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Numerical Simulation of Marangoni
Convection in Consideration of Free Surface
Displacement

By
Takanori Hashimoto', Yukifumi Kousaka', Ichiro Ueno', Hiroshi Kawamura'
and Shinichi Yoda®

Abstract: Thermocapillary-driven convection in a half-zone liquid bridge has been extensively examined. A
large number of researches have been conducted concerning the transition of the flow field. Physical mechanism
of the transition, however, has not been fully understood. In the present study, three-dimensional numerical
simulations taking with and without dynamic free surface deformation (DSD) into account are carried out to
evaluate the effect of the surface deformation upon the flow field. The surface shape is solved by considering
the stress balance on the free surface, and the calculation coordinate is reconstructed at every time step with
employing a boundary fitted coordinate. The test fluids are acetone (Pr=4.38) and 2¢St silicone oil (Pr=28.11).
The free surface deformation is determined primarily by the pressure variation. For acetone, the effect of the
DSD upon critical point and flow field was quite small in the range of present numerical simulation in previous

report. In this report, the effect of DSD for 2¢St silicone oil is obtained.

i. INTRODUCTION

One of the purposes of the space environment utilization is the processing of a new material, because the
buoyancy effect can be reduced in the space environment. Floating-zone method is one of the well-known
material processing methods under the micro-gravity. In this method, however, the convection, still occurs
induced by the surface tension difference on the free surface owing to the temperature gradient. This convection
is called thermocapillary or Marangoni convection and has been widely investigated with a half-zone (HZ) model
corresponding to half part of floating-zone model. In the HZ model, a liquid bridge is sustained between the
coaxial cylindrical rods. Each rod is maintained at different temperature, thus the liguid bridge is exposed by a
temperature difference AT between the both rods. When AT exceeds a critical value AT, the induced flow in the
HZ bridge of medium and high Prandtl number fluid exhibit a transition from a two-dimensional steady flow to a
three-dimensional oscillatory one. The oscillatory flow has two patterns called as ‘Standing wave' and "Traveling
wave'. These flows appear depending upon the temperature difference. The structure in the liguid bridge is
characterized further by the azimuthal wave number m. The flow field is divided azimuthally into 2xm sectors;
the alternate sector, m in total, consists of the same thermal-fluid structure.

The experiments for the thermocapillary convection have been widely conducted. Preisser et al. (1983) !
investigated the oscillatory flow to study the effect of several parameters such as the aspect ratio and Marangoni

number. Velten et al. (1991) ™ observed the periodic instability of thermocapillary convection in the cylindrical

liquid bridge.
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As for the numerical simulation, Kuhlmann (1993)", Wanschura et al. (1995)™ calculated the critical
Reynolds number for the various non-dimensional numbers (Bi, Gr, Pr, A) using the linear stability analysis.
Savino and Monti (1996) ¥ simulated the oscillatory flow numerically and compared it with their experiments.
Shevtsova et al. (1998) © studied the transition from two dimensional thermoconvective steady flow to a time-
dependent flow considered for an axisymmetric liquid bridge of a high Prandtl number fluid (Pr = 105) with a
static curved free surface.

It should be noted that most of the existing numerical simulations were conducted without considering
the dynamic free surface movement. After the onset of oscillation, however, the pressure field fluctuates
violently because of the unsteady flow. Therefore the free surface is expected to dynamically deform due to
these fluctuation. In fact, the free surface vibration in the liquid bridge has been observed in some terresirial
experiments. Kamotani et al. (2000) ' reported an experiment of the thermocapillary convection performed
aboard the Spacelab in an open cylindrical container, and investigated the free surface movement. In addition,
they analyzed the influence of surface deformation upon the critical condition in the half-zone configuration.
Correlation between the criticality and the dynamic surface deformation, however, is not understood yet. An
influence of surface vibration upon the flow field instability must be evaluated to understand the mechanism
of the oscillatory flow. To the authors' knowledge, no numerical work has been done on the thermocapillary
convection in a Hquid bridge with including the dynamic deformation of the surface.

Recently, Kuhlmann et al. 8! have made a combined analytical and numerical study on the thermocapillary
relation between the flow field and the dynamic surface deformation of the most dangerous mode. The present

study aims at understanding time-dependent thermal-fluid phenomena with dynamic free surface deformation in

the half-zone liquid bridge by a direct nonlinear numerical simulation.
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2. NOMENCLATURES

aspect ratio y
diameter 0
gravity Bi
heat transfer coefficient Bo
height of the liquid bridge Ca
unit matrix Gr
Jacobian Ma
azimuthal wave number Pr
surface-normal vector Re

normalizing dominator

pressure

coordinates

coordinates in the computational
domain

position of the free surface

radius of the disk

main radii of curvature

stress tensor

time

temperature

reference temperature

maximum velocity

velocities

compensated temporally velocity
temporally velocity

volume of the liquid bridge
contravariant velocities

temporally contravariant velocities
contact angle

thermal expansion coefficient
temperature difference between the
disks

amount of free surface deformation
time in the computational domain
surface tension

reference surface tension

thermal coefficient of surface tension
thermal diffusivity

thermal conductivity

dynamic viscosity
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kinematic viscosity
density

Riot number

Bond number
Capillary number
Grashof number
Marangoni number
Prandtl number

Reynolds number
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3. NUMERICAL METHOD
The purpose of this study is to analyze the influence of the free surface deformation upon the thermocapillary
flow. Therefore, a numerical method to capture the temporally varying surface motion is employed. The
deformed surface is expressed using the boundary fitted coordinate (BFC).
To consider the thermocapillary convection in a liquid bridge, a configuration of the analysis is defined as
shown in Fig. 1. The liquid bridge with volume Vo is sustained by two rigid parallel disks of equal radii ¥ = Ro

located at z = 0 and H. The temperature difference between these disks is defined by AT.

Z A
Hot Disk/ \T”“i r
H

~

Free

surface

r
0 0
Cold DiMo

Figure 1: Numerical configuration

.

3.1 Governing equations
The liquid is assumed to be an incompressible Newtonian fluid of kinematic viscosity v and density o.Ina

cylindrical coordinates system, the continuity, the Navier-Stokes and the energy equations are given by

V-u=0 (H
§+(§ﬁ°V)& _vp+ gy 2)
ot Ma

2 (VYT = — VT 3
Py (u-v) Va 3)

Variables are non-dimensionalized using scales as Table 1.

Tabie 1: Scales used for non-dimensionalization

Variable rz ¢ v=_(vVrVy, Vz) p T

Scale H  HpulotAT o TAT/ p o (6 TAT/ p )2 AT
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The non-dimensional numbers are defined by

U H
Re =2
v
Pr=z
K
Ma:LaﬁATH
urx |oT

3.2 Boundary fitted coordinate

53

The shape of the liquid bridge is deformed dynamically in this calculation. Therefore, the adequate

coordinate system must be employed to calculate the flow field with the finite difference method. The boundary

fitted coordinate method is applied to the governing equations in all directions. In the previous study, the

computational domain was assumed to be cubic. The substantial error arises in the conversion from the cylinder

in the physical domain to the cubic in the computational one. Thus, the present computational domain is modified

to cylindrical coordinate. Equations (1)-(3) can be transformed from the physical domain to the computational

domain by Jacobian matrix.
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Equation (5) is inversely transformed as follows,

v An A}z Al} Am LA

a[ ar

s a

< A 4 —

o | 1 Azx 22 Az3 Az4 aE ©
10| J 1
;@ A31 A}z Ass A34 EE

i 3

0z A:u A42 A43 A44 E |

where,

v s

{ A A \
A, = g-\réygzn +1,0,2; +1,0.2, = 1,02, —1:0:7, - 1,0,2, ),

r
A, = -—§<rﬁ§z +18,z, +1,0,z, 1,0,z ~ 10,2, —1,0,z; )5
A13 = r(;gé}z v rfé‘ Z, + 7;7@ ngfzr - régrzn —iffﬁnzg),

r
Ay = —g(rfﬁfzg +1,0,2, +1.0,2 = 1,02, ~1.0,2, ~ 1,0,z ),

; N 4 vy . \ { A A ) [N A
A, =0 A, =g(;»'§z,7 ~0z, ), Ap=-r(0z,-0,z:), A, =gi\ﬁgzé -0,z ),
I / L
Ay =0 Ay = _E(rézfi _rrlzé)’ 4y = (7/5277 _rnz§>’ Ay = _g(%zé _7525)’
>
4 r\i A r/ P 3 \ A / ) 2} \ A r/ Ve e} \
A, = © =§{‘r§{7‘n ~ 50 ), s =-1\10, =10 ), Ay = gz\rgsﬂé ~ 1 ).
Each component can be related from Egs. (4) and (6) as:
s 6 6,z. - 1.0 0.z, )
J = g(rfﬁézn +1p0,2; + 1,0p 2, —1,0p 2 = 130p2, ~1:0,2, ),
1r
E = ——}E(Vﬁ z, +1.0.z +r0.z, -0,z -1.0.z, —FﬁnZ;)a
b=l
g = f;r(rﬁgz +7.0,z, + 10,z ~1,0.2, — 1.0z, —I”,@,yzg),
ir
7, = ——}§<rf§§Z§ +1:0,2, + 10,2, ~ 1,6z, - 1,0,z, - rré’ézg)
1r p 1 5} \ 1r g P
£, = J§< - 1725)5 g, = “}”(ﬁ n " YnZe ) 7 Ejg( g% ~ é%)’
11 \ 1 i1
&y = *}g(’%zn “nZ ) L= j(%zn ~1,2); To = ‘jg(”szé -7z )
Ir 1 1r
g. =;E<‘Vé‘§n ~1,0; ). ¢, = —}’”(’%@7 ~1,0:). 7 “‘“}é(’%g@ ~1:0;).

This document is provided by JAXA.



55

The continuity, the Navier- Stokes and the energy equations (Egs. (1)-(3) ) are transformed to

the ones in the generalized coordinates.

[ Continuity equation ]

i ()‘{ - 19 (9
——\JEV )= JV JV 0
where
1 1 1
yvf =§rvr +;§HVH +§ZVZ9 Vé’ =§§1‘Vr -'L;§§6v6 +§§zvz’ 'VVI :??rvr +;779v19 +;?ZVZ'
These velocities are called as contravariant velocities.
[ Navier-Stokes equation ]
v, av,
83 § ? é, &é, 7 a}?
= | = (TEV, L1 9 <d/,) d <dr;/nvl_\¢ ’(,fv_ (JVVH
J[g,: g\ rE a7 P e
oF arP oP
.,—(;-‘l_%q g, P - 77, 8?;1)ei
Prifj 1o v,y 146 av,\ 19/ v, \
t—— | | JEEE || JEEL || S5 —
Ma J | ga§r\\ c}gj] §3g{\ & §8g{\ a?;f/)
1o/ . av.y 9 .. ov\ /[ _. v, \
+ | JELE — |+ | JELL |+ | JECm —
sz |7 g | T ez |1 g ) e\ T )
d v, d av, d v,
—| Jn, - —J — |+ —J —
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where, v, = (v,, vg, v,).

[ Energy equation ]
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In this analysis, fractional step method is utilized to solve these governing equations. Adams-Bashforth

method is adapted for time advancement. The Crank-Nichol

son scheme is applied only the circumferential

constituent of the viscous terms in the Navier-Stokes and the energy equations in order to ensure a larger stability

margin.

3.3 Boundary conditions

3.3.1 Boundary condition of the velocity

To derive the boundary condition of the velocity on the free surface, the balance between the shearing stress

and the surface tension must be considered.

The relation between the shearing stress and the surface tension is shown in Fig. 2.

Figure 2: Stress balance between shearing

stress and surface tension

From Fig. 2 the equations of the balance between the shearing stress and the surface tension

are described as

100

T, , rd0ds =
’ r a8
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o

|
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Newton'’s law of viscosity is expressed as follows.

, rdfds = a+—— as) Pm’ﬁ
J

(10).
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From Egs. (10) and (11), equation (12) is derived.

av, Iy, oo
173 — =
“lon  os ds

1av, d (v, i do
H“ Pl

7 849 or\ r r 3@9

If the velocity on the free surface in the normal direction is assumed to be zero, equation (12) can be shown

(12).

as follows.
ov,  do
|" on s
| (Lav (v,\] _10o (3
IZ - — ==
1;’ a6 &r( )JE r oo
Equation (11) can be non-dimensionalized as following equations.
v, do
on as »
1av,  a(v,) lao (1
|7 90 or r a6

In the equation of the relation between normal and tangential directions, the tangential velocity vsis divided into

radius and axial directions (See Fig. 3).

(v, = v.cosg
| ! . (15)
N\ | |V, = v, 8ing
|
\ | Pl _ v
] n |4 =
cos
i\% - ¢ (16)
VZ
VS = .
sing
av, _i( v, )
dIn ni{cosg
< a7
(AP (O P
an Bn(sinqa}
d ( v, \ ar
GnLco (ﬂ} Ky
< (18)
s 4 ( v, }_ aT
P cimm - Ao
OF \.)Z/u;// [N

Figure 3: Velocity on the free surface

Generally the following relations are derived in the normal and tangential di rections.
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[ Normal Derivatives ]

3¢ ( ) (19)
= ~Po: + 1,
8,,1(77) J \/; 3
[ Tangential Derivatives ]
22—y
as(f) \/E 7
3¢ 1 20)
o —/_¢§

2 2 2 2
where, & =1, +2,, [B=1r,+2:2,, V=1 +Z.

Using eq. (19), the equation of the stress balance in normal and tangential directions is obtained.

Ha\“oE P an ; o

The axial velocity is derived from eq. (21). The radius velocity is derived from the relation of following equation.

cosQ
=——V (22).
sing
On the other hand, the boundary condition of the circumferential velocity is defined by
1dv, d (vy ) 1or
v irwd el Ity (23).
r a8 ar\r) r 96
Equation (23) is transformed to the one in the computational domain by the Jacobian matrix as
1 av, d ( j d (Vv
L2 éfg +7] & e el R/ Mwd e
w77 § ;’ v a;s;» aE\ ag Tanl r
(24).
ol ol
IFL T .
o5 £ e 3 Z 6:7‘/

3.2 Boundary condition of the temperature
The condition of the heat transfer over the free surface is assumed to be adiabatic. Therefore the equation of

the boundary condition of the temperature is

= {) (25).
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Equation (25) is transformed by the Jacobian matrix as

0T 0§ T 45 oT a _

26).
8§an Gé’&n a1 dn (26)

To transform into the computational domain, equation (19) is utilized.

oT 1
—5};“7( —~—/3 ) .

3.3.3 Treatment of the liquid center axis

In this analysis the governing equations are described in the cylindrical coordinate. Therefore the center
of the cylinder (r = 0) can not be solved directly by the present equation. This problem is solved by a method
described below. The computational grid is fixed at the center.

The Navier-Stokes equation in the axial direction and the energy equation at the center are derived by

azimuthal integration.

[ Navier-Stokes equation of the liquid center |

}/'aVZ +_a_(rv”vzl+ a <"}5"}z}+i(‘m}zvz)
ot or T oz
JP Pr 0 a"’}z o i GVZ 0 avz
= + -\ +— = +—|r
o0z Ma|or\ or ) d6\radf ) dz\ oz
(28)
v, AG & I, .a
- ot +ﬁér;( g j+§[ ZJO
o PrlAag &av| 1 (v, 1"
= e g —
0z Ma J’L’AVE Azl Oz JO
[ Energy equation ]
J \
r——-%———(rvrT}—{-—(ng).;--__(WZT)
ot dr
1 8 GT d IaT 0 a7
=— +— bl r—
Ma Gr ar 08 raﬁ dz\ o0z
(29)

sl 27
= rgi%—ﬁ;(vr]ﬂ)-éﬂi[v T}AZ
ot ahr & Az 0

1 (A8 &ar 1 PT]AZ];

 Ma erﬁ% orly, Az|dz |, ]
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As for the radius and circumference velocity at the center, the velocity is evaluated by summed value over

the surrounding mesh points (See Fig.4).

AN
I
NG/

7
v cost, +vycos (ﬁv + —)
s & 2

720

27

= . . Vs
v =; v sind, +v9sm(¢9v +—\
y r (a (] 2

)

Figure 4: The velocity at the center axis

After the summation, the velocities V., V, are divided into the radius and circumference components { v, , vy) as

follows;

1
v, = [was@vy +VyCGS(——6"Vr ﬂ -
] i\Z ARC]
[ ( ‘x (7o )1 o
v, =V \—=sinf, jcos+V sin|—-8 —
) /x\ vy JEOS T, k2 VQ}Jnj

Here, nj shows the division number of the circumference direction. This treatment at the center axis is also

applied to the energy equation.

3.4 Free surface deformation
The stress balance over the free surface must be considered to compute the free surface shape. Along the

interface between two immiscible fluids (1) and (2), the forces over the surface must be balanced. If the surface is

lane and the surface tension is constant, the stress balance over the surface leads
p
g(l) ‘B = §(2) ‘n (32)

where S is the stress tensor and n is the unit normal vector directed out of liquid (1) into the ambient fluid (2).

The each component in the stress tensor is described as
S,y ==P0,,; + ue, (33),

where e;; can be expressed in the cylindrical coordinate as
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av Loy, v, av

¥ z
Cop =

> ezz
r 08 r dz
I 0 /(v 1 dv, I {Lav, oy 1 [ov, oy,
€y =—1F |+ , €y = —d— +—=L, e, =— +—=
21 art\r r 06 21r 86 oz 2190z or

On the other hand, if the free surface has curvature and the surface tension varies along the interface, the equation
8

(34).

of the stress balance becomes
$Y n+o(V-n)n-(I-nn)-Vo=8%n (35)

where, I is the identity matrix. The element ¢ (V * n) in the second term is so-called Laplace pressure. The mean

curvatures of the interface,

11
R R,

can be expressed as the sum of the inverse principle radii of curvatures R, and R,. The mean curvatures of the

Voa= (36)

interface can be described with Cartesian coordinate system as follows;

“} F 21 a :
V-n= [ A R2+{—§—)

373 2
RN oz \ 86
2
_BRAR[OR R _ 3R\

g - K | (37).
9z 663\ oz 06 8285‘/‘

i (2] e v 2 -nZE]
\ H

L 2L /

L (2RY, i(aﬁft

\oz) R*\d6) |

The second term in the left hand side of equation (35) indicates the surface force acting tangentially

whi

[¢]
b3
o

originated from the surface tension . The operator I-nn represents the orthogonal projection of a vector onto the
tangent plane defined by n.

Equation (35) can be non-dimensionalized using the scale as Table 1.

S -m+ L—T\(V-ﬁ)ﬁ—(E—mﬁ_)VT=§(2)=§‘s 38).
Ca }\ AN

Here, the dimensionless parameter is called the Capillary number, defined as

o, AT

)

Ca=

(39).

From these equations, the equation of the stress balance is led in the three directions. Since the two directions
of the curvature exist in the three dimension, the two tri-diagonal matrices must be considered

circumferential directions. The tri-diagonal equations are indicated below.
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Bo

av,

0z* R{R2 + (8R/66’)2}(1/Ca—1”)

[ Circumferential direction ]
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00’ R{Rz + (6}2/&2)2}(1/&: -7

|

)

17dv.

¥

-—5\ 0z

Tov, 1n, av, \n,
g f

ro6|n, or jn,

~ R R [ AR R

dz 36\ 9z 84

(
S

A

41)

In addition to these tri-diagonal equations, the constant volume equation is solved to maintain the volume of the

liquid bridge.

H 2=

L %deé’a’z=V

The position of the free surface R can be obta

. . . . 10
and circumferential directions. %

(42)

ined by using Tri-Diagonal Matrix Algorithm (TDMA) in the axial
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4. RESULTS

Calculation of high Pr fluid needs fine grid in order to researches its quite thin thermal boundary layer. We

perform the simulation with 2¢St silicone oil (Pr = 28.11), aspect ratio I'= 1.0 and volume ratio = 1.0 under the

zero gravity. The calculation gird points are increased up to (r-8°z) = (56x32x70) with uniform size mesh. In the

medium Pr case, we employed the grids in the last annual reports.

4.1 The effects of DSD on the flow field and the critical value
The steady flow states in the cases with and without the DSD are discussed. Temperature and velocity

distributions in r-z plane, and those over the free surface are shown in fig.5 and fig.6, respectively. Those figure

indicate the flow states at Ma = 20,000. No significant differences in those distributions can have seen in both

cases. Ag for the case with DSD, the liquid bridge deformed statically from the straight cylinder as the initial

shape. Statically deformed free surface and the pressure distribution over the free surface under the same

conditions of figs.5 and 6 are shown in fig.7.

Without DSD

With DSD

Figure 5: Temperature and velocity distribution for Ma = 30,000 with and without DSD.

1 . - ' . .
| —— WithDSD
L Without DSD /

|
06 -
|
nal E
i
02l j
1] : -
0 ]

Temperature [-]

—— With DSD
— Without DSD

I

.04

Los

Velocity on the free surface

Figure 6: Free surface shape and pressure variation on the free surface for 2¢St silicone oil (Pr =
28.11), Ma= 30,000.
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Figure 7: Free surface shape and pressure variation on the free surface for 2¢St silicone oil (Pr =
28.11), Ma = 30,000.

We evaluate the critical Marangoni numbers in the cases with and without DSD. Figure 8 shows the
azimuthal velocity variation on the free surface at mid-height of the liquid bridge for both cases. Table 4 exhibits
the evaluated value of Ma,.. In the case of high Pr fluid, the Ma, with DSD shows a slightly lower value than the

one without DSD. This tend is different from that in the case of medium Pr fluid as indicated in the last annual

report; the Mac with DSD is almost equal to that without DSD.

At Ma > Ma,, the flow exhibits a transition from the 2D steady to the 3D oscillatory flow in the both cases
with and without DSD. Tt is noted that there exists a difference in the flow field after the transition; in the case
without DSD, the flow changes into the standing-wave fiow first, and then into the traveling-wave one soon. in
the case with DSD; on the other hand, after exhibiting the standing-wave fiow, that flow regime maintains for
longer period. This can be indicated by monitoring. The azimuthal velocity and the temperature variations on the
free surface at mid-height as shown in Fig.10. This figure shows the variations for- Ma = 40,000. The black line
indicates the value at 6 = 1/4x, which corresponds to the node point of the temperature and the anti-node point of
the azimuthal velocity in the standing wave oscillation. On the other hand, the gray line indicates the value at 6 =
0, the anti-node point of the temperature and the node point of the azimuthal velocity. From this figure, the flow
exhibits the standing wave flow at the early stage of the oscillation. The temperature and the azimuthal velocity
of the node point are increasing. After all, the amplitades of black and gray lines become equal, and the flow
exhibit the traveling wave flow. With DSD, however, the temperature and the azimuthal velocity of the node point
are not increasing but stable (Fig. 10(b)). With DSD, therefore, the flow field stays at standing wave flow for a

long time.
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Figure 8: Azimuthat velocity variations for 2¢St silicone oil (Pr = 28.11), Ma = 25,000 ~ 40,000 with
and without DSD

Table 4: Critical Marangoni number

2¢St silicone oil

Without DSD

With DSD

Ma,

32,400

30,300

0.12 1
(a) Standing wave

14

0.12 0.74
(b) Traveling wave

Figure 9: Temperature and velocity distributions in the s%énding wave (a) and traveling wave (b)
oscillation, 2¢St silicone oil (Pr = 28.11), Ma = 40,000 without DSD in r - 8 place at mid-height.
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Figure 10: Azimuthal velocity and temperature variations -at mid-height for 2¢St silicone oil (Pr =
28.11), Ma = 40,000. (a): without DSD, (b): with DSD. (black: 8 = 1/4x, gray: 6 = 0)

4.2 Spatiotemper al flow in the oscillatory state

Figure 11. shows the: spatiotemporal correlati on among:the free surface deformation, the temperature and

the pressure: variations for the traveling wave state. Fluctuation of the free surface displacement from the initial

position is magnified in 10 times. The difference from medium Pr fluid appears in this figure; as the fluid at lower

temp reaches the free surface, the pressure in the vicinity of the free surface rises, and the surface expands. On

the other hand, as the fluid at higher temp reaches the free surface, the pressure in the vicinity of the free surface

falls, and the surface become concaved. Figure 12 shows the mutual correlations among the dynamic free surface

deformation, the temperature,.and the absolute axial velocity in the traveling-wave state at the different height.

These figures show one cycle-of oscillation in the traveling wave state. A phase lag-of about & exists between

the temperature difference and the surface deformation at any heights. Nishino et al. exhibited this correlation

through the experiment (Figure 13(a)). The present results show a good agreement with the experimental results

as shown in Fig.13.
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Figure 11: Bird's-eye view of traveling wave os cillation (a) and with fluctuations of temperature and pressure, in r — z place (b),
2¢St silicone oil (Pr = 28.11), Ma = 40,000. (DSD is magnified by a factor of 10%)
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Figure 12: Relation between the surface deformat ion, pressure, temperature and absolute axial velocity near the both disks and
at mid-height with DSD, 2¢St silicone oil, traveling wave oscillation, Ma = 40,000.

This document is provided by JAXA.



70

(a) Experimental result . (b) Present result
E0E B - -4 .
Eéi&r : [x107] XlUS] Pk IS S .
fa f‘% ;’“ L . B =l 5, . ,;»"N* 3 40,051 z
sy \ /f ey 26y ) v 0.85 2
B ‘ o Ay Bt VW - g
GBI N SN/ L 2 ozal \F o E
g . s o o 57 8 9 y & 5 4003 >
4B : g ST eEg 4 27008 2
S . =] O = < <
: 21 2 g @ g8 4 5 3>
ol = : (RS 5 = ., J <
Sl VRN ) £ S & >
ol : k SERLS B A 5 =
£ 154 \‘x Ao ras | : = {0.028 2
.- - ey B ; : 3 3 @
= ééx‘%g 36L S ! 2
& =70 : S e (.84
R - SSEE }Zf 1 . %r‘ . 1 Lo
L e L a N 20000 20100 20200 20300 20400
& { oo B o B
Boood e g Time [-]
T W VADNVE A\
worlons B g Displacement of free surface
= % ENR g0
= & ]
oos o = = = == = ‘Temperature
T . s . . .
E L ff“\\ ;5’7"“; == - === = Absolute axial velocity
Ty . £
e QR o ;
=] S N ff 5 = = s === Pressure
Do Ot et
=2 e 3
Tl

Figure 13: Relation bsetween surface deformatio n, pressure, temperature and absolute axial
velocity.z=0.96H, traveling wave oscillat ion, 2¢St silicone oil, Ma = 40,000.
(a): Experimental resuit (Nishino et al.), (b): Present resuit

Figure 14 shows the fluctuations of the temperat ure, the pressure and the azimuthal component of the
velocity over the free surface in 8-z plane for the standing wave state. The azimuthal velocity vectors direct
towards the coldest zone, as seen in the case of medium Pr fluid. The fluctuation of the temperature indicates
meandering distribution at z ~ 0.2 H. The fluctuation of the pressure also indicates the meandering distribution.

Figure 15 shows the fluctuations of the temperat ure and the pressure over the free surface in 8-z plane for
the traveling wave state. In the traveling wave state, the fluctuations of the temperature and the pressure twist in

the azimuthal directions. This phenomenon is different from the case of medium Pr fluid.
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Figure 15: The fluctuations of the (a)temperature , (b)pressure and the azimuthal velocity over the free surface with DSD in the
traveling wave in 8-z plane for Ma = 40,000, 2¢St silicone oil.
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4.3 Comparison of the flow fields between the medium and high Pr fluid cases

In this section, the flow field of high Pr fluid is compared with that of low Pr fluid. Figure 16 shows the static
free surface deformations in the case of the 2D steady flow. The free surface near the hot disk is concaved by low
pressure due to Marangoni convection, and the one near the cold disk is expanded by high pressure in both cases.
In the case of silicone oil, however, the free surface near the upper disk is widely concaved. Compared with the
result of acetone the velocity near the upper disk is larger because of the steeper temperature gradient. The fluid

vortex shifts up and the return-flow are strong.
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Figure 17: Temperature variations on the free surface (a): Acetone, Re = 900. (b): 2¢St silicone oil, Re = 890.

Figures 18 and 19 show the mutual correlations among the free surface deformation, the temperature and
the pressure variations for the traveling wave state in the cases of 2cSt silicone oil and acetone, respectively. In
both figure of medium and high Pr fluid, a phase lag exists between the temperature difference and the surface
deformation. In case of high Pr fluid, this lag is about w. On the other hand, in case of medium Pr fluid, this lag is

about 5t/2. It 18 conceived that the difference of a phase lag relates to height of the return-flow reaching. Figure 20
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shows temperature and velocity distributions near the hot corner, in the r — z plane. Figure 21 shows fluctuations
of the temperature and the velocity over the free surface in 6 - z plane in a range of w/2 in 0. In the case of
medium Pr fluid, low tempefature field reaches widely to the free surface near upper disk. In the case of high Pr
fluid, on the other hand, reaching range is narrow. Figure 21 shows that low temperature range is narrow near the

upper disk. In medium Pr fluid, a phase relationship of high Pr fluid near the. upper disk appears at little far from

the upper disk.
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Figure 18: Reiation between the surface deformation, pressure, temperature and absolute axial velocity near the both disks and
at mid-height with DSD, 2¢St silicone oil, traveling wave oscillation,"Ma =.40,000.
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Figure 19: Relation between the surface deformation, temperature and absolute axial veiocity at z
= 0.8H with DSD, acetone, traveling wave osciliation, Re = 1,300.
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(a) Acetone 0.0 10 (b) 2¢St silicone oil

Figure 20: Temperature and velocity distributions near the hot corner, r — z plane.
(a): Acetone, Re = 1,300. (b): 2cSt silicone oil, Re = 1,440.
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Figure 21: Fluctuations of the temperature and the velocity over the free surface in the standing wave oscillation in 8-z plane (#/2).
(a): Acetone, Re = 1,300. (b): 2¢St silicone oil, Re = 1,440.
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5. CONCLUSIONS
(1) In the case of high Pr fluid, traveling flow with DSD using finer grids is obtained.
(2) The obtained critical Marangoni number in the case with DSD is smaller than the one without DSD.
(3) Mutual relation among DSD, temperature, pressure and axial velocity is obtained and is in good agreement
with the experimental result near the hot corner (Nishino et al.).
(4) The differences of the oscillatory flow ficlds between the cases of acetone and of 2¢St silicone oil are

indicated.
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