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Abstract : Electromagnetic interaction between the solar wind and sub-scale magnetic sails was

numerically analyzed to assess reaction forces exerted on the magnetic sail when its characteristic

for the plasma flow fail. The hybrid particle-in-cell (PIC) method was used to take the finite Larmor-
radius effects into consideration. The magnetic dipole intensity was changed so that the
characteristic size of the magnetic sail changed from several kilometers to few thousand
kilometers. The results show that the drag coefficient of the magnetic sail based on the
representative radius of the magneto-hydrodynamic interaction decreases as the ratio of the ion
Larmor radius to this representative radius becomes greater than unity. An approximate formula to

compute the drag coefficient in a wide range of magnetic sail dimension has been developed.
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specific impulses, their thrust densities are so low that long flight time to the target planet is inevitable. Contrary to
this, the chemical propulsion can realize only poor specific impulses in exchange for high thrust densities to
accelerate a spacecraft quickly. In order to increase a chance for low-cost, frequent, and quick access to deep space
explorations, a breakthrough in space propulsion technologies may be necessary. From this viewpoint, as one of
candidates for advanced space propulsion, solar sails and magnetic sails were studied in the past. Although their
specific impulses are infinite in principal, there is an essential problem from an engineering standpoint that
unrealistically gigantic structures should be constructed or deployed, and kept under control during the flight. For
this reason, researches of the solar and the magnetic sails have slowed down.

Recently, Winglee and his coworkers have proposed an idea of magnetic inflation, in which the initial magnetic
field attached to a spacecraft is expanded by injection of high-beta plasmas from the spacecraft to form finally a huge
magnetic field, namely a magnetoplasma-sail (MPS), in place of using a substantial conducting coil of great
dimensions™®. In view of reduced difficulty in producing a gigantic magnetic field, interests in using the solar wind for
interplanetary propulsion have been renewed. Following Winglee, the author and coworkers have started to assess
the feasibility of this concept, using both theoretical and experimental approachesw.

In principle, both the magnetic sails and the magnetoplasma sails are accelerated by the Lorentz force originating
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from interaction between the electric current induced in the solar wind plasma and the magnetic dipole in the
spacecraft. Like in the electromagnetic interaction between the terrestrial magnetic dipole and the solar wind, in a
quasi-steady state, the magnetic field generated by the spacecraft is surrounded by the magnetosphere boundaries,
beyond which the solar wind plasmas cannot penetrate directly into the magnetosphere. Thrust obtainable from the
solar wind is expected to be proportional to the cross section of the magnetosphere with respect to the stream
direction, just like an aerodynamic drag about a blunt-body object in the atmospheric hypersonic flight. In such a
situation, momentum of the solar wind is equilibrated with the magnetic pressure on the magnetosphere boundary,
resulting in a unigue magnetic flux density of B~ 40 nT just inside this boundary. Larmor radii for electrons and
protons for this magnetic flux density are at the order of 100 m and 100 km, respectively.

In practical applications, the dimension of the magnetosphere may be limited due to engineering
implementabilities such as the induction coil and the power resources. With respect to the MPS, the dimension of the
magnetosphere may be subject to the efficiency of magnetic field inflation in addition. If the representative radius of
the magnetosphere is smaller than the ion Larmor radius, acceleration forces predicted by magneto-hydrodynamic
(MHD) models may suffer from considerable errors, since MHD models are based on an assumption that Larmor
radii of both electrons and ions are infinitely small in relation to the representative scales of the magnetic field.

Such a problem is known as the finite Larmor-radius effect in the field of nuclear fusion technologies and
planetary plasma simulations. However, how the finite Larmor radius exerts an influence on acceleration force of the
magnetic sail has not been well understood. In the past studyg, to gain primary understandings of acceleration force
generation in dipolar magnetic fields, electromagnetic interactions between sub-scale magnetic fields and plasma
flows were numerically simulated by the full particle-in-cell
and ions are com
assessment of the finite Larmor-radius effect on acceleration force generation in moderately-scaled magnetic sails, the

hypersonic plasma flows around the magnetic field are solved by the hybrid PIC method in this arficle.

Method of Analysis

Particle-in-Cell Model
The plasma flows and the electromagnetic fields are numerically computed by the hybrid PIC method. In this
approach, electrons are treated as a continuum fluid consisting of massless particles, while kinetic motion of ions is
solved in terms of sample particles. Since details of the hybrid PIC method can be found in the literature (Ref.10, for
example), only a brief description is given below. As a primary assumption, the hypersonic plasma flows are assumed
to consist of electrons and protons without Coulomb collisions, since the solar wind is highly rarefied. Kinetic motion

of each proton is expressed by the equations of motion as
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where r; and 9; are the position and the velocity vectors of a proton, ¢ is the elementary charge, m; is the mass of a

proton, and E and B are the electric field and the magnetic flux density vectors, respectively. The momentum
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conservation for the electron fluid is approximated by
en. (E+V.xB)+Vp. =0 (3)

where %, is the number density of electrons, V. is the mean velocity vector of the electron fluid, and p, is the electron

pressure. Electrical neutrality is assumed by
Tte == T4 ( 4 )

where #; is the number density of ions.

In this analysis, motion of the electron fluid is assumed to be isentropic since the electron fluid is subsonic
everywhere in the flow under consideration, and since no external electric field is imposed. Consequently, the
equation for electron energy conservation is not solved but an isentropic relation between the pressure and the

density is introduced as
p. /nY = const. (5)

where 7 is the specific heat ratio for the electron fluid.

Maxwell's equations describing the electromagnetic field are reduced based on the Darwin approximation, as

o8
S =-VxE (6)
J= VU xB=emV, —n.) (7)

Ho
where ¢ is the magnetic permeability of vacuum and V; is the mean velocity vector of protons. Combination of

Egs.(3),(4), and (7) with elimination of #, and V, vields an explicit expression for the electric field as
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Equations (3) and (7) fail when particle densities are zero in the absence of a sample particle. In such a situation, the

electric field is determined alternatively by
V-E=0and B =-V¢ (9)

where ¢ is the electrostatic potential. Equation(6) is reduced to

9B

9E _ (1
o 0 (10)

since V X'V ¢ =0.

Numerical Procedure
To perform the particle simulation with statistical operation involved, the electromagnetic field solvers are
incorporated into the multi-purpose DSMC code, RARAC-3D'L. Equations (1) and (2) are integrated in time by the 4th-
order Runge-Kutta method for each sample particle. The average density and the average velocity, #i and V;
respectively, are determined at each computational node from positions of sample particles by linear weighting (PIC
methed). The electron pressure is calculated by Eqs.(4) and (5) from the average ion density. The magnetic field is

then determined by Eq.(6) from the electric and the magnetic field at the previous time step, and the electric field is
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Table 1: Scale parameters for magnetic sail and computational domain.

Case pon/dr (Tm®)  7o(m) 71{m) RL 7e/70 71/%0 71/70 8 /r®
1 434710 3.16'% 3.08"%° 0100  3.22 10.2 973 0323
2 1.37°% 1.007%° 9.73°% 0316  3.22 5.73 9.73 1.02
3 4347 3.16" 3.08°% .00 3.22 3.22 9.73 3.23
4 1.37°% 5.62°% 5.47°% 3.16 5.73 3.22 9.73 182
5 434 1.00"% 1.38°% 10.0 10.2 3.22 9.73 102

2 434" stands for 4.34X 10, for example.
b5 = 1.02X10°(m) is the skin depth of the solar wind plasma.

Fig 1: Spherical grid system consisting of 30-radial X 37-latitudinal X 73-longitudinal nodes.
etermined finally by Eq.{8) or (9).

In order to enhance accuracy in time integration, the leapfrog techniquem is used by introducing halfintegral
time steps. Since the magnetic flux density generated by a magnetic dipole varies roughly in proportion to 72, fine
orids are necessary in the region where r is small for the flow and the magnetic filed to be solved accurately. To
realize this, a spherical grid system with radial reticulation is used in this study. The magnetic dipole is placed at the
origin of the spherical grid system, aligned with the z coordinate in the positive direction. In order to avoid an
excessive increase of the magnetic field intensity in the calculation domain, the inner boundary is set at# = vo, which is
small enough to have no influence on the flow and the magnetic field in electromagnetic interaction. The magnetic
field intensity is fixed during time integration on this inner boundary. On the other hand, the outer boundary is set at
# = 71, depending on the magnetic dipole intensity, so that the final results are not affected by this boundary. A typical
example of the grid system is shown in Fig.1. In addition to this base grid system, a staggered grid system is
introduced to maintain V-B=0 precisely during time integration. The magnetic filed are defined at the staggered

grid system.
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Solar Wind and Magnetic Dipole Models

The solar wind is assumed to be a hypersonic plasma flow consisting of electrons and protons. Protons are
assumed to be members of a Maxwell-Boltzmann velocity distribution function at 0.3 eV, while the electron
temperature is assumed to be 10 eV. Average flow velocities of both electrons and protons are set identically to be 400
km/s. Average number densities of electrons and protons are given uniquely as 5% 10° m'3, based on the
representative value at 1 A.U. The interplanetary magnetic field in the solar wind is neglected in this study. Proton
samples are added at every outer surface element of the computational domain by the statistical inflow conditions
based on the Boltzmann velocity distribution and the flow velocity. The flow direction is aligned to the x coordinate in
the negative direction.

One important scaling parameter is the distance from the dipole center at which the dynamic pressure of the
solar wind is equilibrated with the magnetic pressure produced by the initial magnetic field. This distance, denoted
hereafter by 7., represents the radius of the magnetic sail with respect to magneto-hydrodynamic interaction against
the solar wind in a MHD approximation. Another scaling parameter is the distance from the dipole center at which the
ion Larmor radius, L;, is locally equivalent to the distance from the dipole center. This distance, defined by 7, is the
radius of the magnetic 'sail with respect to particulate Lorentzian interaction, in which motion of each proton is
controlled by Lorentz force due to the initial magnetic field of the magnetic dipole. The ratio of L; at 7 = 7, to 7.,
defined hereafter by Ry = Li(r2) / 7., is an important non-dimensional parameter representing the finite Larmor-
radius effect in the magneto-hydrodynamic interaction. In the series of comparative computations, the value of R is
changed by changing the magnetic dipole intensity, .

The scale parameters of the magnetic sail and the computational domain are summarized in Tablel. Dimension
of the computational domain is changed in accordance with a variation of Rz so that the representative interaction
radius, 7, or 7 depending on Ry, < 1 or Ry > 1 respectively, can be located between » = 37¢ and 670 in an attempt to

reduce influences of grid resolution on the computed reaction force exerted on the magnetic dipole (see sixth and

momentum of inflowing and outflowing sample particles.

Numerical Results

Distribution of sample particles and magnetic field lines around the magnetic dipole for several computation
cases are shown in Fig.2. Although the flow and the magnetic fields shown in Fig.2 are in a quasi-steady state
statistically, instantaneous views of the flow and the magnetic fields suffer from slight fluctuations since they are
essentially nonstationary in particle simulations. When the finite Larmor-radius effect is small (R, < 1), magnetic
field lines are deflected toward downstream due to induced current generated in the solar wind plasma. In this case,
interaction between the solar wind and the magnetic field around the dipole is close to that predicted using the MHD
approximations, since the Larmor radius at the magnetosphere boundary is much smaller than dimension of the
magnetosphere. In Case 1, the skin depth of the solar wind is expected to be 0.323 7, as shown in Tablel. In F ig.2a,
the magnetic field lines do not seem to penetrate into the solar wind plasma, resulting in a distinct magnetosphere
boundary around the magnetic dipole. An ion acoustic shock wave and a shock layer are formed ahead of the

magnetosphere, as shown in Fig. 3a.
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Fig 2: Distributions of sample particles and magnetic field lines on x — z plane for a) R, = 0.100, b) 0.316, ¢)

1.00, d} 3.16, and ¢) 10.0.

In contrast to this, as Ry increases or the ratio of & to 7. increases, the magnetic field lines become less deflected

toward downstream and penetrate into the solar wind plasma to a greater extent, resulting in a less distinct

magnetosphere boundary, as seen in Figs, 2b to 2e. When Ry > 1, the plasma flows are no more deflected at » = 7. but

at 7 = 7, by the particulate Lorentzian interaction (see Figs. 2¢ to fig 2e). In such a situation, no clear bow shock wave

is formed upstream of the magnetic dipole, as seen in Fig. 3b.
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Fig 3: lon number density distribution computed for a) Case 1 (R, = 0.1 00) and b) Case 5 ( R;=10.0).
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Fig 4: Variation of drag coefficients based on 7. and 7, along with R,.

Drag force generated on the magnetic dipole, Fn, was computed from a change in the total kinetic momentum of
inflowing and outflowing sample particles by taking an ensemble average after the flow and the magnetic field

converged to a quasi-steady state. The drag coefficient, Cp, was computed using the drag force obtained above by

Ip

:W (11)

Cp

where p is the mass density of the solar wind and § is the referential cross section. Two referential cross sections,

Se = n7¢ and Sz = 77£ based on the magneto-hydrodynamic and the particulate interaction respectively, were used,
The results are plotted against R, in Fig.4.

The drag coefficient based on 7, is estimated to be 3.6+0.7 and independent of R, when the magneto-
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hydrodynamic interaction is dominant, or R, < 1. However, the drag coefficient decreases along with an increase in
Ry as the particulate Lorentzian interaction becomes superior to the magnet-hydrodynamic interaction, or Ry = 1.
Contrary to this, the drag coefficient based on 7, is estimated to be 3.4 = 0.7 regardless of Ry when the particulate
Lorentzian interaction is dominant (R, > 1), and decreases with R, when the magnet-hydrodynamic interaction is
dominant (R, < 1). That is, the representative cross section of the dipole magnetic sail switches from S, to S at Re=1.
For above reasons, the non-dimensional parameter R is considered to be a measure of particulate effects on magneto-
hydrodynamic interaction between the solar wind and the magnetic field generated by a magnetic dipole.

An approximate formula of the drag coefficient is given below for the purpose of quick estimation. The drag

coefficient'based on 7. is given as a function of R by

(3.6exp(—0.28R7) for Ry <1

Cp=1 34 0.22 (12)
—Eexp<~§%—> for Ry, > 1
In interaction between the solar sail and the magnetic dipole, Ry is related to 7 by
Rr =1.02 x 10°/7. (13)

As illustrated in Fig.4, good agreement is obtained between the drag coefficients calculated by Eq.(12) and obtained
by the hybrid PIC computation.
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The drag coefficient based on 7. is plotted against 7. in Fig.5, using Eqgs. (12} and ( rag coefficient is
found to decrease to 0.5 at 7.=15 km, and to 0.1 at .= 3 km approximately. Since the relation between 7. and 71 is
based on the magnetic field generated by a magnetic dipole, in which the magnetic flux density decreases in
proportion to 73, Eq. (12) may fail when other type of the magnetic field, such as the two dimensional induction coil

and the inflated magnetoplasma sail, is used.
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Fig 5: Variation of drag coefficienis based on 7. along with 7..
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Ceonclusion

Numerical simulations of electromagnetic interaction between the solar wind and the magnetic dipole were made
by using the hybrid PIC method for flows in which the finite Larmor-radius effect becomes significant. The drag
coefficients of the magnetic dipole with respect to the solar wind were obtained in a wide range of magnetic sail
dimension. The results show that electromagnetic interaction can be divided into two types according to the ratio of
ion Larmor radius to the characteristic length of the initial magnetic field, R, : the magneto-hydrodynamic interaction
for R < 1 and the particulate Lorentzian interaction for R, > 1.

The drag coefficient based on 7. is found to decrease as the finite Larmorradius effect becomes significant, while
that based on 7, is independent of R, for R, > 1. This suggests that the representative interaction radius of the
magnetic dipole is given by 7 for Rz < 1 and by r, for Rz > 1. An approximate formula describing the drag coefficient
in a wide range of 7; is developed from the drag forces obtained by the PIC analysis. Using this formula, the drag

coefficient is estimated to decrease to 0.5 at 7. = 15 km, and to 0.1 at 7. = 3 km approximately.
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