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I. Introduction 
lthough control moment gyroscopes (CMGs) can produce large torques as compared with the torques produced 

by reaction wheels (RWs) or momentum wheels (MWs), both practical and theoretical issues remain, such as the 

singularity problem [1, 2]. Some existing CMG steering methods for attitude maneuvers involve initial gimbal 

reorientation before slewing and settling. Reorientation is performed to move gimbals to desirable initial angles and 

to reduce the occurrence of singularities. While the time required to complete gimbal reorientation is shorter than 

that to complete slewing, the additive gimbal reorientation time would be impossible to ignore if the maneuvers 

were repeated and would hinder multitarget observations. Thus, it is useful to develop a suitable control/steering law 

to reduce or eliminate gimbal reorientation time. This study aims to identify, support, and defend a steering law 

capable of mitigating gimbal reorientation time, which will assist the achievement of agile, large-angle, and rest-to-

rest multitarget maneuvers. 

 In the literature [3, 4], it is assumed that gimbals are positioned at desirable initial angles using solo null motion, 

namely, a state where gimbals produce no net torque on the spacecraft. Vadali et al. [3] demonstrated the existence 

of “preferred sets of initial gimbal angles” that avoid singularities, accomplishing singularity-free steering by using a 

simple pseudo inverse law with initial null motion to position gimbals at their preferred angles. However, pre-

slewing gimbal reorientation increases the total maneuver time. One solution to reduce total maneuver time would 

be to use null motion during each slewing. Schaub et al. [5] proposed a null motion steering law that uses a variable 

speed CMG (VSCMG). Null motion is continuously used to steer the gimbals toward a less singular configuration, 

in combination with the steering law that provides the required attitude control torque. Based on the gradient method, 

the null motion is determined to minimize the singularity measure, which represents how close the gimbal 
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configuration is to singularity, e.g., a condition number of a Jacobian matrix. This approach has merited further 

investigation into the modification of the singularity measure [6, 7], and into the application of an integrated power 

and attitude control system (IPACS) [8]. 

In other works [9 - 11], an optimization technique has been used to determine a gimbal steering profile in 

advance. The gimbals were steered using a performance index optimization that included the singularity measure, 

gimbal rate, and attitude tracking errors [10]. However, if optimization parameters are selected to steer the gimbals 

away from any singularity, the optimization results may constrain the available gimbal steering region, whereupon 

the resulting gimbal profile may not be applicable to agile and large-angle attitude maneuvers. Conversely, the 

steering laws aimed at traversing singularities at the expense of torque errors, using the so-called singularity-robust 

inverse [12 - 16], do not constrain the gimbal steering region. However, a significant issue is that the final gimbal 

angles, at the completion of each maneuver, may not always match the initial ones. In other words, the gimbals may 

not always return to their initial angles if the CMGs are steered to compensate for attitude errors by feedback control 

[9, 10] or to traverse singularities [11, 17, 18]. This issue is referred to as “repeatability” [9, 10, 18]. If the maneuver 

is repeated several times, the gimbal angles might eventually reach undesirable states, including singularities [17]. 

Therefore, combining the null motion with a singularity-robust steering law might be effective in securing the end-

state gimbal angles.  

    In this Note, to reduce total maneuver time, a steering law that not only provides the required attitude control 

torque but also controls the gimbals to the final target gimbal angles, is proposed for conventional CMG (not 

VSCMG). Until each maneuver is complete, the gimbals are steered to their final target gimbal angles, which are 

identical to the initial gimbal angles for the subsequent maneuver, thereby eliminating the need for gimbal 

reorientation between maneuvers. The steering law that do not include gimbal reorientation will enable a spacecraft 

to continuously perform agile multitarget maneuvers. However, in other works, the behavior of gimbals has not been 

investigated from the perspective of repeatability. In Sec. II. A, this Note presents a combined torqued- and null-

motion steering law that is based on a singularity-robust inverse steering law, as well as a metric to evaluate the 

contribution of null motion with respect to the total gimbal rate. In Sec. II.B, sets of final target gimbal angles are 

determined with the condition of rest-to-rest maneuvers and the stability of gimbal angle control is analyzed using a 

Lyapunov function. A quadratic form, in accordance with the magnitude of null motion, is proposed to evaluate 

whether null motion can effectively control the gimbal angle. This analysis clearly explains the mechanisms of 
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gimbal angle convergence and shows that gimbals may not converge to their final target angles when the quadratic 

form becomes too small. In Sec. III, to resolve the aforementioned repeatability issue, the steering law is modified 

by including a weighting matrix that depends on the prescribed attitude control torque profile. Finally, in Sec. IV, a 

total of 66 numerical simulations for agile multitarget maneuvers are conducted to verify the overall effectiveness 

and performance of the proposed steering law. Some performance metrics related to singularity identify sets of 

desirable final gimbal angles that improve the performances resulting from conventional steering laws [3, 14]. 

II. Combined Steering Law and Its Properties 

A. Steering Law Overview 

As proposed in Sec. I, the null motion NVδ  to control the gimbals to the final target angles is superimposed onto 

the torqued motion TVδ  to provide attitude control torque. The total gimbal rate command Vδ  is expressed using 

the weighting matrix V 33R ×∈  proposed in the singularity-robust inverse [12 - 16] as follows: 

( ) uVAAAδ ⋅+=
−1TT

R
V h

1 ( )δδS −+ FVNK NVTV δδ  +≡                                               (1) 

where scalar NK  (> 0) is the null motion gain that represents the amount of null motion. We assume that the final 

target gimbal angles Fδ
14R ×∈  are determined as constant values in advance, which will be discussed in Sec. II.B. 

The required attitude control torque command u 13R ×∈  is expressed as follows: 

 ( ) HωTTHu ~fb
CNT

ff
CNT −+−=≡  δA 

Rh=                                                                  (2) 

The feedforward control torque ff
CNTT 13R ×∈  is generated as a prescribed bang-off-bang torque profile [19, 20], i.e., 

acceleration and deceleration torque periods are separated by a coasting period. The feedback control torque 

fb
CNTT 13R ×∈  compensates for the tracking errors with respect to the attitude rate profile REFω 13R ×∈  and angle 

profile REFΘ 13R ×∈ . 

 ( ) ( )ΘΘKωωKT −+−= REFpREFd
fb
CNT                                                             (3) 

where dK 33R ×∈  and pK 33R ×∈  denote diagonal constant derivative and proportional gain matrices, respectively. 
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The following two matrices, including the weighting matrix V , are defined and named as “generalized 

projection matrices” in this Note. 

 ( ) AVAAAP 1TT
V

−
+≡ ,  V44V PUS −≡                                                    (4) 

Because the weighting matrix V  is selected as symmetric [12 - 16], these matrices remain symmetric ( V
T

V PP = , 

V
T

V SS = ) even in the vicinity of a singularity but not idempotent ( V
2

V PP ≠ , V
2

V SS ≠ ). On the contrary, the 

matrices ( ) AAAAAAP 1TT −+ =≡ 44R ×∈  and PUS −≡ 44
44R ×∈ , known as orthogonal projection matrices, have 

two basic properties: they are idempotent ( PP =2 , SS =2 ) and symmetric ( PP =T , SS =T ) [21]. Using the 

symmetric matrix VS , the stability of the gimbal angle control can be discussed on the basis of the quadratic form 

defined in Sec. II.B. As the gimbals approach a singularity (CMG gain ( )Tdetm AA= 0≈ ), the weighting matrix 

V  becomes large and guarantees the non-singularity of the matrices ( ) 1TT −
+VAAA  and VS  in Eq. (1). 

Consequently, the steering law enables both torqued and null motions, even when the CMG system encounters a 

singularity. 

In the following analysis, it is shown that the null motion contribution, with respect to the total gimbal rate, 

changes according to the distance from singularity. Let Vγ  be the angle between the torqued motion TVδ  and the 

total gimbal rate Vδ . When the gimbal configuration is near to singularity, Vγ  is defined using TVδ  and Vδ , as 

follows: 

VTV

V
T

TV
Vcos

δδ

δδ



=γ                                                                              (5) 

When the gimbal configuration is far from singularity, the weighting matrix V  in Eq. (1) can be neglected. Then, 

the torqued- and null-motion using the pseudo inverse matrix +A ( ) 1TT −
= AAA  and orthogonal projection matrix S  

are defined as Tδ  and Nδ , respectively. The null motion is perpendicular to the torqued motion when far from 

singularity ( 0N
T
T =δδ  ), although they are not perpendicular when near to singularity ( 0NV

T
TV ≠δδ  ). Accordingly, 

the two-norm of the total gimbal rate δ  satisfies the following condition: 

 
2

NT

2
δδδ  +=

2

T

2

N

2

T δδδ  ≥+=                                                      (6) 
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Taking into account the properties of the orthogonal projection matrices P  and S , the relationships δPδ  =T  and 

δSδ  =N  can be simply proved [21]. Consequently, the two-norm of torqued motion Tδ  and null motion Nδ , 

represented in Eq. (6), can be written as follows: 

δPPδδδδ  TT
T

T
T

2

T == δPδδPδ  T2T ==                                                        (7) 

δSSδδδδ  TT
N

T
N

2

N == δSδδSδ  T2T ==                                                        (8) 

Eq. (5) can be rewritten using the relations T
T

T
T

T δδδδ  =
2

Tδ=  and 44USP =+ , as well as Eqs. (7) and (8). 

 
δδ

δδ




T

T
T

Vcos =γ
δ

δ



T

=
δδ
δPδ




T

T

=
δδ
δSδ




T

T

1−=
                                                    

(9) 

Eq. (9) indicates that the angle Vγ  can be taken at the range 1cos0 V ≤γ≤ . When far from singularity, the null 

motion need not steer the gimbals to the final target angles Fδ , because the gimbals return there naturally, which 

indicates that the null motion is relatively small with respect to the total gimbal rate ( 1cos V ≈γ ). Conversely, Eq. 

(5) indicates that the angle Vγ  can be taken at the range 1cos1 V ≤γ≤− . As the gimbals approach a singularity, the 

null motion is increased to steer the gimbals to the final angles Fδ , which indicates that the null motion becomes 

relatively large with respect to the total gimbal rate ( 0cos V ≈γ ). When near to singularity, the null motion is 

further increased ( 1cos V −≈γ ).  

B. Stability of Gimbal Angle Control 

As proposed in Sec. I, the gimbals are steered to the final target gimbal angles i
Fδ  by the end of the i-th maneuver. 

In the subsequent (i + 1)th maneuver, the gimbals are steered from the initial angles 1i
0
+δ  and toward the final angles 

from the previous i-th maneuver ( i
F

1i
0 δδ =+ ). Such gimbal angle control will enable the spacecraft to perform 

continuous multitarget maneuvers without gimbal reorientation delay. A key issue in this approach is how to 

determine the final gimbal angles. Computing the final angles for general maneuvering scenarios is challenging. 

Furthermore, null motion is only available for a limited set of gimbal angles. For example, reconfiguring a 

symmetric set of gimbal angles into an asymmetric set without exerting torques on the spacecraft is impossible [5]. 

In our approach, the final angles are limited to symmetric sets with the condition of rest-to-rest maneuvers, which 
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means that the total angular momentum produced by the CMG system should be equal to zero at the end of each 

maneuver. Although some gimbal angle sets satisfying the zero momentum condition exist, here, we consider only 

one symmetric set: Fδ [ ]T2121 dddd=  ( π≤≤π− 21 d,d  rad). Substituting this set into the zero momentum 

condition 31OH = , the following two sets are obtained: Faδ [ ]Tdddd −−=  rad and 

Fbδ [ ]Tdddd π−π−=  rad. 

The stability of gimbal reorientation using solo null motion is analyzed in the literature [3]. In this section, the 

stability of the gimbal angle control to the aforementioned symmetric sets is analyzed using both torqued and null 

motions. The Lyapunov function is simply selected as the two-norm of gimbal angle errors δδe −= F , as follows: 

=VL eeT

2
1 ( ) ( )δδδδ −−= F

T
F2

1
                                                              

(10) 

The time derivative of VL  can be represented by substituting the steering law of Eq. (1): 

( ) V
T

FVL δδδ  −−= NV
T

TV
T δeδe  −−= SVNTV K η−η≡                                          (11) 

where 

TV
T

TV δe −≡η ( ) uVAAAe 1TTT

Rh
1 −

+−=
                                                  

(12) 

eSeδe V
T

NV
T

SV =≡η 
                                                                    (13) 

NVδ  denotes the unit null motion, where the null motion gain NK  is equal to one. The Lyapunov function VL  at an 

arbitrary time t in the maneuver duration F0 ttt ≤≤  is again obtained by integrating Eq. (11). 

( ) ( )∫ ττ+=
t

t
V0VV

0

dL)t(LtL  ( ) ( )tLtL SVTV +≡                                                    (14) 

where 

( ) ∫ τη≡
t

t
TVTV

0

dtL ,  ( ) ( ) ∫ τη−≡
t

t
SVN0VSV

0

dKtLtL
                                                

(15) 

Note that Eq. (14) shows that the Lyapunov function can be separated into two terms, where the first term TVL  

depends on the torqued motion TVδ  and the second term SVL  depends on the null motion NVδ . As described below, 

this allows us to consider the behavior of these terms individually. 
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The torque command u  of Eq. (2) satisfies the conditions ( ) 310t Ou =  and ( ) 31Ft Ou = , because the rest-to-rest 

maneuvers are dealt with in the present study. The initial condition for Eq. (15) is therefore ( ) 0tL 0TV = , and the 

final state ( )FTV tL  converges to a certain constant value at the end of each maneuver. 

The quadratic form SVη  of Eq. (13), including the symmetric matrix VS , plays an important role in evaluating 

the stability of the gimbal angle control. Excluding the torqued motion TVδ  in Eq. (1), the steering law is regarded 

as a nonlinear dynamical system ( )ee f= eS VNK−=  in terms of gimbal angle error e . Because of the fact that the 

generalized projection matrix VS  is a time-varying matrix, which depends on the current gimbal angles δ  and the 

weighting matrix V , definiteness is examined for two quadratic forms, Sη SeeT=  and eSe V
T

SV =η , for cases that 

are far-from- and near-to-singularity, respectively. For cases that are far from singularity, the quadratic form is a 

positive semidefinite ( 0S ≥η ), because the orthogonal projection matrix S  is idempotent and its eigenvalues are 

either 0 or 1. Moreover, it can easily be shown that the quadratic form Sη  is transformed into the two-norm of the 

unit null motion using the properties described in Sec. II.A. 

                                                              SeeT
S =η SeSe TT= N

T
N δδ =

2

Nδ= 0≥
                                            

(16) 

In general, for cases that are near singularity, the eigenvalues of the generalized projection matrix VS  are only real 

numbers, because VS  is only symmetric. Accordingly, the following Rayleigh–Ritz inequality [22] is employed to 

examine the positive semidefinite of eSe V
T

SV =η : 

eeeSeee T
maxV

TT
min λ≤≤λ                                                                  (17) 

where minλ  and maxλ  are the smallest and largest eigenvalues of VS , respectively. It can be verified by numerical 

simulations that the eigenvalues iλ  (i = 1 to 4) in the singularity are always within the range 10 i ≤λ≤ , indicating 

that the above inequality should be rewritten as V
T

SV L20 =≤η≤ ee . As shown above, the two quadratic forms are 

positive semidefinite, both when far-from- and near-to-singularity; therefore, the null motion term SVL  of Eq. (15) 

is guaranteed to be asymptotically stable. In other words, SVL  is decreased from its initial value 

( )0V tL ( )0SV tL= 0
T
021 ee= , which is written as follows: 
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( )tLSV 0
T

0

t

t
SVN0

T
0 2

1dK
2
1

0

eeee ≤τη−= ∫                                                      (18) 

As shown later in Sec. V, the quadratic form eSe V
T

SV =η  is increased unlike the CMG gain, which decreased in 

the vicinity of a singularity ( 0m → ). This implies that the null motion term SVL  is smaller after traversing 

singularity. From Eqs. (14) and (18), it can be concluded that if SVL  declines sufficiently to cancel out the torqued 

motion term TVL  by the end of each maneuver, the total Lyapunov function VL  converges to zero, as does the 

resulting gimbal angle error e . 

From Eq. (18), however, it is estimated that the gimbal angles δ  may not converge to the final target angles Fδ , 

if the quadratic form SVη  becomes too small. From linear algebra, eSe V
T

SV =η 0NV
T == δe 

 if and only if 

NVδ 41O=  is satisfied because the generalized projection matrix VS  is symmetric and positive semidefinite 

( 0V ≥S ). From this relation, it is apparent that the unit null motion becomes small ( 41NV Oδ ≈ ) when the quadratic 

form becomes small ( 0SV ≈η ). Consequently, the null motion NVδ  will be too small to control the gimbals to the 

final target angles effectively. Whether or not null motion is possible depends on the type of singularity, hyperbolic 

or elliptic, and a test can be used to identify them [23 - 25]. Null motion is possible near a hyperbolic singularity and 

is not possible near an elliptic singularity. The convergence mechanism of the gimbal angles, described in this 

section, is demonstrated by the numerical simulations shown in Sections IV.C and IV.D. Furthermore, the steering 

law proposed in Sec. II.A will be modified in Sec. III to resolve the aforementioned repeatability issue [9 - 11, 17, 

18]. 

III. Modification of the Steering Law 

As pointed out in Sec. II.B, the unit null motion itself ( eSδ VNV = ) may become too small for gimbal control, even 

if the null motion gain NK  is large. A suitable modification for the steering law of Eq. (1) is therefore considered to 

prevent the unit null motion from becoming too small to be effective. For this purpose, we now reconsider the 

following two-norm and least-squares minimization problem [14, 15]: 

( )err
T
errTVW

T
TVW

TVW

min uRuδQδ
δ

+
                                                              

(19) 
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where 1−≡ WQ 44R ×∈  and 1−≡ VR 33R ×∈  are positive definite symmetric weighting matrices, i.e., 0T >= QQ , 

0T >= RR , and δAuu −=err  represents the unit torque error where the rotor angular momentum Rh  is equal to 

one. The solution of Eq. (19) in the case of 44UW ≠  is derived as ( ) uVAWAWAδ
1TT

RTVW h1
−

+=  [15]. The 

torqued motion TVδ  in Eq. (1) can be obtained by solving Eq. (19), in the case of 44UW = . Here as well as in Eq. 

(1), null motion NVWδ , including 44UW ≠ , is also defined and the total gimbal rate command VWδ  is written as 

follows: 

( ) uVAWAWAδ ⋅+=
−1TT

R
VW h

1 ( )δδS −+ FVWNK NVWTVW δδ  +≡                              (20) 

The generalized projection matrices, including 44UW ≠ , are newly defined by 

( ) AVAWAWAP 1TT
VW

−
+≡ ,  VW44VW PUS −≡                                             (21) 

The weighting matrix 44UW ≠  is expected to change for the matrix VWS  in Eq. (20) and effectively boost the 

null motion NVWδ . To modify the convergence to the final target gimbal angles Fδ , appropriate weight must be 

given to the steering law as the gimbals approach their final angles in the final stage of each maneuver. Because the 

duration of the gimbals’ approach to their final angles can be regarded as equivalent to the duration that the CMG 

system is producing deceleration torque, information on the feedforward torque profile ff
CNTT  can be provided to the 

steering law by the control law. Accordingly, the weighting matrix W  during gimbals’ approach is given by 

WW EW λ= [ ]4W3W2W1WW diag εεεε⋅λ=                                           (22) 

wherein 

τµ−λ=λ We0WW ,  
maxff

CNT
ff
CNT TT=τ

                                                
(23) 

where the scalar Wλ  is a time-varying scaling factor adjusted by the normalized torque profile τ , the range of 

which is 10 ≤τ≤ . The other scalars, i.e., 0Wλ , Wµ , and Wiε  (i = 1–4), are constant parameters to be properly 

selected. Note that new generalized projection matrices of Eq. (21) are neither idempotent nor symmetric, i.e., 

VW
2

VW PP ≠ , VW
2

VW SS ≠ , VW
T

VW PP ≠ , and VW
T

VW SS ≠ . Because VWS  is not a symmetric matrix, the 

quadratic form eSe VW
T

SVW =η  cannot be strictly defined and the stability of the gimbal angle control cannot be 
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analyzed, as shown in Sec. II.B. Despite this, the convergence of the gimbal angles by the modified steering law that 

includes VWS  is numerically verified in Sec. IV.D. 

IV. Numerical Simulations 

A. Simulation Parameters 

To verify the effectiveness and performance of the proposed steering law, agile multitarget maneuvers are 

numerically simulated, the parameters for which are shown in Table 1. It is assumed that a mid-sized Earth-

observing spacecraft performs ten large-angle, rest-to-rest, and bang-off-bang maneuvers. In the spacecraft body-

fixed coordinate { }Bb


, the maneuver axes are aligned into the roll–pitch ( ByBx bb


− ) plane to change the direction 

of the pointing axis Bzb


 toward multiple targets on the ground. The feedforward torque profile ff
CNTT  has trapezoidal 

shapes during the acceleration and deceleration periods. In the first maneuver, the spacecraft performs slewing from 

an initial attitude [0 0 0]T deg to a final attitude [50 50 0]T deg within 70 s (from 0t =10 s to Ft =80 s) about 

maneuver axis [ ]T01121 × , while attitude errors are subsequently settled by feedback control. Similarly, the 

second maneuver is performed in the opposite direction within 70 s (from 0t =100 s to Ft =170 s). The remaining 

maneuvers are repeated, as well as the first and second maneuvers. To compensate for the tracking errors with 

respect to the attitude profiles REFω  and REFΘ , the derivative and proportional gains in Eq. (3) are determined using 

the high-bandwidth Hz5.0fS =  and the damping ratio 21S =ζ . The parameters for weighting matrix V  are 

similar to those used in the GSR steering law [14]. The gimbal rate command is limited within s/rad0.1lmt
i ±=d  (i = 

1 –4) for each CMG, because of practical hardware capabilities. 

 

B. Performance of the Steering Law 

First, the simulation results from applying the GSR steering law, i.e., null motion gain 0K N =  in Eq. (1), are 

shown in Figure 1 as Case 1. As illustrated in Figure 1a, the final gimbal angles after each maneuver are not the 

same as the initial gimbal angles, i.e., the gimbals are not repeatable, as is stated in the literature [18]. This indicates 

that the GSR, using solo torqued motion, is unable to secure the final gimbal states after traversing singularities. 

Figure 1b illustrates the gimbal rate command TVδ , taking into consideration the gimbal rate limit, and Figure 1c 
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demonstrates how the CMG system encounters singularities over a series of ten maneuvers. After the CMG system 

encounters singularity ( 0m ≈ ) at approximately 750 s., it loses the capability to provide the required torque and 

eventually retains the singularity until the end of the 10th maneuver. 

Next, a total of 66 simulation runs are conducted for various sets of final gimbal angles Fδ  to verify the overall 

performance of the steering law (Eq. (1)). Figure 2 summarizes the results for the first set of simulations, which are 

named as Case 2 in accordance with Faδ = [d −d d −d]T rad. The 37 cases are investigated using various gimbal 

angles d, as plotted in circles as shown in Figure 2a. Similarly, Figure 3 summarizes the results for the second set of 

29 cases, which are named as Case 3 in accordance with Fbδ = [d d− π  d d− π ]T rad. To ensure a fair comparison, 

the three performance metrics related to the singularity are defined as follows: 1) the mean value of the CMG gain 

( )Tdetm AA=  (bars in Figures 2a and 3a), 2) the number of times traversing the singularities 0ms  (bars in Figures 

2b and 3b), and 3) the total duration in singularities 0mt  (bars in Figures 2c and 3c). Here, the metric 0ms  represents 

the number of times the CMG gain becomes smaller than threshold 2.0mthr = , and the metric 0mt  represents 

duration of the singularities, which are defined as m < thrm . The simulations terminate when 0mt  exceeds 10% of 

the total simulation time (900 s). These metrics are compared with those of the aforementioned GSR (Case 1), i.e., 

the results of Figure 1 are plotted as a dotted line in both Figures 2 and 3. 

As for Case 2 (Figure 2), the gimbals converge to the final target gimbal angles Faδ  in case of d = −15, −10, 0, 10, 

15, 45, 50, 60, 70, 75 deg. Conversely, the other 27 cases unsuccessfully converge to the target angles, therefore, the 

gimbals do not satisfy repeatability. This is because the CMG system encounters elliptic singularities, as explained 

in Sec. II.B. In the 10 successful cases, 5 cases (d = 45, 50, 60, 70, 75 deg) present better performances because m  

is larger and 0mt  and 0ms  are smaller than those in Case 1 (Figure 1). Similarly, in Case 3 (Figure 3), the gimbals 

converge to the final target gimbal angles Fbδ  when d = 105, 110, 120, 135, 150 deg, and these performances are 

better than those of Case 1. The 24 other cases unsuccessfully converge for the same reason as Case 2. Therefore, a 

total of 10 sets, shown by gray hatches in Figures 2 and 3, are identified as desirable final gimbal angles.  

 

C. Typical Simulation Results 

1. Simulation Results in case of d = 0 deg 
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Some typical results of the many simulation cases summarized in Figure 2 are illustrated as examples. Figure 4 

shows the case of Fδ  = [0 0 0 0]T deg in accordance with d = 0 deg (Case 2a), which is same as the initial gimbal 

angles 0δ  from the first maneuver. As can be seen in Figure 4a, the gimbal angles at the end of each maneuver 

converge to the final angles Fδ . When the CMG system encounters some singularities, the total gimbal rate Vδ  

becomes large and is limited by s/rad0.1lmt
i ±=d  (Figure 4b). Figure 4c shows that the quadratic form SVη  

simultaneously rises with decreasing CMG gain, as described in Sec. II.B. Simultaneously, as the quadratic form 

increases, the null motion term SVL  of the Lyapunov function decreases, as shown in Figure 4d. The offsets of the 

total Lyapunov function VL  come from the gimbal rate limit, which occurs for the even-numbered maneuvers. 

When the CMG system encounters singularities, the steering law based on a singularity-robust inverse induces 

torque errors, which results in attitude errors. Despite these instantaneous attitude errors during slewings, the errors 

converge to zero due to high-bandwidth feedback control. This indicates that the attitude control by torqued motion 

does not interfere with gimbal angle control by null motion and vice versa. 

2. Simulation Results in case of d = 60 deg 

Figure 5 shows the case of Fδ  = [60 −60 60 −60]T deg in accordance with d = 60 deg (Case 2b). As addressed 

above, the steering law performs optimally when d = 60 deg, with a mean value of the CMG gain 2.1m ≈   (Figure 

2a), a number of times 1s 0m =  (Figure 2b), and a total duration 0mt < 1 s (Figure 2c). As can be seen in Figure 5a, 

the gimbal angles at the end of each maneuver converge to the final angles Fδ , with a small gimbal rate (Figure 5b) 

compared with that of Figure 4b. Figure 5c shows that the null motion keeps the gimbals away from the singularity 

during ten maneuvers and traverses only one singularity, which is encountered approximately 10 s after the 

beginning of the first slewing. Therefore, the steering law can reduce the occurrence and total duration of 

singularities if the gimbals are steered to desirable final angles, as specified in Figures 2 and 3. The other nine cases, 

shown as gray hatches in Figures 2 and 3, present similar results. In the literature [3], the gimbal angles [45 −45 45 

−45]T deg in accordance with d = 45 deg of our simulation cases were specified as “preferred sets of initial gimbal 

angles” to avoid singularity. However, it was assumed that the initial gimbal reorientation is performed prior to 

slewings using solo null motion. On the contrary, in our steering strategy, the gimbal angle control by null motion is 

performed during slewings with the torqued motion. Our combined steering law with specified desirable final angles 
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is more effective at reducing total maneuver time than that of [3], better at keeping the gimbals away from 

singularities than that of [14], and has a simpler implementation for conventional CMG than that of [5]. This is the 

main contribution of our Note. 

 

D. Performance of the Modified Steering Law 

1. Simulation Results in case of d = −60 deg 

Figure 6 shows the case of Fδ  = [−60 60 −60 60]T deg in accordance with d = −60 deg (Case 2c). Although this 

case presents better performances than Case 1, as shown in Figure 2, the gimbals do not converge to the final angles 

Fδ  at the end of each maneuver, as shown in Figure 6a. In particular, the gimbal angles at the end of even-numbered 

maneuvers have large offsets with respect to their target angles, while their gimbal rate is within the limit 

s/rad0.1±  (Figure 6b). Figure 6c reveals that the magnitude of the quadratic form SVη  remains almost at zero after 

140 s in the second maneuver, where the gimbal angles approach undesirable final angles. Consequently, as shown 

in Figure 6d, the null motion term SVL  does not decline to cancel out the torqued motion term TVL , and the total 

Lyapunov function VL  does not converge to zero at the end of the second maneuver. The behavior of subsequent 

even-numbered maneuvers is explained, as well as that of the second maneuver. It is evident that the CMG system 

fails to yield effective null motion, as it encounters elliptic singularities in even-numbered maneuvers. 

2. Simulation Results in case of d = −60 deg with modified steering law 

Figure 7 displays Case 2d, which applies the modified steering law (Eq. (20)) under the same conditions as Case 

2c. The time-varying scaling factor Wλ  (Eq. (23)) is applied when the CMG system is producing deceleration 

torque in even-numbered maneuvers. The diagonal elements of Eq. (22) are selected as 

[ ]105.005.01diagW =E . Figure 7a shows that the modified steering law can steer the gimbals to their final 

angles Fδ  = [−60 60 −60 60]T deg at the end of even-numbered maneuvers. Although the total gimbal rate reaches 

the limit s/rad0.1±  at 140 s (Figure 7b), this does not affect the convergence of the gimbal angles. Figure 7c shows 

that the magnitude of the quadratic form SVWη  is changed at 140 s and immediately increased at approximately 150 

s. While the CMG system encounters a new singularity ( 0m ≈ ) at approximately 150 s, the null motion term SVWL  
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declines sufficiently to cancel out the torqued motion term TVWL , as shown in Figure 7d. We can calculate the unit 

null motions NVδ  for Case 2c and NVWδ  for Case 2d at 150 s, as follows: 

eSδ VNV =
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−
−
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−−−

=

307.0
534.1
055.1
218.0

578.0012.0307.0386.0
012.0001.0007.0007.0
307.0007.0164.0205.0
386.0007.0205.0259.0



















−
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=

044.0
001.0
023.0

031.0

                             (24) 

 eSδ VWNVW =
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=

458.0
166.1
877.0
464.0

539.0052.0476.0406.0
003.0904.0081.0024.0
024.0081.0900.0002.0
406.0482.0043.0541.0


















−

=

078.0
973.0
685.0

087.0

                             (25) 

As described in Sec. III.C, the steering law (Eq. (1)) fails to generate the effective unit null motion NVδ , which is 

almost zero, as illustrated in Eq. (24). Conversely, the weighting matrix W  in the modified steering law (Eq. (20)) 

yields change for the matrix VWS  and boosts the substantial unit null motion NVWδ , as illustrated in Eq. (25). The 

gimbal angle convergence in subsequent even-numbered maneuvers as well as in the second maneuver is improved. 

It is also successfully verified that the modified steering law can maintain repeatability and can effectively steer 

gimbals to final target gimbal angles, which is another significant contribution from this Note. 

 
Table 1 Simulation parameters 

Parameter Value 
Initial gimbal angles 0δ  [0 0 0 0]T deg 
Final target gimbal angles Fδ  
 

Figure 2 for Case 2 
Figure 3 for Case 3 

Rotor angular momentum hR 30 Nms 
CMG skew angle β 54.74 deg 
Null motion gain KN 1 s−1 
Gimbal rate limit lmt

id  ± 1.0 rad/s 

Parameters for weighting matrix V  1.00V =λ , 10V =µ , 01.00V =ε , 
π=ω 5.0V , 01 =φ , 22 π=φ , π=φ3   

Parameters for weighting matrix W  
(only for Case 2d) 

0.10W =λ , 0.1W =µ , 
0.14W1W =ε=ε , 05.03W2W =ε=ε  

Inertia of spacecraft I  diag [3000 3000 2000] kgm2 
The bandwidth Sf  of PD feedback control 0.5 Hz 
The damping ratio Sζ  of PD feedback control 21  
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b) Gimbal rate TVδ  (torqued motion only) 
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Fig. 1 Simulation results for Case 1: without gimbal angle control ( 0K N = ) 
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b) Occurrence of singularities 0ms  
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Fig. 2 Simulation results for Case 2: Faδ  = [d −d d −d]Tdeg 
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b) Occurrence of singularities 0ms  
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Fig. 3 Simulation results for Case 3: Fbδ  = [d d π−  d d π− ]Tdeg 
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b) Total gimbal rate Vδ  
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c) Quadratic form SVη  and CMG gain m  
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d) Lyapunov functions TVV L,L  and SVL  

Fig. 4 Simulation results for Case 2a: Fδ  = [0 0 0 0]Tdeg 
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c) Quadratic form SVη  and CMG gain m  
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d) Lyapunov functions TVV L,L  and SVL  

Fig. 5 Simulation results for Case 2b: Fδ  = [60 −60 60 −60]Tdeg 
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c) Quadratic form SVη  and CMG gain 
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d) Lyapunov functions TVV L,L , and SVL  

Fig. 6 Simulation results for Case 2c: Fδ  = [−60 60 −60 60]T deg 
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c) Quadratic form SVWη  and CMG gain m  
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Fig. 7 Simulation results for Case 2d: Fδ  = [−60 60 −60 60]T deg 
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V. Conclusions 

This Note presented a steering law that not only provides the required attitude control torque but also controls 

the gimbals to their final target gimbal angles, eliminating the need for gimbal reorientation in agile, large-angle and 

rest-to-rest multitarget maneuvers. The stability of the gimbal angle control is analyzed using a Lyapunov function, 

and it is shown that convergence to the final angles declines when the quadratic form becomes too small. To 

improve convergence, the steering law is modified by including a weighting matrix, which depends on the 

prescribed feedforward torque profile. On the basis of numerical simulations and considering some performance 

metrics, the following advances are demonstrated. First, a simply implemented steering law with desirable final 

gimbal angles is identified as an effective means to reduce total maneuver time and to steer the gimbals away from 

singularities. Second, a modified steering law effectively converges gimbals to their final angles and resolves the 

issue of repeatability. Consequently, a spacecraft could continuously perform agile multitarget maneuvers. 
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