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Abstract: The effect of free surface heat transfer on oscillatory thermocapillary flow in liquid bridges of high
Pranditl number (Pr) fluids is investigated experimentally as well as numerically. it has been found that the critical
condition is very sensitive to the free surface heat transfer under certain conditions but relatively insensitive
under other conditions. In this work it is shown that this sensitivity difference may be related to the difference
in the oscillation mechanism. Several oscillation mechanisms have been proposed in the past for oscillatory
thermocapillary flows in liquid bridges of high Prandtl fluids, mainly hydrothermal wave type instability and
a non-linear mechanism involving dynamic free surface deformation. It is discussed here that the range of
Marangoni number, where the flow is found to become oscillatory in many experiments for high Pr fluids, is too
low for the flow to become unstable by the hydrothermal wave instability mechanism, or ahy linear instability
mechanism. Instead, we need non-linear mechanisms where the driving force is altered continuously by some

means. In order to get this conclusion, our past work is summarized and some new results are presented herein.

1. INTRODUCTION
Thermocapillary flows in liquid bridges are known to become oscillatory for a wide range of Prandtl number.
Despite the fact that much work has been done in the past, the transition mechanism for high Pr fluid is not yet
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well understood. The present work 1 motivated to clarify the oscillation mechanism. in the process of obtaining
more experimental data on the subject, we have found that the heat transfer at the free surface has an appreciable
effect on the transition in room temperature tests. Generally, heat is lost from the liquid free surface to the
surroundings in room temperature tests. The surrounding air motion caused by the heating-cooling arrangement
of the experiment is mainly responsible for the heat transfer, so the heat transfer rate is small compared to the
total heat transferred through the Hquid. We have shown that the critical Marangoni number (Ma,,) changes
by several factors by simply changing this heat transfer condition. This sensitivity is found only when the free
surface loses heat.

Recently we have cbtained more data under heat gain conditions. For this, we increased the surrounding air
temperature by placing the experimental setup in an oven. It is found that under the heat gain condition the free
surface heat transfer has no appreciable effect on Ma,,. It is not possible to explain the observed large difference
in the sensitivity to the free surface heat transfer between the loss and gain cases by one oscillation mechanism.

It is known that Ma,, depends strongly on the shape of the liquid bridge. Thermocapillary flows in nearly
straight liquid bridges and those in concave bridges seem to behave differently under the heat loss condition. We
have shown that the aforementioned sensitivity to the free surface heat transfer is true for nearly straight bridges,

but the critical conditions for concave liquid bridges are much less sensitive to it. In fact, the critical cendition for
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concave bridges is not sensitive to either heat loss or gain. Again, it seems difficult to explain this difference in
the nearly flat and concave bridge behaviors unless we assume that something is fundamentally different in these
two situations.

As in our past work, numerical simulations are performed in order to study the surrounding air motion and
compute the resultant heat transfer rate at the free surface. All of our past data and more recent data are put
together in order to discuss the relation between the oscillation mechanism and the sensitivity to the free surface

heat transfer.

2. EXPERIMENT
The experimental apparatus is described in our previous work [1,2], so it is not repeated herein. It is a
standard arrangement in which liquid is suspended between a heated top cylindrical rod and a cooled bottom rod.
The liquid bridge diameters are D = 2 and 3 mm. Silicone oils with 2 and 5 centistokes kinematic viscosity are
used as the test fluids. The static free surface shape is varied from flat to concave. Most of the tests are conducted
in an oven. In a typical test, we fix the cold wall temperature (T¢) and air temperature (T) at specified values and

increase the hot wall temperature until the flow becomes oscillatory.

3. NUMERICAL SIMULATION OF AIR MOTION

In the simulation study the airflow and the liquid flow are solved simultaneously because they are coupled
through the boundary conditions at the free surface. The computational domain for the airflow analysis is
consistent with the experimental conditions [3-5]. We mainly analyze the airflow for the experimentally found
critical conditions in order do relate the critical conditions to the free surface heat transfer. The local heat flux (q)
is non-dimensionalized as gR/(kAT), which is called the local Biot number (Bi,,.), where k is the liquid thermal
conductivity and R is the liquid bridge radius. The total free surface heat transfer rate (Q) is non-dimensionalized
as Q/(2rLKAT), which is called the average Biot number (Bi). Conventionally, Biot number represents heat
transfer coefficient so that the net heat transfer depends on the Bi and the temperature difference between the
liquid surface and the surrounding air. Instead of specifying both, the current Bi represents, by itself, the net heat

transfer from the free surface.

4, IMPORTANT DIMENSIONLSS PARAMETERS
The important dimensionless parameters for the thermocapillary flow in the liquid bridge configuration in
the absence of gravity are: Marangoni number Ma = o;ATL/ua, Prandtl number Pr = v/o, and aspect ratio Ar
= L/D, where o7 is the temperature coefficient of surface tension, u is the dynamic viscosity of the liquid, v is
the liguid kinematic viscosity, and o is the liquid thermal diffusivity. L is the liquid column length and D is the
liquid column diameter. Additionally, Kamotani and Ostrach [2] introduced the aforementioned S-parameter.
The S-parameter represents the effect of dynamic free surface deformation on the oscillation phenomenon, and
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is expressed, for the present configuration, as S = (o AT/o)PrMa™ ", where o is the surface tension at the free
surface. In order to describe the shape of the liquid bridge, diameter ratio, Dr, is used, which is defined as Dr
= D,../D, where D, is the diameter of the liquid at the neck (Dr = 1 for straight bridge). The thermal effect of
the surrounding airflow is represented by the local and average Biot numbers as explained above. The following

parametric ranges are covered in the present work: Ma < 5.0 x 10%, 24 < Pr < 50, Ar = 0.65-0.7, and 0.4 = Dr = 1.0.

For Ma and Pr, the fluid properties are evaluated at the fluid mean temperature, Y2 (Ty + Te).
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5. RESULTS AND DISCUSSION
5.1 Nearly Straight Liguid Bridge with Free Surface Heat Loss

In a typical room temperature experiment, Ty (at the critical condition) is higher than Ty, so heat is lost from
the free surface. The results with nearly straight liquid bridges have already been reported [3-6]. In summary, the
critical condition is very sensitive to the heat transfer and, contrary to what some theoretical studies have shown,
the flow is destabilized with increasing heat loss. After computing the Biot number for each critical condition,
Ma,, is plotted against Bi for fixed Pr and Ar, which is reproduced in Fig. 1. The figure shows that the critical
condition cannot be described by Ma,, and Bi alone. The figure also shows that Ma,, changes substantially over a
relatively narrow range of Bi, or even when the basic flow is not substantially altered. It seems that the heat loss
effect cannot be explained by a linear stability concept.

For this reason the critical results are in the form of S vs. Bi (or modified Biot number Bi/PrO'S), as shown
Fig. 2. It shows that the critical conditions for all of our tests can be correlated reasonably well by S and Bi/Pr™°.
The reason why Bi is modified as Bi/Pr”” is discussed in [6]. We have also conducted the heat loss experiment
under the condition in which forced airflow removes heat from the free surface. It was shown that the data from
the forced cooling tests also agree well with the trend of Fig. 2 [5].

As shown by Kamotani and QGstrach [2], the flow is viscous dominated even when the Reynolds number
(Re = Ma/Pr) is as large as 1000 in the case of high Pr fluids. The flow is viscous dominated because the main
driving force exists in a relatively small region near the hot wall called the hot corner. The hot corner shrinks as
Ma (or Re) increases, which tends to keep the flow viscous dominated. The S-parameter model is based on the
viscous flow. If Re becomes larger than about 1000, the inertia forces will become important, so the situation
will be different. As Fig. 1 shows, Ma,, can be as large as (3 - 5) x10* (or Re is about 1000) when the heat loss is
minimized, which is about the limit of the S-parameter model. It is interesting that with decreasing heat loss the
S-parameter increases up to the fimit of its validity.

The value of Ma,, when the heat loss is minimized (around 4 x10"%) is near the critical values predicted
numerically for Pr ~ 25 in the past without dynamic free surface deformation. For example, Savino and Monti
[7] predict Ma,=4.2 x10" for Pr = 30 and Ar = 1. In the current JAXA project, Kawamura et al. are conducting

xtensive numerical simulations for high Pr fluids with and without dynamic free surface deformation. Their
prediction of Ma,, is 3.25 %10 for Pr = 28.1 and Ar = 0.5 [8]. We are also conducting 3-D numerical simulations
with undeformable free surface to investigaie the [ree surface heat transfer effects (to be reported in the future).
Ma,, in our work is also near these predicted values (Ma,, = 4.2 x10" for Ar = 0.7 with insulated free surface).
One important feature of the computed instability is that the inertia forces play an important role since Re is
large. In fact, in our numerical simulations the flow will not oscillate if we do not include the inertia terms in the
equaiions. Recently, Sim and Zebib [9] analyzed oscillatory thermocapillary flow of Pr = 27 numerically. They
tried to simulate the experiments by Masud et al. [1], including concave bridges. The predicted Ma,, = 5,700 for
insulted free surface by Sim and Zebib seems too low (the inertia forces and convection are too weak (o cause
any instability). In any case, their resuits show that Ma,, is sensitive to the free surface heat transfer and Ma,, is
shown to increase with increasing heat loss. In contrast, our simulations show that the heat loss decreases Ma,,
up to about Bi = 0.5 and then increases Ma,, with further increase in Bi. The reduction of Ma,, is due to the fact
that the overall liquid velocity increases with increasing heat loss. However, the effect is not strong: Ma,, changes
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from 4.2 x10" to 3.0 xi0" when Bi is changed from C to 0.5. Then, when Bi is increased further, the heat los
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shrinks the hot corner so that the inertia forces in the bulk region decreases, resulting in Ma,, increase. Therefore,
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it is not possible to predict oscillations around experimentally found Ma,, = 1.5 x10" in room temperature tests

(heat loss tests) in which Bi = 0.5. Ma,, becomes as low as 7,000 in the large heat loss tests (Bi ™ 1, see Fig. 1).

All in all, the instability shown numerically for high Pr fluids does not seem to be the same phenomenon as the

one we observe experimentally.
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Typical streamlines and isotherms with free surface heat loss are presented in Fig. 3. Since the flow is driven
in the hot corner, the center of the recirculating flow is situated near the hot wall. As a result, the recirculating
flow pattern generates a relatively large region where the flow moves radially inward. This radial convection
tends to make the bulk fluid temperature distribution rather uniform near the free surface. As will be discussed
later, uniform radial temperature distribution in the surface flow region is not conducive to the hydrothermal
wave instability.

From these observations, our conclusion is that it is not possible to make the flow unstable around Ma = 10*
by the hydrothermal wave instability mechanism. It seems that the only way to make the flow time-dependent
near this low Ma is to change the driving force in the hot corner by non-linear means. Based on the S-parameter
correlation of Fig. 2, the dynamic free surface deformation in the hot corner is indeed changing the driving force

during oscillations.
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Fig. 3 - Computed streamlines and isotherms of liquid flow
(Ma=1.2x10%, Pr=28, D=3 mm, Ar=0.7, Dr=1.0, Bi=0.38)

5.2 Nearly Straight Liguid Bridge with Free Surface Heat Gain

As we increase Ty in the oven, Ty becomes eventually greater than Ty at the critical condition. In this
situation the liquid bridge gains heat form the environment. Fig. 4 shows how AT, changes with increasing
Tk (or, more appropriately, Tg-T¢) for nearly flat free surface shape. For the reason to be discussed later, we
cannot take data for Dr = 1 with heat gain, so the data in Fig. 4 for the heat gain case are for Dr slightly less
than unity. As the figure shows, AT, increases up to a certain Ti-Tc but drops suddenly beyond this Tp-Tc. It
appears that there are two different branches in Fig. 4. The changeover temperature difference depends on the
liquid diameter. The same data are plotted in terms of the computed Bi and presented in Fig. 5. Bi is positive
for net heat loss and negative for net heat gain. Figure 5 shows that the sudden change in Ma,, occurs when the
free surface heat transfer changes from net loss to gain. Once we get into the heat gain situation, Ma,, becomes
relatively insensitive to Bi (Ma,, ~ 1.4 x10" . Also, Ma,, does not depend on the diameter. Therefore, it seems that
Ma,, is the proper parameter to specify the critical condition in the case of heat gain. Apparently, the osciliation

mechanism changes suddenly once we get into the heat gain range.
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Before we discuss the oscillation mechanism, it is important to know how the liquid flow is affected by the

net heat gain. Typical streamlines and isotherms with heat gain are shown in Fig. 6. With heat gain, the bulk

fluid temperature increases so that the temperature gradient in the hot corner decreases. On the other hand, the

surface temperature gradient in the cold corner increases. Consequently, the hot corner becomes less active and

the cold corner becomes more active with the free surface heat gain, which makes much of the surface flow

originating from the hot corner go into the cold corner (see Fig. 6). However, the main driving force is still in the

hot corner in the range of Bi investigated herein. Therefore, the oscillations still originate from the hot corner.

One visible feature of the oscillatory flow with heat gain is an increased activity in the cold corner. Apparently,

the cold corner is assisting the oscillation mechanism in some way. Our numerical simulations for Dr = 1 show

that the flow is stable around Ma = 1.4 x10" even when the heat gain is large (Bi = -1). Therefore, the oscillation

mechanism for the observed oscillations with heat gain must also include the free surface curvature.
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Fig. 4 Critical AT for nearly straight liquid bridge with heat gain and loss
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Fig. 6 Compuied streamlines and isotherms of liquid flow
(Ma=1.2x10% Pr=28, D=3 mm, Ar=0.7, Dr=1.0, Bi=-0.38)

Free Surface Heat Loss or Gain

Tests with concave free surfaces are commonly done near room temperature. Typical results of room
temperature tests for concave free bridges are shown in Fig. 7. It is well known that the Ma,-Dr curve has two
branches: one for nearly flat surface (called the fat branch) where Ma,, increases with decreasing Dr, and the
other branch for concave surface (the slender branch) where Ma,, is relatively unaffected by Dr. The changeover
occurs suddenly across a certain Dr (Dr of about 0.8 for Ar=0.7 as seen in Fig. 7). This sudden change is similar
to that found for the case of nearly flat free surface when the net heat transfer changes from loss to gain. As will
be discussed later, this changeover for the concave free surface case is also due to a change in the oscillation
mechanism. Although the so-called shape effect is usually shown in a graph similar to Fig. 7, it does not give a
complete picture because it does not contain free surface heat transfer information except that the tests are done
under the heat loss conditions.

Some results from the heat loss tests (room temperature tests with variable T¢) are presented in Fig. 8. As
discussed above, Ma,, increases with decreasing heat loss (decreasing Bi) for nearly flat free surface. Figure 8
shows that this trend holds for the fat branch (Dr > 0.8). Ma,, for D r= 0.9 is larger than that for Dr = 1.0 until
they become nearly equal beyond Bi of about 0.5. However, Ma,, is not affected appreciably by the heat transfer
in the case of concave free surface (slender branch). This trend for the slender branch remains the same even
when the heat transfer changes to net gain, as shown in Fig. 9.

The only important effect of free surface heat transfer is that the slender branch extends to larger value of Dr
as the surface heat transfer changes to net gain, as shown in Fig. 10. It is not possible to perform heat gain tests
in the fat branch because Ty becomes too large. The vapor of the test liquid tends to condense on the cold wall
when Tg-T¢ becomes large, which can destroy the bridge if the condensation is too much. Our data indicate that
the transition to the fat branch occurs around Dr = 1 in the heat gain tests. This is the reason we do not have heat

gain data for exactly Dr = 1 in Figs. 4 and 5.
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In order to see how the liquid flow structure changes with the shape, the computed streamlines are shown

in Fig. 11 for the insulated free surface case. As the surface becomes more concave, the hot and cold corners

become increasing narrow zones. Consequently, the flows in the corners are increasingly suppressed. The free

surface velocity distributions for the conditions of Fig. 11 are given in Fig. 12, which shows this trend. In order

to show this trend from a different angle, the ratio of the free surface temperature gradient (along the free surface

direction) at the mid-height, (dT/ds), »), to that at the location where the surface velocity becomes a maximum
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near the hot wal, (dT/ds),,,), is computed for various Dr. The former location represents the bulk region and the
latter location represents the hot corner. The ratio is given in Fig. 13. As the figure shows, the ratio increases,
meaning that the driving force in the bulk region becomes more important, as Dr is decreased. Knowing that
the bulk region has more surface area than the hot corner, the main driving force region clearly shifts from the
hot corner to the bulk region below a certain Dr. Figure 13 shows that the ratio begins to increase sharply below
about Dr of 0.8. As discussed above (Fig. 7), Ma,, changes appreciably across the value of D ™ 0.8 for Ar = 0.7.
Apparently, this change coincides with the shift of the main driving force from the hot corper to the bulk region.
This suggests that there is a shift from the S-parameter mechanism to a different mechanism below Dr of 0.8.
With decreasing Dr, the flow is squeezed in the neck region, so the overall flow slows. When the surface is highly
concave, the return fiow from the cold region (region below the neck) to the hot region is partially blocked by the

neck. As a result, a secondary cell appears in the cold region, as seen Fig. 11.
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Fig. 11 Computed sireamlines of liquid flow with insulated free surface
(Ma=1.0x10%, Pr=28, D=3 mm, Ar=0.7)

As in the heat gain case for nearly flat free surface, Ma,, is rather low, less than 104, so that the hydrothermal
waves cannot occur with highly concave surface. The S-parameter mechanism is not important either since the
flow is not driven in the hot corner. The only known other mechanism is the one we investigated earlier based
on two-dimensional simulations [10]. Since the flow is squeezed at the neck, the return flow below the neck
has difficulty to pass the neck region together. This slowing of the flow in the neck region increases the surface
temperature gradient in the region. This situation is unstable against three-dimensional disturbances. Eventually,
when Ma becomes large enough, the return flow begins to take turn to pass the region in a three-dimensional
manner. For example, in the case of oscillation pattern of mode number one, half of the return flow passes
through the neck and the remaining half is blocked from the passage. After the passage, the surface temperature
gradient decreases as the hot and cold regions mix, but the gradient increases in the region where the return
flow is blocked. Eventually, the flow pattern is reversed, resulting in oscillations with rotating temperature and

velocity patterns.
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The above oscillation mechanism depends on the existence of the neck region, so it does not apply to fat

bridges. However, the data in Fig. 10 show that the trend of Ma,, for concave bridges continues smoothly to that

for slightly concave bridges with heat gain. Actually, a close examination of the data show that Ma,, begins to

increase slightly with increasing Dr beyond about Dr = 0.8. Therefore, the oscillation mechanism for concave

bridges is somewhat modified but still applicable even to a slightly concave bridge in the presence of heat gain.

The heat gain activates the cold corner in the case of nearly fiat bridge, as discussed above. This situation is

similar to the activation of the flow in the cold region due to the neck in the case concave bridge. Although more

work is needed, this similarity may explain the trend of Ma,, for slightly concave bridge with heat gain.
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5.4. Discussion of Oscillation Mechanisms

Much has been discussed in the past concerning the mechanism of thermocapillary oscillation phenomenon
in liquid bridges. The mechanism for low Prandtl number fluids (Pr ~ 0.01) is well understood; a result of
hydrodynamic instability as the Reynolds number (or inertia forces) becomes sufficiently large. On the other
hand, the oscillation mechanism for high Pr fluids (Pr > 15} is still being debated. Two models have been
proposed in the past for high Pr fluids. One is the S-parameter model by Kamotani and Ostrach [2] and the other
is a linear stability model. In the S-parameter model, the fact that the flow is mainly driven in the hot corner
is taken into account and the dynamic free surface deformation in the hot corner plays an important role. In
contrast, no dynamic free surface deformation is considered in the linear stability model, which predicts the
appearance of hydrothermal waves.

Since the hydrothermal wave instability is often cited as the only cause of the various oscillatory
thermocapillary flows of high Pr fluids, it is important to know under what conditions the hydrothermal wave-
type instability occurs. Based on the linear stability analyses by Smith and Davis for thin liquid layers [11]
and Wanschura et al. for liquid bridges [12], the following conditions are important for the appearance of
hydrothermal waves in high Prandtl number liquids.

(1) The basic flow is driven by the axial temperature gradients along the free surface. The Marangoni number of
the flow is sufficiently large so that convection heat transfer is important.

(ii) Temperature gradients also exist in the radial direction (or in the direction normal to the free surface). These
radial temperature gradients are produced by the main axial convection. In particular, the radial temperature
gradients near the free surface are due to the convection by the main free surface flow.

(iii) The axial dimension of the hydrothermal waves predicted for liquid bridges scales with the bridge length.
Also, the disturbance flow in the axial direction is relatively small.

The observed oscillation phenomenon in room temperature experiments has some features that are different

from the above features of the hydrothermal waves.

(1) The disturbance flow in the axial flow direction is quite prominent.

(i1) Since the radial convection by the disturbance flow must be uniformly important over the bridge length and
since the end wall tends to generate axial disturbance flow in the corner region, the only region where such waves
could be generated is the bulk region, not the hot corner.

(iii) When heat is lost at the free surface, the radial temperature gradient in the surface flow region is reduced (see
Fig. 3). Such a condition is not conducive to the hydrothermal wave instability.

(iv) As discussed earlier, numerical simulations show that it is not possible to have hydrothermal wave type
instability at a Ma as low as about 10%.

(v) The work by Wanschura et al. [12] is up to Pr of about 4, and no accurate linear stability work exists for the
Prandtl number range of current interest, namely Pr > 15.

Therefore, the observed oscillatory flows of high Pr fluids are not due to the hydrothermal wave instability.
From our earlier studies together with the present investigation of free surface heat transfer effects, we have
identified two oscillation mechanisms that are not based on linear stability theory. Our S-parameter model
holds if (i) the free surface is nearly flat, and (ii) the free surface is thermally insulated or it loses heat to the
environment. Note that many experiments performed in the past belong to this case. The correlation of the
critical conditions shows that the oscillation mechanism represented by the S-parameter is responsibie for the

transition. The oscillations are a result of dynamic free surface deformation altering the main driving force in the
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hot corner periodically. The condition for the onset of oscillations is very sensitive to the free surface heat loss in
the S-parameter range, because it is coupled with very small free surface deformation.

In the case of curved free surface, the driving force in the bulk region becomes increasingly important as the
shape becomes more concave. As a result, the oscillation mechanism shifts from the S-parameter to an oscillation
mechanism associated with the bulk region, as Dr is decreased. The oscillations are a result of the flow passing
through the neck region in a three-dimensional and time-dependent manner. Since no small quantities are
involved in this case, such as the dynamic free surface deformation, the critical condition is not very sensitive to

the free surface heat transfer. With heat gain, a similar mechanism holds even for slightly concave bridge.

6. CONCLUSIONS

The effects of free surface heat loss and gain on the conditions for the onset of oscillatory thermocapillary
tflow are investigated experimentally in liquid bridges of high Prandtl fluids. Both straight and concave liquid
bridges are investigated. The free surface heat transfer rate is computed numerically. Nearly straight liguid
bridges are very sensitive to the free surface heat loss, the flow being destabilized with increasing heat loss.
However, they are not sensitive to free surface heat gain. Concave liquid bridges are not sensitive to gain or
loss. It is discussed that for nearly straight bridges with heat loss (including insulated free surface), the onset of
oscillations is specified by the S-parameter. On the other hand, for concave bridges with heat gain or loss and for
nearly straight bridges with heat gain, the oscillation mechanism is associated with the convection in the bulk

region so that Ma,, can specify the critical condition.
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