation u′
trms for

NACA4406 and 4806 at α = 8°.

(a) (b)

Figure 23. Visualization of instantaneous Q-vortex isosurfaces at Q = 10 (U∞/L)2 colored by streamwise vorticity

ωxL/U∞ ranging between −1 and +1 from black to white for (a) NACA4406 and (b) NACA4806 at α = 8°.

w′
rms occurs in the wake near the trailing edge, probably due to vortex shedding therefrom. In the NACA4806

case, however, a considerable spanwise fluctuation is observed over the upper surface, from the middle of

the leading-edge separation bubble to the wake, which corresponds to the transitional behavior captured in

Fig. 23. This resembles the laminar-turbulent transition that arises past laminar separation at moderate

Reynolds numbers [6, 3, 7], although the present Reynolds number is even lower.

In the present simulations, sufficiently three-dimensional flow is achieved in the suction-side boundary

layer of NACA4806, while more laminar-flow features are retained in the NACA4406 case. Fig. 25 shows the

spanwise auto-correlation of flow variables u, v, and p, sampled at the 10% chord location on the suction-side

wall, and in the region of very active vortex shedding, 0.1L above the trailing edge. At 10% chord, where

flow is mostly laminar, pressure fluctuations are well correlated in both the cases. Especially, the NACA4406

case seems practically two-dimensional. It is also consistent with the spanwise vortical structures past the

leading edge, presented in Fig. 23.

Just above the trailing edge where eddies are shed into the wake, the spanwise correlation is somewhat

weakened, depending on the complexity of three-dimensional motions. In both the cases, the streamwise

20 of 25

American Institute of Aeronautics and Astronautics

This document is provided by JAXA.



y
/
L

x/L

y
/
L

x/L

(a) (b)

Figure 24. Two-dimensional contours of rms spanwise velocity fluctuation w′
rms for (a) NACA4406 and (b)

NACA4806 at α = 8°. Gray scale ranges between 0 and 0.2 U∞ from black to white.
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Figure 25. Spanwise auto-correlation coefficients Rpp, Ruu and Rvv, at 0.1L above the trailing edge, and Rpp

on the suction side of the airfoil at X/L = 0.1 for (a) NACA4406 and (b) NACA4806 at α = 8°.

velocity fluctuation u is the most uncorrelated. However, the other quantities, v, and rather p, are more

correlated. This can be interpreted as the spanwise phase alignment due to two-dimensional noise emission

from the trailing edge. The normal velocity v represents a dipole-sound scattering at the trailing edge,

in addition to the hydrodynamic disturbances. Pressure fluctuation p is also composed of acoustic and

hydrodynamic components. In the present case, relatively correlated pressure would be responsible for the

two-dimensional mechanism of an AFL. Although, three-dimensional eddies affect the AFL process, the

primary component of the AFL retains two-dimensionality. This also explains the well-correlated pressure

distribution in the laminar region near the leading edge. The acoustic feedback process of primary tones

should be two-dimensional.

Fig. 26 shows the spectra of pressure fluctuation sampled at 0.5L above the trailing edge. As shown

in Figs. 16 and 17, hydrodynamic motions only exist sufficiently below the sampling location. Therefore,

the spectra should mostly represent the sound pressure scattered from the airfoil surface. Time-history

data sets were sampled over 30 non-dimensional time in both cases. Besides, spectral data were averaged

at five different, equally spaced spanwise locations. Although the flow field of NACA4806 shows rather

transitional features, both the cases clearly exhibit narrowband peaks, f = 1.56 for NACA4406 and f = 1.23
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Figure 26. Power spectral density of pressure Spp, sampled at 0.5L above the trailing edge for (a) NACA4406

and (b) NACA4806 at α = 8°.

for NACA4806, respectively, normalized by U∞ and L. At this angle of attack, the vortex shedding of two-

dimensional results may become temporally non-periodic. Shedding patterns vary intermittently, resulting in

a relatively broadband nature. On the other hand, when sampled near the leading edge in a laminar boundary

layer in the three-dimensional cases, the same peak frequencies are also obtained. They correspond to the

primary frequencies of instability waves, which implies the presence of an AFL in these three-dimensional

simulations.

Especially, the more laminarized case of NACA4406 clearly shows secondary tones as well, adjacent to

the primary one as in Fig. 26-(a). The frequency differences ∆f from the primary tone are both 0.42. If

these spectra can be considered as discrete modes observed in an AFL, ∆f can be given as [12, 13]:

∆f =
1
d

(
1
Uc

+
1

c − U∞

)−1

(1)

where c is sound speed, Uc is the phase velocity of instability waves, and d is the distance between the

trailing edge and the chord location where hydrodynamic wave that forms feedback resonance, is initiated

by an acoustic feedback mechanism; in the present case, d = L, if acoustic wave is assumingly fed back at

the leading edge. By using Eq. (1), ∆f = 0.42 corresponds to Uc ' 0.47U∞, which is a little higher than

Uc/U∞ ' 0.4 reported in [14] and also usually given by a linear stability analysis, but still in a reasonable

range; the phase velocity Uc ' 0.5U∞ was reported in the two-dimensional calculation of NACA0006 airfoil

at Re = 20, 000 [17]. The present observation strongly suggests the formation of a feedback loop mechanism.

On the other hand, in the NACA4806 case Fig. 26-(b), very weak secondary peaks are detected in the

continuous spectrum at f = 0.66 and 1.89 near the primary peak f = 1.23. The frequency difference from

the primary peak is ∆f = 0.57 and 0.66, respectively. If we adopt ∆f = 0.66 for Eq. (1) in this case, the

phase velocity must be increased up to Uc ' 0.8U∞, twice as large as that usually predicted by the linear

stability analysis. The phase velocity seems a little too large; however, it is yet possible because of highly

non-linear hydrodynamic growth in the suction-side boundary layer, in the NACA4806 case, as shown in

Fig. 22. Alternatively, it is also possible that the feedback process critical to form a resonant loop, may occur

somewhere in the chord, other than at the leading edge, which reduces d in Eq. (1) to allow an additional
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increment in ∆f . For instance, at 20-30% chord, noticeable vortical structre begins to develop abruptly in

the separation bubble, as shown in Fig. 23-(b). This could be the indication of hydrodynamic modes excited

directly by acoustic disturbance.

In summary, as three-dimensional eddies develop in the separation shear layer, the magnitude of sound

emission should be lowered. Two-dimensional calculations may overestimate the resonance level of an AFL

that hydrodynamically stimulates a suction-side boundary layer, by inducing strong vortical motions that

would force reattachment in the middle of the chord. Despite the NACA4806 case that successfully in-

troduces a laminar separation bubble, the three-dimensionality added to the boundary layer may prohibit

reattachment on the suction side, which decreases lift. Besides, forward cambered airfoils such as NACA4406

would stabilize the boundary layer by delaying pressure recovery in the shear layer past the leading edge.

This is consistent with delayed separation of NACA4406 in three-dimensional case as shown in Fig. 18, which

laminarizes leading-edge neighborhood. It is also confirmed in the linear stability analysis that shows the

reduction in the growth rate of hydrodynamic disturbances, especially in a higher frequency range, near the

leading edge for forward camber.

VIII. Conclusions

The aerodynamic characteristics of low-Reynolds-number airfoils can be altered drastically, due to the

hydrodynamic effect of an AFL that arises at moderate Mach number. In fixed flow conditions Re = 104

and M = 0.2, the present numerical study of NACA four-digit airfoils shows that the acoustic disturbances

of airfoil self-noise significantly change unsteady flow states, by forming an AFL associated with hydrody-

namic instability mechanisms. With the presence of an AFL, two-dimensional instability waves develop into

discernible vortices on the suction side of the airfoil. Consequently, the size of a separation bubble located

at the trailing edge reduces, which leads to lift gain. By increasing an angle of attack, the unsteady mo-

tion in the suction-side boundary layer is more intensified. This may cause boundary-layer reattachment in

the middle of the chord, whereas the separation occurs more upstream. The resultant time-averaged flow

field has similarities with a laminar separation bubble that induces laminar-turbulent transition, observed at

moderate Reynolds numbers, but presumably higher than the present case. The magnitude of hydrodynamic

instability waves excited via an AFL becomes very significant as Mach number increases, which prompts

reattachment at the Reynolds number considerably lower than the critical bound reported in the literature,

about 5 × 104 [1, 8].

The effect of maximum camber locations is examined in both time-averaged aerodynamic force and un-

steady characteristics. In terms of aerodynamic performance, the aft camber achieves higher lift force at

higher L/D, evaluated in the present unsteady simulations, consistent with other experimental and numer-

ical studies [31, 20]. Unless an AFL arises, the aft camber reduces the size of a trailing-edge separation

bubble, which delays pressure recovery to achieve higher lift. In addition, the onset of an AFL rather

works well with the aft cambered airfoils to further improve aerodynamic performance. As captured in

three-dimensional visualization, a transitional boundary layer is provoked by two-dimensional disturbances

fed back at the leading edge, developing longitudinal eddies with spanwise motions, which prevents bulk

separation. On the other hand, the forward camber reduces the adverse pressure gradient near the leading

edge, decreasing the growth rate of instability waves in a separation shear layer. Although the results of

two-dimensional computations may present flow reattachment on the suction side, due to strong resonance of
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a two-dimensional AFL mechanism, the spanwise fluctuations in three-dimensional simulations also weaken

the resonance of an AFL. Because of these, the forward cambered airfoils tend to facilitate a trailing-edge

stall, which significantly lowers the aerodynamic performance.

This work was supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Pro-
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