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Non-contact thermophysical property
measurements of refractory metals using an

electrostatic levitator

By

Takehiko Isuixawa!, Paul-Francois Paradis', Toshio Itam’, and Shinichi Yopa'

Abstract : The electrostatic levitation system, including its history and development, and
techniques for non-contact thermophysical property measurements (density, surface tension, and
viscosity) are reviewed. Thermophysical properties of refractory metals whose melting
temperatures are over 2, 000 K have been measured with an electrostatic levitator. The
experimental results for vanadium, zirconium, niobium, molybdenum, rhodium, ruthenium,
iridium, tantalum, rhenium, tungsten, and rhenium are presented. Comparison between
theoretical calculations based on hard sphere model and measured data, as well as the necessity

of microgravity conditions for this research are also discussed.

Key words : confainerless processing, undercool, density, surface tension, viscosity

1. Intreduction

The use of a containerless technique for materials processing has many technological and scientific
advantages. The absence of a crucible allows the handling of chemically reactive materials such as molten
refractory metals, alloys, or semiconductors, and eliminates the risk of sample contamination in overheated as well
as in undercooled states (liquid phase below melting temperature). This offers excellent opportunities to
characterize the structure of materials and to determine accurately their thermophysical properties in those states.
The lack of a crucible also suppresses nucleation induced by the walls of a container (heterogeneous nucleation)
thus increasing the possibility of producing new materials such as metallic glasses.

Several levitation methods, including acoustic, electromagnetic, acrodynamic, and electrostatic have been
applied for thermophysical property measurements. The electromagnetic levitation method has been most
popularly used for metal samples because instrumentation is rather simple, and compatible with high vacuum. An
electromagnetic levitation facility was developed for microgravity experiment onboard the space shuttle, and
several 'thermophysicai properties such as density, heat capacity, surface tension, viscosity, and electrical
conductivity were successfully measured.'™

An alternative scheme for metal samples processing is electrostatic levitation. This method uses Coulomb

force between a charged sample and electrodes and needs a high speed feedback control system in order to
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stabilize sample position. Due to this technical difficulty, the development of electrostatic levitation method was
slower than other methods. .

Like other levitation methods, development of electrostatic levitation methods was mainly conducted by
governmental space organizations.” In 1988, European Space Agency (ESA) performed the first microgravity
experiment in sounding rocket (TEXUS-19), attempting to levitate and melt a glass forming material (24m%
Li,0-76m% Si0,) with an electrostatic scheme.” This trial was unsuccessful, due to high speed sample position
control difficulty. However, progress of computer technology made the high speed control possible.

Rhim et al. at the Jet Propulsion Laboratory (JPL) developed a ground base electrostatic levitation systemn”
and successfully levitated and melted refractory metals (zirconium” and titanium®) and semiconductors (silicon”
and germanium.'®) His group also developed several techniques to measure thermophysical properties such as
density'V, isobaric heat capacity'?, surface tension'?, viscosity'”, and electrical resistivity'” with the electrostatic
levitation system. This great work has diffused all over the world. Electrostatic levitators in Marshall Space F light
Center (MSFC/NASA) (built and donated by Space Systems/ Loral)'>'®, in German Acrospace Center,'” and in
Japan Aerospace Exploration Agency (JAXA)'Y were all derived from his pioneering design and sample position
sensing and control method.

We have been conducted our research for the electrostatic levitation furnace (ELF) in JAXA since 1992, as a
part of experiment facility developments for the International Space Station (ISS). In 1998, we successfully
levitated and melted a BiFe0, sample under pressurized conditions on-board a sounding rocket.'” After the
microgravity experiments, ground research has been focused on the following 2 items: (1) Levitation and
thermophysical property measurements of oxide materials, and (2) thermophysical property measurements of
refractory metals whose melting points are over 2, 000 K. Both of these items have not been fully accomplished

by JPL.

2.

s
&

ctrostatic levitation system

The ELF has been developed based on a design by Rhim et al.? with several modifications. Fig. 1 depicts
schematically this apparatus. It consisted of a stainless steel chamber that was evacuated to a pressure of around
107 Pa. The chamber housed a pair of parallel disk electrodes, typically 10 mm apart between which a positively
charged sample was levitated. The top electrode was kept electrically negative. These electrodes were utilized to
control the vertical position (z) of the specimen. The Coulomb force between the sample and these electrodes
cancelled the gravity force. The typical sample size is 2mm in diameter and an electrical field of around 8 to 15
kV/m is necessary to levitate it against gravity. In addition, four spherical electrodes distributed around the bottom
electrode were used for horizontal control (x and y). Also surrounding the lower electrode, were four coils that
generated a rotating magnetic field, used to control sample rotation.'”

Since the electrostatic scheme can not produce a potential minimum, feedback position control system was
necessary. Position sensing was achieved with a set of orthogonally disposed He-Ne laser (632. 8 nm) that
projected a sample image on position sensors. One sensor detected the y-z position whereas another one was
dedicated to the x direction. Fig. 2 illustrates the hardware arrangement for position control. The beam of a He-Ne
laser was expanded and impinged on a levitated sample. The size of the resulting sample shadow was optimized
with a lens to cover the area of the sensor such that a good dynamic range was obtained. In addition, a polarization
filter was used to optimize the laser intensity reaching the sensor. The sensor was equipped with a band-pass filter

at 632. 8 nm to eliminate the photon noise coming from sources other than the laser. The sample position
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Fig.1 Schematic view of the electrostatic levitation furnace.

information read by the sensors was then fed to a computer and analyzed by a program. The program used PID
servo algorithms for implementing the feedback system, thus allowing a sample to maintain a fixed position in
time. The computer then imputed new values of voltages for each electrode. The feedback rate was 720 Hz for the
z direction and 30 Hz for the x and y direction.

Sample heating was achieved using two 100 W CGQ, lasers emitting at 10. 6 um and a 520 W Nd:YAG laser
emitting at 1. 064 um. The high power Nd:YAG laser was used to melt a sample with melting temperature higher
than 2, 800 K (Mo, Ta, and Re). One CO, leaser beam was sent directly to the sample whereas the other CO,
leaser beam was divided into two portions such that three focused beams, separated by 120 degrees in a horizontal
plane, hit the sample. The Nd:YAG laser beam was sent to the sample from the vertical, through a hole in the top
electrode. This quasi-tetrahedral multiple beam configuration minimized sample motion and enhanced
temperature homogineity.””

Sample temperature data were measured using single-color pyrometers (0. 90 um and 0. 96um, 120 Hz),
equipped with a band stop filter (Rugate notch filter) at 1. 064 pm to remove any noise coming from the Nd:YAG
laser. The levitated sample was observed by three charged-coupled-device cameras. One camera offered a view of
both the electrodes and the sample. In addition, two black and white high-resolution cameras, located at right
angle from each other and equipped with telephoto objectives in conjunction with background lamps, provided
magnified views of the sample. This also helped to monitor the sample position in the horizontal plane and to

align the heating laser beams to minimize any photon induced effects on the sample.
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Fig.2 Schematic diagram on sample position control system of the electrostatic levitation.

A pressurized version of ELF? which can be operated up to 0. 46MPa was also developed by JAXA. The
pressurized condition is necessary to suppress sample evaporation and maintain the stoichiometry of the sample,
especially important for the oxide materials. We have successfully levitated and molten several oxide materials
such as YAG and BaTiO,. The results of the thermophysical property measurements of these materials can be

found elsewhere.?? *¥ This paper concentrates on the metal properties obtained with the high vacuum system.
3. Thermophysical properties measurements with the electrostatic levitation method
p B

By combining such non-contact diagnostics apparatus as pyrometer of telephoto camera, several
thermophysical properties can be measured with the electrostatic levitation furnace. Property measurements by
containerless methods have several advantages compared with conventional methods. First, samples are free from
the risk of contamination from the container, and materials with melting points higher than that of crucibles (e. g.
platinum or alumina) can be processed. Second, since nucleation from the container wall can be suppressed,
molten samples can be maintained in deeply undercooled condition.

3.1. Density

The density and the ratio of isobaric heat capacity to hemispherical total emissivity were measured using a
UV imaging technique® described in detail elsewhere and summarized below for completeness. Once the sample
was molten, it took a spherical shape due to surface tension  and the distribution of surface charge®™?” . If the

shape of a liquefied sample departed from that of a sphere (due to excessive rotation), a counter torque was
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applied by the rotating magnetic field. Since the sample was axi-symmetric and because the mass was known,
density(p) could be calculated as;
_ 3m .
P05 ®
where m and r are mass and  radius of the sample, respectively.

The radiance temperature measured by the pyrometer was calibrated by using recalescence of the sample
(sudden temperature raise from undercooled temperature to the melting temperature (7)) due to the release of
latent heat of fusion). After the sample started to cool, both the images and the cooling curve were recorded to
determine the density. The recorded video images were digitized and matched to the cooling curve. Then, a JAXA
developed program extracted the area from each image and calculated the density at each temperature.

3.2, Surface tension and viscosity

The surface tension and viscosity were determined by the drop oscillation method'”, for which the frequency
of the surface oscillation of the levitated sample was measured around its equilibrinm shape. In this method, a
sample was molten and brought to a selected temperature. Then, a P,(cos8)-mode of drop oscillation was induced
to the sample by superimposing a small sinusoidal electric field on the levitation field. Here, Py{cos8) is a
Legendre polynomial of 2™ order. An oscillation detection system, illustrated in Fig. 3(a), measured the
fluctuation of the vertical diameter of the molten sample'® with 2000 Hz sampling frequency. The transient signal
that followed the termination of the excitation field was shown in Fig.3(b}. This signal was analyzed using an in-
house written LabVIEW™ program. This was done many times for a given temperature and repeated for several
temperatures. Using the characteristic oscillation frequency @, of this signal after correcting for non-uniform

surface charge distribution, the surface tension y could be found from the following equation'”

- &
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o 647 r; ye,
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and r, is the radius of the sample when a spherical shape is assumed, p is the liguid density, O is the drop charge, g,

is the permittivity of vacuum. The symbols g and ¥ are defined by

N2
2 b4
_— L, 4
1 167°1 &, @
and
Y2 =Ere,, ®)

respectively, and £ is the applied eleciric field. The characteristic oscillation frequency @, of molten refractory
metal droplet (ca. 2mm in diameter) ranged around 180 Hz to around 240 Hz.

Similarly, using the decay time r given by the same signal, the viscosity 7 is found by
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The liquid density data p is known by conducting measurements described in 3. 1, and radius of the sample r; can

be determined by image analysis of the recorded sample image during oscillation experiment. The drop charge @

can be calculated by
mg =QF,
where g is the gravitational acceleration.
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Fig.3 Sample oscillation detection for surface tension and viscosity measurement: (a) diameter sensing system and (b) signal of

decay of the oscillation following electrical excitation for a molten sample measured by the diameter sensing system.

This document is provided by JAXA.



4. Result of thermophysical property measurement of refractory metals

4.1. Density

The density data for each metal are listed in Table-1 to 11 and Fig.4 to 14 with literature values. During these
experiments, the density was measured over large temperature range including regions above and below the
melting temperature. The density, like that of cther pure metals, exhibited a linear behavior as a function of
temperature. In these measurements, the uncertainty was estimated to be less than 2% from the resolution of the

video grabbing capability (640 x 480 pixels) and from the uncertainty in mass (£0.0001g).

Table 1 Literature values of the density for liquid vanadium
Metal £{T.5 dp/dT Temperature Reference
T, (K} | (10kg m?) (kg m K" )
A% 5.46 -0.49 1840-2240 Present work™
5.55 2183 Allen®®
2183 5.73 2208 Maurakh®"
5.36 -0.32 2200-2470 Saito™
5.30 2183 Eljutin®®
5.57 2175-6600 Seydel*¥
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Fig.4 Density of liquid vanadium versus temperature.
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Table 2 Literature values of the density for liquid zirconium

Metal (T dp/dT Temperature Reference
T, (X) | (10%kg m™) kg-m?KH | (&)
Zr 6.21 -0.27 1850-2750 Present work™
5.80 2128 Allen®®
2128 5.60 2128 Eljutin®
6.06 2108 Maurakh®?
6.24 -0.29 1760-2300 Paradis”
5.50 2125 Peterson’®
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Fig.5 Density of liquid zirconium versus temperature.
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Table 3 Literature values of the density for liquid nicbium
Metal 0 (T dp/dT Temperature Reference
T, (K) | (10%kg-m™) kg-m?®KYy | (K)
Nb 7.73 -0.39 2300-3000 Present work™
7.83 2742 Allen®®
2742 7.57 2742 Tvaschenko®”
7.6 2742 Eliutin®®
7.68 -0.54 2742 Shaner™®
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Fig.6 Density of liquid niocbium versus temperature.
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Table 4 Literature values of the density for liquid molybdenum
Metal p(T,) dp/dT Temperature Reference
T, (X) | (10%kg-m?) (kg -m K™ )
Mo 9.11 -0.60 2450-3600 Present work™
9.35 2896 Allen®
2856 9.10 2896 Eljutin®™
9.33 : 2896 Pekarev*”
9.10 -0.80 2896- Seydel*
9400
9300
9200

2400 25060 2600 2700 2800 2900 3000 3100 3200

?@ﬁ% E‘S%?@%@?@ é%‘%i}

Fig.7 Density of quuid molybdenum versus temperature.
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Table 5 Literature values of the density for liquid ruthenium

11

Metal o(T,) dp/dT Temperature Reference
T, (K) | (10%kg-m?) (kg-m’KH | K)
Ru 10.75 -0.56 2225-2775 Present work®!
2607 10.9 2607 Allen®®
Ag ?G@@ T T H T T T ¥ T i T H T ; T T T T
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Fig.8 Density of liquid ruthenium versus temperature.
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Table 6 Literafure values of the density for liquid rhodium

Metal p(T,) do/dT Temperature Reference
T, | (0Ckg'm?) | (egm’k) | ®
Rh 10.82 -0.76 1820-2250 Present work™
11.1 2236 Allen®”
2236 10.65 2236 Eremenko™
10.7 -0.90 2236-2473 Mitko™?
10.7 2236 Popel®?
12.2 -0.50 2236-2473 Dubinin®®
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Fig.9 Density of liquid rhodium versus temperature.
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Table 7 Literature values of the density for liquid hafnium

Metal 2(7) dp/dT Temperature Reference
7, (K) | (10°kg-m™) kg-m’Kh (K
Hf 11.82 -0.55 2300-2700 Present work®”
12.0 2236 Allen®®
2504 111 2504 Peterson’®
11.97 2504 Ivaschenko™
11.5 2504 Arkhikin®
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Fig.10 Density of liquid hafnium versus temperature.
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Table 8 Literature values of the density for liquid tantalum

Metal o(T.) do/dT Temperature Reference

T, (X) | (10%kg -m?) kg-m?khy | (&)

Ta 14.75 -0.85 2650-3420 Present work
15.0 3290 Allen®”

3290 14.43 -1.3 Shaner®®
14.6 3290 Berhault®
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Fig.11  Density of liquid tantalum versus temperature.
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Table ¢ Literature values of the density for liquid tungsten
Metal o (T do/dT Temperature Reference
7, (K) | (10%kg-m?) (kg -m>K"h K)
W 16.43 -1.08 3125-3707 Present work™
17.5 3693 Allen®”
3695 16.37 -0.97 3693-8006 Seydel*
16.26 3693 Shaner™®
16.2 3693-5340 Berhault®"
17.6 3693 Calverley™
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Te s 5 e By
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Fig.12 Density of liquid tungsten versus temperature.
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Table 10 Literature values of the density for liquid rhenium

Metal (T dop/dT Temperature Reference
7, (X) | (10%g-m™) kg m’Kh | (&)
Re 18.65 -0.79 2683-3710 Present work™”
18.7 3459 Allen®?
3459 18.0 3459 Thevenin®™
18.9 3459 Pekarev'®
19500 ‘ i
o 19000 - —
E I |
=2 L ]
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= | ]
:
& '
% F —&— Present work .
: & O Allen
18500 - .
= B Thevenin
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18000 Ll C L : | s i ;
2400 2800 2800 3000 3240 3480 3600 3800

Temperature (K)

Fig.13 Density of liquid rhenium versus temperature.
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Table 11 Literature values of the density for liguid iridium
Metal o(T,) dp/dT Temperature Reference
T, (X) | (10%g m?) kg-m’KH | (K)
Ir 19.87 -0.71 2300-3000 Present work®
20.0 2719 Allen®®
2719 19.39 2719 Martsenyuk®®
19.23 2723 Apollova *”
20.0 2719 Gathers®
21000
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& i
g
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19500
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2 | —&— Present work e®
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Fig.14 Density of liquid iridium versus temperature.

Temperature (K)
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4,2. Surface tensioen

The measured values and literature data for surface tension and viscosity are listed in Table-12 to 28 and Fig.

15 to 23. The surface tension could be measured over large temperature range including the undercooled phase in

these experiments, whereas measurements by other methods could be done only around T,. These tendencies

become clearer for higher 7, samples.

Table 12 Literature values of the surface tension for zirconium

Fig.15

Temperature (K)

Metal y(T,) dydT Temperature Reference
T, (K) | (10°N-m™) (10°N-m'KY) K)
Zr 1500 -0.11 1800-2400 Present work™”
1459 -0.24 1850-2200 Paradis”
2128 1512 -0.37 Egry"
1480 2128 Allen®”
1400 2128 Peterson’®
1411 2128 Shunk®
1430 2128 Kostikov®"
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- 1600
© 1550
e
et
£
9
@ 1500
=
@
=
@ , ‘ . ; A
= s | | —&— Presentwork | © S
g§ 1450 | o paradis ; o© i
=S - —C— Egry Lo 8
)] L © Allen | o R
- v Peterson ;A ! 2l
1400 - s spunk | e .
I B Keostikov ‘ : i
%35@ i 1 1 i 1 i 1 1 1 i i 1 1 1 i 1 H 1 H i 1 i i 1 i H i 1 L |
1800 1800 2000 2100 2200 2300 2400

Surface tension of liquid zirconium versus temperature.
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Table 13 Literature values of the surface tension for niobium

Metal v (T, dy/dT ’ Temperature Reference
T, X | @0°N-m") (10°N-m'K") (K)
Nb 1937 -0.20 2320-2915 Present work™
1900 2742 Allen®®
27742 1827 2742 Flint®?
1839 2742 Ivaschenko®
2040 2742 Arkhipkin®®
1853 2472 Eremenko®
2@5@ T T T T ‘ T T i T T T E T T H T 3 T T
— 2000
E 3
— :
= o |
) L
— o
< 1950 &
< |
= |
@ !
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8 | O Allen |
T I B Flint T ]
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a i i
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Temperature (K)

Fig.16 Surface tension of liquid niobium versus temperature.
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Table 14 Literature values of the surface tension for ruthenium

%uﬁ@@@ﬁ@@%@m@@wgwmmﬁ

2250

Metal v{T.) dyd? Temperature Reference
T, (X) | (10°N-m") (10°N-m'K") X)
Ru 2256 -0.24 2450-2725 Present work*"
2607 2250 2607 Allen®”
2180 2607 Martensyuk®®
235@ T T T T T T
e —e— Present work | |
r O Allen 7
L B  Martsenyul .
2300 # ‘

L | r ,
2200 | A — T .
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Surface tension of liquid ruthenium versus temperature.
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Table 15 Literature values of the surface tension for rhodium

Metal v(T.) dydT Temperature Reference
7, (K) | (10°N-m™) (10°N-m'K) )
Rh 1940 -0.30 1860-2380 Present work™®
2000 2236 Allen®”
2236 1940 2236 Eremonko™
1815 -0.664 2236-2473 Gushchin®”
2100 — —

2000
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Fig.18 Surface tension of liquid rhodium versus temperature.
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Tazble 16 Literature values of the surface tension for hafnium

Metal v (T,) dydT Temperature Reference
7, (X) | ({10°N-m?) (10°N-m'K™) X
Hf 1614 -0.10 2220-2670 Present work””
1630 2504 Allen®®
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Fig.19 Surface tension of liquid hafnium versus temperature.
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Table 17 Literature values of the surface tension for tantalum

Metal v (7,) dydr Temperature Reference
T, (K) | (0°N-m") (10°N-m'K") (K)
Ta 2154 -0.21 3143-3393 Present work®
2150 3290 Allen®®
3290 1910 3290 Namba %
2016 3290 Eremenko®
2360 3290 Kelly ™
2030 3299
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Fig.26 Surface tension of liquid tantalum versus temperature.
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Table 18 Literature values of the surface tension for tungsten

Metal v(T,) dyar Temperature Reference

T, (K) | (10°N-m") (10°N-m'K )

W 2477 -0.31 3398-3693 Present work™”
2300 3693 Calverley™

3695 2500 3693 Allen®®
2200 . 3693 Pekarev™®
2316 3693 Martsenyuk’"
2300 3693 Agaev™
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Table 19 Literature values of the surface tension for rhenium

Metal v(T,) dydT Temperature Reference
7, (K) | (10°N-m") (10°N-m'KY) (X)
Re 2710 -0.23 2903-3583 Present work ™
3459 2700 3459 Allen®?
2610 3459 Pekarev®”
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Table 20 Literature values of the surface tension for iridium

Metal ¥ (T Temp. Coeff. Temperature Reference
T, (K) | (10°N-m™) (10°N-m'K") X)
Ir 2241 -0.16 2373-2833 Present work®
2250 2720 Allen®™®
2719 2264 -0.247 2720- Apollova™
2140 2720 Martensyuk™
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4.3. Viscosity
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Table-21 to 29 and Fig.24 to 32 show the viscosity data for refractory metals. To our knowledge, viscosity

data of niobium, ruthenium, tantalum, rhenium, tungsten and iridium were the first to be reported. The uncertainty

of viscosity was estimated to be around 15%. This relatively large uncertainty is mainly caused by sample motion

during drop oscillation that generates extra noise on the decay signal that lead to large uncertainty in 1. Surface

tension and viscosity measurements for molybdenum, tantalum, and rhenium are currently being conducted and

will be presented in a later publication.

Table 21 Literature values of the viscosity for zirconium
Metal | #(T,) (D=1, exp(E/RT) Temperature (K) | Reference
T, (K) | (10°Pa-s) | 5, E
(10°Pa-s) (10°3-mol™)
Zr 4.7 0.76 31.8 1800-2300 Present work™
4.83 1850-2200 Paradis”
2128 3.5 2133 Agaev™
5.45 2138 Elyutin’”
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Fig.24 Viscosity of liquid zirconium versus temperature.
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Table 22 Literature values of the viscosity for niobium

Metal | n(T,) n(T)=n,"exp(E/RT) Temperature (K) | Reference
T, (K) | (10°Pas) |y, E
(10”Pa-s) (10°J-mol™)
Nb 4.5 0.55 48.9 2320-2915 Present work™
2742
@ % T T i T T H T T T T ¥ T H 7 T T T

scosity (1 %’"BW@%}

- ]
T ]
7 S SN SRR BN ISUUUU SRR S -
S LI — l: § S TN S E RO S j I W | j I it j SIS S B i JES S B
2300 2400 2500 2600 2700 2800 2900 3000

Temperature (K)

Fig.25 Viscosity of liquid niobium versus temperature
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Table 23 Literature values of the viscosity for ruthenium
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Metal | n(T,) n{(T)=n,° exp(E/RT) Temperature (K) | Reference
7, (K) | (10°Pass) [y, E
(16°Pa-s) (10°7-mol™)
Ru 6.1 0.60 49.8 2450-2725 Present work*”
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Fig.26 Viscosity of liguid ruthenium versus temperature.
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Table 24 Literature values of the viscosity for rhodium

Metal | n(T,) n{T)=n," exp(E/RT) Temperature (K) | Reference
T, (K) | (107°Pas) | q, E
(10”°Pa-s) (10°T mol™)
Rh 2.9 0.09 64.3 1860-2380 Present work™
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Fig.27 Viscosity of liguid rhodium versus temperature.
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Table 25 Literature values of the viscosity for hafnium
Metal | n (T, n{T)=n,-exp(E/RT) Temperature (K) | Reference
7, (®) | (10°Pa*s) | q, E
(107Pa-s) (10°T- mol™)
Hf 5.2 0.50 48.7 2220-2670 Present work?”
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Fig.28 Viscosity of liquid hafnium versus temperature.
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Table 26 Literature values of the viscosity for tantalum

Metal | n (T, (T)=n,- exp(E/RT) Temperature (K) | Reference
T, ) | (10°Pass) | q, E
(10°Pa-s) (16°7-mol ™)
Ta 8.6 0.004 213 3143-3393 Present work®™
3290
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Fig.28 Viscosity of liquid tantalum versus temperature.
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Table 27 Literature values of the viscosity for tungsten

Metal | n(T,) n{T)=n, " exp(E/RT) Temperature (K) | Reference
T, (K) | (10°Pass) |y, E
{107Pa-s) (10°F-mol™)
W 6.9 0.11 128 3398-3693 Present work™
3695
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Fig.3¢6 Viscosity of liquid tungsten versus temperature.
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Table 28 Literature values of the viscosity for rhenium

Metal | 1 (T,) {(T)=n," exp(E/RT) Temperature (K) | Reference
T, (K) | (10°Pa-s) M, E
(10°Pa-s) (10°7 mol ™)
Re 7.9 0.08 133 2903-3583 Present work”™
3459
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Fig.31  Viscosity of liquid rhenium versus temperature.
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Table 29 Literature values of the viscosity for iridium

Metal | n (T,) {T)=n, " exp(E/RT) Temperature (K) | Reference
T, (K) | (10°Pa*s) | q, E
(107°Pa-s) (10°] - mol™)
Ir 7.0 1.85 30.0 2373-2773 Present work™
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Fig.32 Viscosity of liquid iridium versus temperature.
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4. 4 Comparison between hard sphere model caleulations
One of our research interests on measuring thermophysical properties of refractory metals is to find relations
between the microscopic structure and macroscopic (thermophysical) properties in liquid transition metals.
Compared to simple liquid metals such as alkaline metals, which consist of s and p valence electrons, liquid
transition metals are partially filled with d bands electrons and more éompiicated. Due to the presence of these d
electrons, successful prediction could hardly be done for liquid transition metals.®” Furthermore, lack of reliable

thermophysical properties of refractory metals prevented the progress of theoretical research.
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Fig.33 Measured and calculated thermophysical propertiss of hafnium: (a)surface tension and (b} viscosity.

Fig. 33 shows the comparison between our measured data of hafnium and calculated values based on the
modified hard sphere model.® Despite of the simplicity of the model, agreement between measured data and
calculated values is good and proved the reliability of the non-contact thermophysical property measurements with
the ELF.

Containerless techniques are also powerful tools to study microscopic structure of liquid refractory metals.
Pioneering works have already been done by coupling x-ray diffraction with aerodynamic levitator®® and EXAFS

with an electromagnetic levitator.®” Shenk et al. investigated the atomic structure of liquid nickel, iron, and
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zirconium over wide temperature ranges using the combination of electromagnetic levitation with neutron
scattering.®” Kelton et al. combined an electrostatic levitator with synchrotron and measured the structure of
liquid Ti-Ni-Zr alloy.®™ Knowledge of structure and thermophysical properties of liquid refractory metals

determined by containerless methods will promote theoretical research.
5. Necessity of microgravity congition

Although several successes were achieved over the years on the ground with ELFs (high vacuum and
pressurized), difficulties are faced when handling platinum, iron, certain alloys, and oxides due to insufficient
sample charges before reaching the melting temperature or sudden charge loss at melting, leading to an
interruption in levitation. Microgravity conditions would allow easier non-contact positioning of these metals or
larger samples while providing a quiet environment.

For surface tension measurement, sample deformation due to gravity is taken into consideration in equation
(2). Surface tension measurements in microgravity condition is necessary to check the validity of equation (2),
which has been derived from theoretical analysis.

Microgravity condition is more important for viscosity measurement. More stable sample positioning could
be achieved in microgravity, which would result in lesser noise on oscillation decay signal. Furthermore, because
levitation or positioning force could have same effects on the oscillation damping, measurement in microgravity,

where positioning force can be minimized, is ideal for viscosity measurement by the oscillation drop technique.
6. Conclusions

Thermophysical properties of seversl refractory metals over wide temperature ranges in the undercooled as
well as in the superheated state could be measured using the unique capabilities of the electrostatic levitation
furnace. On-going efforts focus on tungsten, whose melting temperature is the highest among metals.
Containerless processing facilities are powerful tools for thermophysical property measurements of high
temperature materials not only on the ground but also in microgravity. The ISS version of the ELF will be

designed and developed based on the results of this ground-based facility.
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