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We present a detailed study on the characterization of the degeneration process in combustion instability based
on dynamical systems theory. We deal with combustion instability in a lean premixed-type gas-turbine model
combustor, one of the fundamentally and practically important combustion systems. The dynamic behavior of
combustion instability in close proximity to lean blowout is dominated by a stochastic process and transits to
periodic oscillations created by thermoacoustic combustion oscillations via chaos with increasing equivalence
ratio [Chaos 21, 013124 (2011); Chaos 22, 043128 (2012)]. Thermoacoustic combustion oscillations degenerate
with a further increase in the equivalence ratio, and the dynamic behavior leads to chaotic fluctuations via
quasiperiodic oscillations. The concept of dynamical systems theory presented here allows us to clarify the
nonlinear characteristics hidden in complex combustion dynamics.
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I. INTRODUCTION

Nonlinear dynamics of self-excited oscillations, known as
thermoacoustic instability, is the result of the closed-loop
interaction between unsteady pressure and heat-release rate
fluctuations and has become of significant interest in a broad
range of areas from combustion to thermal fluid physics [1–8].
The concept of thermoacoustic instability has recently been
introduced to the area of applied physics as a means of
developing new internal engine systems [5–8]. Lean premixed
combustion is known to be an effective method for curtailing
nitrogen oxide (NOx) emission from gas-turbine engines of
various sizes without impairing combustion efficiency [9].
However, it is notorious for being affected by combustion-
driven thermoacoustic instability, referred as to thermoacoustic
combustion oscillations, and by other problematic limiting
phenomena such as lean blowout and flame flashback. The
interaction between the combustion process and the acoustic
field in a confined combustion system gives rise to a rich variety
of highly nonlinear dynamic behavior of thermoacoustic
combustion oscillations, leading to considerable damage in
practical and indispensable combustors, affecting aircraft
propulsion and land-based gas-turbine engine performance.
Numerous experimental and numerical studies have exam-
ined the physical excitation mechanisms of thermoacous-
tic combustion oscillations both with and without swirling
flow [10–16]. For instance, as an important physical mech-
anism associated with the flame-acoustic interaction, it has
been proposed by Lawn and Polifke [13] that the significant
perturbations in the equivalence ratio, flame front kinematics,
turbulence intensity, and length scale generated by acoustic
velocity fluctuations result in unsteady heat release rate
fluctuations in a swirl-stabilized premixed combustor. A recent
review article [17] and a book [18] provide an encompass-
ing overview of the physical mechanism responsible for
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thermoacoustic combustion oscillations in various types of
laboratory-scale gas turbine combustor.

Nonlinear time series analysis based on dynamical systems
theory enables an encompassing and systematic treatment of
random-like aperiodic dynamics in nonlinear systems arising
in a wide range of disciplines [19–21]. It enables the quantifi-
cation of many important physical invariants responsible for
fractal structure and orbital instability in a system; for example,
fractal dimension and Lyapunov exponents, including several
types of entropy that can be used to evaluate the complexity
itself. In fact, with emphasis being placed on whether or
not chaotic and quasiperiodic behavior exists in combustion
dynamics, nonlinear time series analysis has been successfully
exploited in a broad range of combustion systems, including
a thermal pulse combustor [22–24], a ducted premixed
combustor [25–27], a gas-turbine model combustor [28], a
cellular flame [29], a swirling flame [30], a diffusion flame
exposed to acoustic forcing [31], and a diffusion flame
with radiative heat loss [32], focusing on the estimation
of well-accepted physical invariants such as the correlation
dimension [33] and the largest Lyapunov exponent [34,35].
Nowadays, two-dimensional representations for extracting the
order and disorder pattern structure in a system, referred to as
recurrence plots [36], are frequently applied to the case of an
unstable combustion state intermittently switching between
thermoacoustic combustion oscillations and small bursts in
amplitude [37,38]. We have also conducted systematic studies
on nonlinear dynamics of combustion instability in a lean
premixed gas-turbine model combustor under a preheated
premixture condition [39,40] using different types of nonlinear
time series analysis. These include the translation error,
referred to as the Wayland method [41], to quantify the degree
of parallelism of neighboring trajectories in a constructed
phase space, the permutation entropy [42] to evaluate the
degree of randomness estimated from a sequence of rank order
patterns in the values of temporal evolutions, and multifractal
analysis [43] to capture various self-similar structures in
terms of a singular spectrum. Chaotic fluctuations generally
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possess short-term predictability and long-term unpredictabil-
ity characteristics as a consequence of the strong dependence
on the initial conditions. Therefore, given a temporal evolution
that describes a physical quantity in a system, nonlinear
forecasting based on dynamical systems theory can quantify
the degree of complexity in the underlying dynamics as well
as the fractal dimension, Lyapunov exponents, and entropies,
providing a useful index for treating the corresponding
dynamical structures of the system. The results obtained
[39,40] by nonlinear time series analysis including nonlinear
forecasting suggest that the dynamic behavior of combustion
instability in close proximity to lean blowout is dominated by a
stochastic process associated with fractional Brownian motion
and transits to periodic oscillations created by thermoacoustic
combustion oscillations via chaos with increasing equivalence
ratio. However, in previous studies [39,40], the degenera-
tion of dynamics in thermoacoustic combustion oscillations
with a further increase in the equivalence ratio was not
explored.

The purpose of this study is to reveal how the combustion
dynamics during the degeneration process in a lean pre-
mixed gas-turbine model combustor changes with increasing
equivalence ratio by using a variety of nonlinear time series
analysis methods based on dynamical systems theory that
are usually not employed in traditional combustion physics.
Our previous study [44] has shown that color recurrence
plots enable us to extract ordered and disordered pattern
structures in a constructed phase space as two-dimensional
representations. We thereby use it in this study to characterize
the significant changes in combustion dynamics during the
degeneration process. The distinction between deterministic
and stochastic processes is an intriguing challenge in nonlinear
time series analysis [45–48]. On the basis of our current
study on a spatially extended system [49], the nonlinear
forecasting methodology, which involves the update of library
data in phase space, has been shown to ensure satisfactory
performance in distinguishing between a deterministic process
and a stochastic process and has been successfully adopted to
reveal the possible presence of low-dimensional deterministic
chaos in intermittent combustion oscillations [44]. This study
also uses the nonlinear forecasting methodology, and we per-
form a new quantification of the short-term predictability and
long-term unpredictability characteristics for the degeneration
process. In connection with the sensitive dependence on initial
conditions, we also estimate the maximal Lyapunov exponent
in combination with a resampling method [50–52] to show the
possible presence of chaos. The multiscale entropy based on
the application of the sample entropy proposed by Richman
and Moorman [53], involving a coarse-graining approach,
allows the degree of complexity in dynamical behavior at a
multiple temporal scale to be evaluated in terms of the scaling
factor. This concept was proposed by Costa et al. [54] and
has recently been adopted in a wide spectrum of areas in
medical physics. We utilize the multiscale entropy method to
obtain a more comprehensive interpretation of the complexity
in combustion dynamics. This paper is organized as follows:
Our experimental system and method are described in Sec. II.
In Sec. III, the mathematical framework of nonlinear time
series analysis is described. We present and discuss the results
in Sec. IV and concluding remarks are provided in Sec. V.

II. EXPERIMENTAL APPARATUS AND METHOD

The lean premixed gas-turbine model combustor employed
in this work is identical to that used in our previous study [55].
It comprises five main parts: a blower, an electric heater, an
axial swirler, a combustion chamber with a length of 630 mm
and a 100 × 100 mm2 cross section, and a water-cooled
stainless-steel duct. The inlet air is preheated to 700 K and
supplied to the combustion chamber at a mass flow rate
of 78 g/s. Methane is injected through multiple orifices set
260 mm upstream from the inlet of the combustion chamber
as the main fuel. The swirler, which has a vane angle of 45 deg
relative to the inlet premixture stream, has the function of
a flame holder in this study. A pressure transducer (Kulite
Semiconductor Products, Model XTEL-190-15G), which is
placed on the wall of the combustion chamber, is used to
acquire the pressure fluctuations p inside the combustor.
The pressure fluctuations are considered to be an important
physical quantity that represents the nonlinear dynamics of
the combustion state. The pressure transducer is set 10 mm
downstream from the inlet of the combustion chamber since a
pronounced effect of thermoacoustic coupling appears in the
temporal evolution of the pressure fluctuations. Nonlinear time
series analysis is adopted for the temporal evolution of p at
a sampling frequency of 25.6 kHz. In this study, we consider
equivalence ratios of the methane-air premixture φ from 0.52
to 0.6 with the aim of investigating the degeneration process
of combustion instability (see Fig. 1). Similarly to in previous
work [39,40], we do not adopt active control with secondary
fuel injection for the current experimental system so that we
can focus on the characterization of the combustion dynamics
from the viewpoint of dynamical systems theory.

III. MATHEMATICAL FRAMEWORK OF NONLINEAR
TIME SERIES ANALYSIS BASED ON DYNAMICAL

SYSTEMS THEORY

We employ nonlinear time series analysis involving the
maximal Lyapunov exponent, color recurrence plots, a local
predictor, and multiscale entropy. The central idea behind the
mathematics of nonlinear time series analysis is described in
the following sections. We used MATLAB to develop all the
computational codes to obtain them. Note that in this study,
the pressure fluctuations p are replaced by x.

A. Maximal Lyapunov exponent

The maximal Lyapunov exponent is an important measure
of how nearby orbits in a phase space exponentially diverge
with time and allows us to discuss the possible presence of
chaos. We adopt the algorithm of Rosenstein et al. [34], which
is widely recognized as one of the standard and proven methods
for evaluating the maximum Lyapunov exponent λ. λ is related
to the distance dk between a reference vector xi and its nearest
neighbor vectors xk as follows:

dk = C0e
λ(Tt�t), (1)

where Tt is the time step, �t is the sampling period of x, and C0

is the initial Euclidean distance. The position vectors x in the
phase space are obtained by the embedding theorem [56] and
are expressed as x(t) = (x(t),x(t + τ ), . . . ,x(t + [D − 1]τ )),

052906-2



CHARACTERIZATION OF DEGENERATION PROCESS IN . . . PHYSICAL REVIEW E 92, 052906 (2015)

 = 0.56 

 = 0.53 

 = 0.55 

1.0

p 
(k

Pa
) 

t (s)
1.05 1.1 1.15 1.2 

-10

10
0

-20

20

6.0

p 
(k

Pa
) 

t (s)
6.05 6.1 6.15 6.2 

-5

5
0

-15

15
10

-10

t (s)

1.0

p 
(k

Pa
) 

t (s)
1.05 1.1 1.15 1.2 

-1

1
0

-2

2

p 
(k

Pa
)

p 
(k

Pa
)

p
(k

Pa
)

FIG. 1. (Color online) Time variation in p for different equiva-
lence ratios φ. Thermoacoustic combustion oscillations at φ = 0.53
significantly degenerate with increasing equivalence ratio.

where τ is the delay time of the D-dimensional phase space.
We estimate λ as the gradient of the linear part of the average
value 〈lndk〉 over all values of k plotted against Tt�t .

The false nearest neighbors method proposed by Kennel
et al. [57] is in widespread use for estimating D. Our
preliminary test in accordance with the prescription of Kennel
et al. [57] shows that the phase space for this study can
be reconstructed when D � 4. However, as pointed out by
Giannerini and Rosa [51], it does not always allow an
appropriate reconstruction to be obtained. Therefore, we vary
D from 2 to 10 in this study. Mutual information is a
well-known quantity for estimating the optimum time lag of
a phase space and has the advantage that one can take into
account the nonlinear correlation between the coordinates of
the phase space [20], but it does not always give a suitable time
lag [51]. In our preliminary test, we vary τ from 3.9 × 10−5

to 1.1 × 10−3 s, and a notable slope of 〈lndk〉 against Ts�t

is obtained for τ = 1.1 × 10−4 s. Its value corresponds to
the time lag at which the mutual information first reaches a
minimum [58].

We estimate the maximal Lyapunov exponent λ, but without
considering statistical tests, the estimated λ gives a misleading
interpretation due to the presence of a dynamic random
component in the time series [51]. To assign a rigorous
confidence interval in a statistical sense, a resampling method
has been proposed by Giannerini and Rosa [50]. As in previous

studies [50–52], we adopt it for the estimation of λ. This
method consists of the following four procedures: (i) A new
sampling rate of x, namely δt , is made by dividing �t by
the factor f . Note that, in accordance with the prescription of
Giannerini and Rosa [50], we set f to 6 in this study. (ii) A
point l1 in the interval [0, �t] is randomly chosen from the time
series. (iii) A new replicated time series y1·δt , y2·δt , . . . ,ym·δt
at the points l1, l2(= l1 + δt), . . . ,lm = (lm−1 + δt) is obtained
by interpolating the time series of x. (iv) After repeating steps
(ii) and (iii) for Q sets, Q resampled time series y1, y2, ..., yQ

are finally obtained. We compute λ for all the resampled time
series data and statistically investigate its nature. Following
previous studies [59,60] on the bootstrap test, we set Q to
1000 in this study.

B. Recurrence plots

It is well recognized that the recurrence plots (RPs)
originally proposed by Eckmann et al. [36], which are two-
dimensional representations consisting of black and white
dots, are feasible for extracting ordered and disordered pattern
structures in a phase space. This method was first applied to
thermoacoustic combustion oscillations in a ducted laminar
premixed flame [37] and subsequently to a bluff-body type
turbulent combustor [38]. We use a color-coded version of
RPs with 256 gradations represented by Eq. (2) instead of the
binary version [36], because the color RPs do not require the
determination of a threshold value for displaying the black and
white dots:

Ri,j = ‖xi − xj‖ − ‖xi − xj‖min

‖xi − xj‖max − xi − xj‖min
. (2)

Here, Ri,j is represented as a color code and begins to exhibit
regularly arrayed structures as the periodicity of the dynamics
dominates in the phase space.

C. Local predictor

As reported in our recent study [44] on a laboratory-scale
gas-turbine model combustor under a nonpreheated premixture
condition, chaotic dynamics is highly sensitive to the initial
conditions, leading to exponential decay of the prediction time
with short-term predictability and long-term unpredictability
of the orbits in phase space. On the basis of this important fea-
ture, as the nonlinear forecasting methodology in this study, we
incorporate the extended version of the Sugihara–May (SM)
algorithm [45] as a local nonlinear predictor, which was pro-
posed by Gotoda et al. [49] using a spatially extended system.
It considers updating the information on the trajectories in the
phase space constructed from library data. The temporal evo-
lution of x for t ∈ [0; Tf ] is divided into two intervals, namely,
t ∈ [0; tL] and t ∈ (tL; Tf ]. These intervals correspond to the
library data and test set, respectively. We use the library data to
predict the temporal evolution of x. We then make a compari-
son between x for t > tL and the corresponding test set. Note
that, similarly to in our recent study [49], we construct position
vectors in the D-dimensional phase space consisting of x(t) =
(x(t),x(t − τ ), . . . ,x(t − [D − 1]τ )). We define xf ≡ x(tf ) as
the final point of a trajectory in phase space and search for the
nearby vectors xk from all the position vectors in the phase
space. We denote the predicted value corresponding to xk after
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T as x(tk + T ). Here, T = Ts�t , where Ts is the time step in
the future. x̂(tf + T ) is then obtained from xf by using the non-
linearly weighted sum of the library data x(tk + T ) as follows:

x̂(tf + T ) =
∑K

k=1 exp (−dk)x(tk + T )∑K
k=1 exp (−dk)

, (3)

where dk = ‖x(tf ) − x(tk)‖. The predicted x̂(tf + T ) and the
test x(tk + T ) are compared by estimating the correlation
coefficient defined as

C = E[xx̂]

σxσx̂

, (4)

where E[xx̂] is the covariance between the measured and
predicted pressure fluctuations, and σx and σx̂ are the standard
deviations of x and x̂, respectively. When using this nonlinear
forecasting methodology, the temporal evolution of x is
predicted by updating the library data in the phase space while
keeping the size of the updated library data constant. The
relation between the correlation coefficient C and the predicted
time tP enables us to extract the short-term predictability
and long-term unpredictability characteristics of the dynam-
ics [49]. An important point of the methodology is that if the
stochastic process is dominant in the observed dynamics, the
incremental process does not exhibit short-term unpredictabil-
ity; C for the incremental process is low regardless of tP , which
allows us to give a reasonable indicator to distinguish between
deterministic and stochastic processes. Note that, in a prelim-
inary test, the distribution of C in terms of tP remained nearly
unchanged within the range of tL from 2 to 6 s. Therefore, we
set tL to 5 s to ensure a sufficient amount of library data.

D. Multiscale entropy

Entropy can characterize the rate of creation of information
owing to the sensitive dependence on initial conditions in
chaotic systems, and the most basic kind of entropy is
metric entropy, referred to as Kolmogorov–Sinai entropy.
Correlation entropy, which corresponds to the lower bound of
the Kolmogorov–Sinai entropy, was proposed by Grassberger
and Procaccia [33]. It is analogous to the correlation dimension
and can be easily computed. However, it is inadequate for
estimating the entropy for a finite length of time series data
contaminated with noise. To overcome this problem, the
approximate entropy [61] and a modified version, sample
entropy [53] in analogy with the definition of the correlation
entropy, have been proposed as effective approaches to extract
the degree of randomness. The latter approximates the Rényi
entropy of order two. The mathematical background and
physical meaning of the sample entropy were given by
Costa et al. [62]. They clearly showed that the dynamics
of a correlated random process such as colored noise are
more complex than those of white noise by taking multiple
timescales based on a coarse-graining approach into account
in the sample entropy, which yields a better understanding of
the randomness than the conventional entropies based on a
single scale. On this basis, we apply a multiscale entropy, i.e.,
the sample entropy, for each coarse-grained time series datum
as a function of the scale factor. The multiscale entropy method
comprises two procedures: construction of the coarse-grained
temporal evolution of x with a scaling factor s ′, as shown

in Eq. (5), and estimation of the sample entropy for each
coarse-grained temporal evolution in qj

(s ′) as shown in Eqs. (6)
and (7):

q
(s′)
j = 1

s′

js′∑
ti=(j−1)s′+1

x(ti), 1 � j � N/s ′, (5)

SE = ln

∑N−D
i=1 �D

i∑N−D
i=1 �D+1

i

, (6)

� =
{

1, ‖qD(ti) − qD(tj )‖max � r

0, ‖qD(ti) − qD(tj )‖max > r.
(7)

Here, � is the Heaviside function, ‖qD(ti) − qD(tj )‖max is
the maximum distance between vectors qD(ti) and qD(tj )
in the D-dimensional phase space consisting of qD(t) =
(q(s ′)(t),q(s ′)(t + τ ), . . . ,q(s ′)(t + [D − 1]τ )), and r is the per-
centage of the time series data lying within one standard
deviation of x. A detailed discussion of selecting the optimal
value of r was given by Costa et al. [62]. They estimated
the discrepancies between multiscale entropies for 1/f -type
colored and white noise as a function of r . The discrepancies
for both cases were less than 1% at r = 0.15. On this basis,
we set r to 0.15 in this study. The multiscale entropy SE at a
low (high) scaling factor represents the degree of complexity
in the high (low)-frequency regime in the temporal evolution
of x.

IV. RESULTS AND DISCUSSION

Figure 2 depicts the three-dimensional phase space
(x(t),x(t + τ ),x(t + 2τ )) for different equivalence ratios φ.
Thermoacoustic combustion oscillations with large peak-to-
peak amplitudes of p at φ = 0.53 (see Fig. 1) exhibit a limit
cycle with a relatively large width of periodic orbits. At a
higher equivalence ratio of φ = 0.55, we observe the emer-
gence of a torus-like structure with an increased width of the
orbits. Both the periodicity and the peak-to-peak amplitude of
p (see Fig. 1) are significantly diminished at φ = 0.56, leading
to the degeneration of thermoacoustic combustion oscillations.
The attractor size decreases, and thereby the orbits converge
on the core of the attractor. Tachibana et al. [55] showed
that the two predominant flames inside their combustor, an
inverted-conical flame and a rim flame, play an essential role
in the retention of thermoacoustic combustion oscillations.
The former flame is sustained by an inner vortex breakdown
zone generated by the swirling flow, while the latter flame is
sustained by an outer recirculation zone located in the dump
plate. The large fluctuations of the rim flame in particular
lead to strong combustion oscillations. At φ � 0.56, the large
fluctuations cease owing to the changes in the temporal and
spatial distributions in the heat release rate. This results in
the degeneration of thermoacoustic combustion oscillations.
Degeneration owing to an increase in the equivalence ratio has
also been observed both in a lean premixed swirl-stabilized
combustor under preheated premixture conditions [63] and
in our preliminary test using a laboratory-scale gas-turbine
model combustor [44] under conditions of a sufficiently high
equivalence ratio and a nonpreheated premixture. The present
study focuses on the characterization of the degeneration
process using nonlinear time series analysis. The probability
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density distribution pd of the nondimensional Euclidian
distance dM (=‖xi − xj‖/‖xi − xj‖max) between the pair xi

and xj in three-dimensional phase space is shown in Fig. 3
for different φ, where ‖xi − xj‖max corresponds to the outer
diameter of the attractor. We observe two notable peaks for
thermoacoustic combustion oscillations at φ = 0.53. They
disappear at φ = 0.55 and the shape of pd plotted against
dM becomes semicircular. Upon increasing φ to 0.56, the
distribution of pd changes to one with a single distinct peak,
which corresponds to the form represented by Eq. (8). Note
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FIG. 3. (Color online) Probability density of the nondimensional
Euclidean distance dM (=‖xi − xj‖/‖xi − xj‖max) between xi and
xj in three-dimensional phase space for different equivalence ratios
φ. Two notable peaks of pd appear for thermoacoustic combustion
oscillations at φ = 0.53. They disappear at φ = 0.55 and the shape
of pd plotted against dM becomes semicircular. The distribution of
pd changes to one with a single distinct peak at φ = 0.56.

that the values of μ and σ 2 are 0.61 and 2.58, respectively:

pd (100dM |μ,σ ) = 1√
2πσ 2(100dM )

× exp

[−{ln(100dM ) − μ}2

2σ 2

]
. (8)

It is interesting to note that pd has the logarithmic normal dis-
tribution. These results indicate that the probability density of
nondimensional distances between the position vectors in the
phase space is important for capturing the important dynamical
changes in thermoacoustic combustion oscillations.

Figure 4 shows the spatial distribution of Ri,j for different
φ. Note that it consists of 5000 × 5000 points in this study,
corresponding to the temporal evolutions of p for 0 s �
t � 15 s. Ri,j at φ = 0.53 is composed of regularly arrayed
geometrical structures. These regular structures still persist
for higher φ up to 0.55. However, Ri,j at φ = 0.56 exhibits
a homogeneous structure in a local region while retaining
the regular structures, indicating the appearance of chaotic
behavior in the combustion dynamics. As shown in Fig. 2,
the torus-like structure in the phase space indicates the
possible existence of quasiperiodic oscillations. It is well
known that, although power spectrum analysis is classical
and conventional, it is reliable for discussing the possible
existence of quasiperiodic oscillations. We therefore examine
the power spectrum density distribution of p at φ = 0.55,
which is shown in Fig. 5. The power spectrum density
obtained clearly consists of many distinctive peaks, which are
attributed to linear combinations of frequencies f1 and f2 (e.g.,
2f2 − f1, 2f1 − f2, 3f1 − 2f2, 2f1). Note that f1 corresponds
to the 1/4 acoustic mode in the longitudinal direction of
the combustor. The appearance of linear combinations of
frequencies verifies the formation of quasiperiodic oscilla-
tions. These results show that thermoacoustic combustion
oscillations bifurcate to quasiperiodic oscillations prior to
the degeneration of the dynamics. Cartwright et al. [64]
have shown the organization of three-frequency resonances
in dynamical systems by generalizing the Farey tree structure
of two-frequency systems to three frequencies. On this
basis, we here consider a three-frequency system with two
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external frequencies, fa = 606 Hz and fb = 896 Hz, in
the power spectrum. The rescaled frequencies f̃a and f̃b,
respectively defined as fa/(fa + fb) and fb/(fa + fb), are
obtained by continued-fraction expansion. The convergents
of f̃a and f̃b are 1/2, 2/5, 23/57, 140/347, 303/751
and 1/2, 3/5, 34/57, 207/347, 448/751, respectively. The
mediant frequencies f̃s [=(fa + fb)/(pi + qi), where pi + qi

is the denominator of the convergents] become 1502/2 = 751
Hz, 1502/5 = 300.4 Hz, 1502/57 = 26.35 Hz, 1502/347 =
4.33 Hz, and 1502/751 = 2 Hz. f̃s with the mediant frequency
of 300.4 Hz nearly corresponds to the frequency f1 at the
peak in the spectrum. This indicates that three-frequency
resonances are associated with the formation of quasiperiodic
oscillations.

Figure 6 shows the variation in 〈lndk〉 in terms of Tt�t for
the original time series of x at φ = 0.56. 〈lndk〉 monotonically
increases with increasing Tt�t for all D but exhibits small
periodic fluctuations in the scaling region ranging from Tt�t =
3 × 10−4 to 7 × 10−4 s. In our preliminary test, the periodic
fluctuations remain nearly unchanged even under a broad range
of k from 5 to 1000, where k is the number of xk . The presence
of periodic fluctuations has been discussed by Kantz and
Schreiber [20], but they are observable for chaotic oscillations
in a different type of thermoacoustic combustion system [65]
by using the algorithm of Kantz [35]. The histogram of
λ obtained by the resampling method [50–52] at φ = 0.56
is shown in Fig. 7. All λ exhibit positive values, and the
distribution of λ is approximately Gaussian. Note that a similar
distribution is obtained for different D. The peak value of λ,
denoted by λp, is 1.14 × 10−2 (1/s). Variations in λp, the
standard deviation of λ denoted by σ , and the 95% confidence

interval are shown in Table I for different D at φ = 0.56.
λp is positive for all D with 95% confidence, indicating the
appearance of chaotic dynamics. When taking into account
the use of nonlinear time series analysis in actual experiments,
we encounter the problem that the noise inherently included in
experimental data is inescapably superimposed on the pressure
fluctuations. The presence of noise diminishes the accuracy
of the estimated maximal Lyapunov exponent. It has been
pointed out by Kantz and Schreiber [20] that a noise of a few
percent results in the imperfect use of the algorithms adopted
for nonlinear time series analysis. Because 〈lndk〉 slightly
oscillates in the scaling region, the filtering out of noise [20] is
required for our next study. The maximal Lyapunov exponents
estimated by using a nonparametric neural network and
their hypothesis tests enable us to detect chaos in a noisy
system [66]. Such an analysis would also be of importance to
more reliably show the presence of chaos in the degenerated
combustion dynamics. It is well known that fractal dimension
is an important indicator for discussing the possible presence
of chaos from the viewpoint of geometrical structure. We
adopted the well-known and standard correlation dimension
method [33] for the pressure fluctuations at φ = 0.56, but note
that it is difficult to find a reliable scaling region to estimate
the correlation dimension even for high-dimensional phase
reconstruction.

Figure 8 shows the variation in the correlation coefficient
C obtained from the local nonlinear predictor at φ = 0.56 as
a function of the prediction time tP . As shown in Fig. 8(a), we
can observe one-step-ahead prediction of x with relatively
high accuracy (C is 0.95 at tP = 3.91 × 10−5 s), and the
manifestation of long-term unpredictability characteristics
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FIG. 5. (Color online) Power spectrum density distribution of
p at equivalence ratio φ = 0.55. The power spectrum density
clearly consists of many distinctive peaks, which are attributed
to linear combinations of frequencies f1 and f2 (e.g., 2f2 − f1,

2f1 − f2, 3f1 − 2f2, 2f1).

when tP exceeds approximately tP = 2.34 × 10−4 s. A similar
trend of C in terms of tP is observed for the incremental process
�x [=x(ti + 1) − x(ti)] [see Fig. 8(b)]. This is a clear signa-
ture of the emergence of chaotic dynamics. Note that we also
obtain similar results for φ � 0.57. Our results obtained by the
local predictor and the estimations of the maximal Lyapunov
exponent in combination with the resampling method [50–52]
suggest that the degeneration of combustion dynamics at
φ � 0.56 is dominated by a chaotic process. The method
of quantifying the short-term predictability and long-term
unpredictability characteristics is schematically summarized
in Fig. 9. If the combustion dynamics becomes complicated,
the critical prediction time denoted as tP,c decreases and the
gradient of the correlation coefficient |d ln C/d ln tP | increases
with the prediction time. The predictability characteristics can
be roughly evaluated by measuring these physical quantities.
Variations in tP,c and |d ln C/d ln tP | with φ are shown in
Fig. 10, which shows that they remain nearly unchanged for
0.52 � φ � 0.54. They abruptly change at φ = 0.56 owing
to the appearance of a chaotic process, then remain at a
constant value up to φ = 0.60. The significant changes in
the short-term predictability and long-term unpredictability
characteristics in terms of the equivalence ratio correspond
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FIG. 6. (Color) Variation in 〈lndk〉 in terms of Tt�t for the
original time series of x at φ = 0.56. 〈lndk〉 monotonically increases
with increasing Tt�t at all D.

closely to those obtained from the permutation entropy [67].
This clearly shows that both the method of quantifying the
predictability characteristics and the method of distinguishing
between deterministic chaos and stochastic dynamics using
nonlinear forecasting methods are valid for characterizing
complex combustion dynamics.

Figure 11 shows the variation in the multiscale entropy SE

as a function of the scaling factor s ′ for different φ. SE at
φ = 0.53 exhibits gradual fluctuations with SE close to zero
around s ′ = 94. The complexity of p is lowest around s ′ = 94.
We found that the ratio of the sampling frequency to the scaling
factor, denoted as β (=fs/s

′
m = 25600/94; note that s ′

m is the
scaling factor at which SE reaches zero), is nearly equal to
the dominant frequency (=276 Hz) in the power spectrum
density distribution. At a higher equivalence ratio of φ = 0.55,
s ′
m shifts to a lower value, corresponding to the shift to a

higher dominant frequency of 303 Hz in the power spectrum
(see Fig. 5). This indicates that multiscale entropy enables
us to extract the hidden regular dynamics in thermoacoustic
combustion oscillations as an alternative to adopting power
spectrum analysis. The appearance of quasiperiodicity causes
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FIG. 7. (Color online) Histogram of λ obtained by the resam-
pling method at φ = 0.56. Its distribution is approximately Gaussian.
The peak value of λ is 1.14 × 10−2 (1/s).
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TABLE I. λp , σ , and the 95% confidence interval for different D

at φ = 0.56. λp is positive for all D with 95% confidence.

D λp (1/s) σ [C.I. 95]

2 1.468 × 10−2 1.68 × 10−4 [1.467 × 10−2, 1.469 × 10−2]
3 1.302 × 10−2 1.61 × 10−4 [1.301 × 10−2, 1.303 × 10−2]
4 1.144 × 10−2 1.48 × 10−4 [1.143 × 10−2, 1.145 × 10−2]
5 9.722 × 10−3 1.35 × 10−4 [9.715 × 10−3, 9.732 × 10−3]
6 8.261 × 10−3 1.33 × 10−4 [8.251 × 10−3, 8.267 × 10−3]
7 6.658 × 10−3 1.18 × 10−4 [6.649 × 10−3, 6.664 × 10−3]
8 5.288 × 10−3 1.04 × 10−4 [5.284 × 10−3, 5.297 × 10−3]
9 4.107 × 10−3 8.83 × 10−5 [4.101 × 10−3, 4.112 × 10−3]
10 3.164 × 10−3 7.29 × 10−5 [3.160 × 10−3, 3.169 × 10−3]

SE to increase at φ = 0.55 in the entire range of s ′ compared
with its value at φ = 0.53. SE at φ � 0.56 is significantly
increased by the degeneration of thermoacoustic combustion
oscillations with quasiperiodicity. The interesting point to note
here is that the degree of complexity gradually decreases
with increasing scale factor, finally reaching the same degree
as that of thermoacoustic combustion oscillations in the
low-frequency region with s ′ = 150. We also observe that
the complexity of the degenerated dynamics is dominated
by the low-scaling-factor region, i.e., the high-frequency
region. These results clearly demonstrate that a coarse-grained
approach such as multiscale entropy is useful for quantifying
the degree of complexity in combustion dynamics over a broad
range of temporal scales. To the best of our knowledge, the
applicability of the nonlinear time series analyses presented
herein has not been explored in previous studies on combustion
instability in gas-turbine model combustors.

More recently, the Indian Institute of Technology Madras
group has carried out nonlinear time series analysis mainly
involving the binary version of recurrence plots and the
0–1 test [68] for self-excited thermoacoustic combustion
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FIG. 8. (Color online) Variation in correlation coefficient C ob-
tained by the local nonlinear predictor at φ = 0.56 as a function of
tP . One-step-ahead prediction of x is achieved with relatively high
accuracy (C is 0.95 at tP = 3.91 × 10−5 s). In contrast, C for the
incremental process �x is about 0.89 at tP = 3.91 × 10−5 s.
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ln tP
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becomes complicated 

1

As combustion dynamics 
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FIG. 9. (Color online) Method of quantifying short-term pre-
dictability and long-term unpredictability characteristics.

systems under turbulent flow conditions using different types
of turbulent premixed combustors: swirled-stabilized-type
and bluff-body-type combustors [69,70]. The University of
Cambridge group has also considered the phase space and
its Poincaré map for a swirled-stabilized turbulent premixed
combustor subjected to acoustic forcing [71]. The quasiperi-
odicity [71], the synchronization of the self-excited mode
with the forced mode [71], and intermittent bursts [69,70]
were captured by nonlinear time series analysis in addition to
conventional power spectrum analysis, providing new ideas for
dealing with the physical mechanism behind thermoacoustic
combustion instability. The findings obtained in previous
studies [25–27] using ducted laminar premixed flames also
show the applicability of nonlinear time series analysis to
present-day combustion problems. In parallel with these
works, our more recent studies [44,72] dealing with a
laboratory-scale premixed gas-turbine model combustor under
a nonpreheated mixture condition have set out a new method-
ology for distinguishing between deterministic and stochastic
processes by extending the concept of the SM algorithm, which
involves the update of the library data in phase space. They
also include a proposed method of online early detection and
a method of preventing lean blowout. Note that nonlinear
invariants of pressure fluctuations in terms of the Reynolds
number have been estimated by Nair et al. [69] with the
aim of detecting the impending instability. The experimental
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FIG. 10. (Color online) Variations in tP,c and |d ln C/d ln tP |. tP,c

and |d ln C/d ln tP | remain nearly unchanged for 0.52 � φ � 0.54.
They abruptly change at φ = 0.56 owing to the appearance of chaotic
process, and then remain at a constant value up to φ = 0.60.
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FIG. 11. (Color) Variation in multiscale entropy SE as a function
of scaling factor s ′ for different φ. SE at φ = 0.53 exhibits gradual
fluctuations with SE close to zero around s ′ = 94. s ′

m, the scaling
factor at which SE reaches zero, shifts to a lower value at a higher
equivalence ratio of φ = 0.55. The appearance of quasiperiodicity
causes SE to increase at φ = 0.55 in the entire range of s ′ compared
with its value at φ = 0.53. SE at φ � 0.56 is significantly increased
by the degeneration of thermoacoustic combustion oscillations with
quasiperiodicity.

and theoretical studies [44,69–72] reported thus far show that
dynamical systems theory provides not only a fresh take
on combustion instability but also a new methodology for
controlling the combustion state in premixed-type turbulent
combustors. Although our recent and earlier works, including
the present one, globally interpret the dynamic behavior of
thermoacoustic combustion instability as periodic oscillations,
here we reveal in more detail the nature of the periodic oscil-
lations by making use of a complex network approach [73].
This point is extensively discussed in Ref. [73]. Finally, the
following three points should be taken into account in our next
study:

(1) In a previous study by Tachibana et al. [55], the dis-
tribution of the peak fluctuation amplitude plotted against the
axial location clearly showed that the self-excited instability
mode was governed by a quarter-wave mode of the combustion

chamber in the longitudinal direction. The existence of this
mode was observed for the transition process to the degen-
erated combustion dynamics. The effect of thermoacoustic
coupling, measured by the local Rayleigh index, strongly
appeared in the flame base about 10 mm downstream from
the inlet of the combustion chamber [55]. In this study, we
focused on investigating the dynamical properties of pressure
fluctuations measured at this axial location, but the pressure
fluctuations at different locations should also be analyzed in
our next study to obtain a better understanding of the spatial
effects on dynamical properties.

(2) Nair et al. [74] have recently investigated the short-
term temporal evolution of Shannon entropy in recurrence
structures during low- to high-amplitude oscillations for two
types of thermoacoustic combustion system. To elucidate the
relationship between the dynamical properties and the physical
mechanisms of the observed combustion dynamics, in our next
study it will be necessary to correlate the structural quantities
such as the flame surface density with the dynamical properties
for the short-term behavior of both pressure and heat release
rate fluctuations, focusing on the transition process in the
degenerated combustion process.

(3) There is an interesting question related to the utility
of the nonlinear forecasting methodologies presented here.
It has been reported by Nair et al. [69] that the method of
Kaplan and Glass [75], known as a prototype of the Wayland
test [41], which involves the null hypothesis method with
the random shuffling of pressure fluctuations, suggests the
possible presence of high-dimensional chaos in combustion
noise. The presence of multifractality including the measure
of the Hurst exponent also showed the possible existence of
deterministic chaos [76]. How can one understand the dynamic
behavior of combustion noise by using our methodologies?
We need to examine this interesting issue in future studies to
provide better methodologies for treating the nonlinearity in
complex combustion dynamics.

V. CONCLUDING REMARKS

We characterized the dynamic behavior of combustion
instability in a fundamentally and practically important gas-
turbine combustion system, a lean premixed-type gas-turbine
model combustor consisting of a swirl-stabilized turbulent
flame under a preheated mixture condition, on the basis of
dynamical systems theory. Our previous studies [39,40] have
shown that the dynamic behavior of combustion instability
in close proximity to lean blowout is dominated by a
stochastic process that transits to periodic oscillations created
by thermoacoustic combustion oscillations via chaos with
increasing equivalence ratio. This study has focused on the
emergence of the quasiperiodic and the subsequent aperiodic
fluctuations with a further increase in the equivalence ratio.
We incorporated a variety of nonlinear time series analyses
not usually included in traditional combustion physics. These
include the colored version of recurrence plots, the maximal
Lyapunov exponent in combination with the resampling
method [50–52], a nonlinear forecasting method: an extended
version of the Sugihara–May (SM) algorithm [45] as a local
predictor, and multiscale entropy. Thermoacoustic combustion
oscillations exhibit a limit cycle with a relatively large width
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of periodic orbits. An increase in the equivalence ratio leads
to degenerated dynamics with a smaller attractor via the
emergence of a torus-like structure. The power spectrum
density for the torus-like structure has many distinctive peaks
consisting mainly of linear combinations of frequencies. One
of these peaks corresponds to the 1/4 acoustic mode in the
longitudinal direction of the combustor, which clearly verifies
the formation of quasiperiodic oscillations. The nonlinear
forecasting methodology we proposed as an extended version
of the SM algorithm, which involves the update of library
data, has potential use for distinguishing between deterministic
chaos and stochastic dynamics during the degeneration process
in combustion instability. It gives us the interpretation that the
degeneration of dynamics is dominated by a chaotic process.
The multiscale entropy clearly shows that the complexity of
the degenerated dynamics is dominated by a low-scaling-factor

region, i.e., a high-frequency region. On the basis of the
findings obtained by the above analysis, we conclude that the
dynamic behavior of thermoacoustic combustion oscillations
undergoes a significant transition from periodic oscillations
to chaotic fluctuations via quasiperiodic oscillations. The
presented nonlinear time series analysis allows us to clarify
the characteristics of complex combustion dynamics in a
gas-turbine model combustor.
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