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Numerical Investigation on Two-dimensionality in the Traveling Liguidus-zone Method
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Abstract

In order to investigate the two-dimensionality in the traveling liquidus-zone (TLZ) method, the two-dimensional TLZ
model is introduced. Basing on the two-dimensional model, the two-dimensionality is defined. From the numerical
results in various sample diameters, the two-dimensionality is obtained. In the case of the sample diameter of 2 mm,
the two-dimensionality is negligibly small on the ground. However, in the case of 10 mm, the two-dimensionality is

large even though under no gravity condition if an InGaAs seed is used.
Introduction

The traveling liquiduszone (TLZ) method" ? is one of the most advancing growth techniques to obtain a
homogeneous crystal of a ternary compound semiconductor siich as InGaAs crystals. The feature of the TLZ method
is to determine the proper sample translation rate easily for homogeneous crystal growth. In order to determine the
translation rate, the one-dimensional theoretical model” has been introduced. This model predicts the growth rate
precisely. Thus single crystals of 2 mm in diameter and of more than 20 mm in length have been successfully obtained
with good reproducibility on the ground. However, it becomes difficult to grow a homogeneous crystal with a larger
diameter than 2 mm on the ground. In order to understand the reason for the difficulty, we introduce a two-
dimensional TLZ model. By considering the two-dimensional model, definition of two-dimensionality is discussed. To
calculate the two-dimensionality, two-dimensional numerical simulations in various sample diameters are carried out.

From the numerical results, the two-dimensionality is estimated and is discussed.
Two-dimensional TLZ model

In order to investigate two-dimensionality, a two-dimensional TLZ model is introduced. The generalized
expression of solution growth can be described as

all I=int '

(C.—Cs)u-A=—D

where # is a normal direction to an interface, u a vector of growth rate and # a unit vector being perpendicular to the

interface. Here, we assume that the z-coordinate is a function of the r-coordinate and time ¢, that is,

z=f(r1t). @
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By using Eq. (2), the unit vector 7 can be described as
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are assumed. These are the same assumption as the one-dimensional TLZ modelg), that is, the concentration in the
liquid is a function of only the temperature. Thus, the equation of
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is obtained. This is the two-dimensional TLZ model. On the other hand, the one-dimensional TLZ model” is described as

aC, aT.

(CL—Cs)R=— DST azh ®
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where Ris a growth rate. By comparing Eq. (7) with Eq. (8), it is found that the term of _E‘_é%f‘ changes the
growth rate estimated from the one-dimensional model. This means that the following expression is used as the
definition of the two-dimensionality ¢§';
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Two-dimensional Numerical Simulation

In order to calculate Eq. (9), temperature gradients along r- and zdirections and an interface shape are required.
To obtain these parameters, two-dimensional numerical simulations are carried out. In the simulation, the energy
transport equation, the mass transport equation, the stream function equation, the vorticity transport equation, the

energy balance equation and the mass balance equation are simultaneously solved. We use the boundary fitted
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coordinate (BFC) method™'?, which is a kind of finite difference method, in order to solve these equations. The BFC

method solves the governing equations that are transformed from the physical space to the computational space. The

transformed governing equations are described as Egs. (10) — (16).
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where ¢=ritz%, =rertzezy, y=rite}, I= 22—z, ¢ and 5 are the computational coordinates
corresponding to r and z in the physical space, ¢ the stream function, w vorticity, T temperature, o density, G,
specific heat, « thermal conductivity, v kinetic viscosity, Ls. latent heat, B thermal volume expansion coefficient, G
the buoyancy coefficient by the specific gravity difference, g gravity, t time, C the concentration, D the diffusion
coefficient. Subscripts of L and Sindicate the liquid side and the solid side, respectively.

Results and Discussion

The typical results of the numerical simulation in the case of the sample diameter of 2 mm and 10 mm are shown
in Fig. 1 and 2, respectively. The gravity condition is 1 g. The thermal convection in the 2 mm case is weaker than
that in the 10 mm case due to both the small diameter and the radially small variation of the temperature. For

2 due to the weak

example, the convection effect on the mass transport is negligibly small in the 2 mm case
convection. In addition, the two-dimensionality may be also negligibly small in the 2 mm case. By using the numerical
results, the two-dimensionality is calculated and is shown in Fig. 3 as a function of the radius. In this figure, the two-
dimensionality in the 2 mm, 5 mm and 10 mm cases are plotted as the red line, the blue line and the green line,
respectively. As shown in Fig. 3, the two-dimensionality in the 2 mm case is only about 4 % at the maximum. This
result indicates that the radial difference of the growth rate in the 2 mm case is within £0.01 mm/hr since the growth
rate is about 0.216 mm/hr in the ground-based crystal growth experiments. The difference of 0.01 mm/hr is usually
negligibly small from the viewpoint of the experimental technique. However, the two-dimensionality increases with
the sample diameter, that is, about 16 % in the 5 mm case and about 33 % in the 10 mm case at the maximum. These
values are not negligible and this should be one of the reasons that a homogeneous crystal growth with a large
diameter is difficult on the ground. The two-dimensionality increases as the radial position increases as a macroscopic
tendency. This tendency indicates that the InAs mole fraction in the solid decreases as the crystal grows near the
outer radius if the InAs fraction is almost constant on the axis. This is qualitatively consistent with the experimentally
obtained InAs mole fraction in the 10 mm case as shown in Fig. 4. Although the data scattering in Fig. 4 may be

caused by grain boundaries, the mole fraction variation can be clearly observed.
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Fig. 3 Radial variation of two-dimensionality Fig. 4 Experimentally obtained InAs mole fraction along

growth direction

As shown in Fig. 3, the two-dimensionality once decreases near the crucible wall then is maximized on the wall.
This means that the lattice mismatch is maximized near the wall. This may enhance polycrystallization. The
combination of this lattice mismatch with the constitutional supercooling on the wall may be the reason that single
crystal growth is difficult on the ground. This issue should be investigated more deeply in future. By plotting the
maximum two-dimensionality, the dependency of the two-dimensionality on the sample diameter is obtained and is
shown in Fig. 5. By fitting the second order curve, the sample diameter, at which the two-dimensionality is zero, is
estimated and is slightly larger than 1 mm. This estimation indicates that the two-dimensionality becomes almost
perfectly negligible if the sample diameter is 1 mm.

The thermal convection may enhance the two-dimensionality. Therefore, the two-dimensionality variation against
the gravity condition is investigated. Figure 6 is the comparison between the two-dimensionality under 1 g condition
and that under no gravity condition. The red line and the blue one represent the two-dimensionality under 0 g and that
under 1 g. This figure shows that the two-dimensionality under 0 gis smaller than that under 1 g. However, the two-
dimensionality under 0 gis about 26 %, while the two-dimensionality under 1 gis about 33 %. This is not small enough
to obtain a homogeneous crystal. This result indicates that the contribution of the convection to the two-
dimensionality is not so large. Another possibility of the large two-dimensionality is the thermal conductivity
difference between the seed crystal and the crucible. Namely, the heat is mainly transferred to the wall at the interface
rather than to the seed crystal. If this speculation is true, the two-dimensionality should decrease by using another
seed, of which the thermal conductivity is higher than that of the InGaAs crystal, for example, a GaAs seed. The
thermal conductivity of the GaAs is about 16.0 W/K-m, while that of the Ing3Gag7As is about 3.0 W/K-m. The effect
of the GaAs seed on the two-dimensionality is investigated. The result is shown in Fig. 7. This figure clearly shows
that the two-dimensionality in the GaAs seed case is drastically small as compared with that in the InGaAs seed case.
It is summarized that the GaAs seed is much appropriate for the homogeneous crystal growth with a large diameter
from the viewpoint of the two-dimensionality. However, the lattice mismatch at the initial interface may prevent single

crystal growth. So this issue should also need further investigation in future.
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Conclusions

By introducing a new two-dimensional TLZ model, the two-dimensionality is defined from the viewpoint of the
interface shape. To calculate the two-dimensionality, two-dimensional numerical simulations are carried out. By using
the numerical results, the two-dimensionality is calculated in various sample diameters. In the case of the sample
diameter of 2 mm, the two-dimensionality is about 4 % at maximum on the ground. This is small enough to grow a
homogeneous crystal. On the other hand, in both the 5 mm and the 10 mm cases, the two-dimensionality is about 16 %
and 33 % at the maximum, respectively. These values are not negligible and this may be one of the reasons why
homogeneous crystal growth with a large diameter is difficult on the ground. Because the thermal convection
becomes strong as the sample diameter increases, the increases of the two-dimensionality in the 5 mm and the 10 mm
cases may be caused by the convection. Therefore the two-dimensionality under the 0 gcondition is investigated.
From the comparison of the two-dimensionality in 1 gwith that in 0 g, the decrease of the two-dimensionality is not

enough though it decreases under the 0 g condition. This suggests that the large two-dimensionality is caused
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another mechanism rather than the convection. To investigate this speculation, the two-dimensionality in the GaAs
seed case is calculated. From the result, it is found that the two-dimensionality is drastically reduced. Therefore, the
GaAs seed is much appropriate for homogeneous crystal growth. However, the lattice mismatch at the initial interface

may cause polycrystallization. This issue will be investigated in future.
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