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Optimum Propeller or Windmill Design in a Wind Gradient®
Masashi HARADA™

Abstract

A method for optimizing a propeller or windmill in a wind gradient has been developed, based on the
lifting-line theory. This method takes the effect of trailing vortices and shed vortices into consideration, and
consists of two fundamental major concepts. The first is the description of the problem by quadratic func-
tions. The second concept is the reduction of the number of unknown variables using the periodical charac-
teristics of the solution. In the first concept, optimum propeller design is converted into an optimization
problem solved by a simple procedure. Using the latter concept, the number of design operations is reduced
to a number exe-cuted within practical computation time. The validity and accuracy of the solution obtained
by this method are carefully evaluated and proven using Prandtl’s propeller theory. The solution shows that
the propulsive efficiency of the optimum propeller with a wind gradient is larger than that without 2 wind
gradient. The so-lution also shows that the optimum propeller in a wind gradient generates thrust even with-
out an internal power supply. The windmill for a windmill ship is also designed, and the advantage of a

windmill in a wind gradient shown,

Nomenclature
A = matrix of objective function i = variable for time step from start of
b = variable for number of blades last cycle
B = number of blades I variable for time step from initial
B = vector of objective function time
¢ = variable for number of blades j variable for blade segment
c = blade section chord 4 variable for time step from start of
C = matrix of constraint function last cycle
Cp drag coefficient K variable for time step from initial
Corm drag coefficient of hull time
Cr = 1ift coefficient [ variable for blade segment
CpP = control point L lift
d propeller pitch L number of cycles
dR = width of blade segment L/D fineness ratio
dt = length of time step Ly length of the vortex sheet
D drag m mass of air
D = vector of constraint function M number of time steps
Dy = average drag of windmill in one Mc number of time steps in one cycle
cycle 7 natural number
Dy = drag of hull N number of blade segments
bpr = dividing point P power per unit area
f = function of subscripts P number of cycles; actual value
I momentum loss function P power consumed by propeller
Fp perpendicular component of force without effect of profile drag
Fr = tangential component of force P average power in one cygzle

*

received 16 February, 2004 (SEp%164E2H 10 B &% AF)

*1 Aeronautical Application Technology Center, Institute of Space Technology and Aeronautics
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power consumed by propeller with
effect of profile drag

number of cycles; imaginary vast
value

volume of hull

distance between rotational center
and control point

radius of blade

area of propeller disk

thrust per unit area

thrust per unit area derived from
‘gX

thrust generated by propeller with-
out effect of profile drag

average thrust in one cycle

thrust generated by propeller with
effect of profile drag

effective thrust of windmill ship
thrust of screw

induced velocity at propeller disk
x component of v

average axial induced velocity at
propeller disk

v component of v

z component of v

tangential component of v

vortex displacement velocity far
behind propeller disk

vortex displacement velocity at
propeller disk

relative velocity between blade
segment and air

velocity of air ahead of propeller
center

velocity of air ahead of propeller
wind gradient function
perpendicular component of ¥
velocity of windmill ship
tangential component of V/
induced velocity of air far behind
propeller disk

x component of w

tangential component of w

wind coordinates system
blade coordinates system fixed on-
Blade #b
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Yw
YBb

Zw
Zpp

Eo
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A (hat)
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' (prime)

Oeif

( )bijckl

Oy
Oyu

x component of influence

coetficient

wind coordinates system

bladecoordinates system fixed on

v component of influence

coefficient

wind coordinates system

blade coordinates system fixed on

Blade #b

z component of influence

coefficient

angle of attack

index of error

constant for iteration

circulation around bound vortex,

circulation around vortex ring

propulsive efficiency

propulsive efficiency given by v,

geometrical angle of blade
tangential component of influence

coefficient

Lagrange’s parameter

kinetic viscosity of air

density of air

angle of flow to rotating disk

helical angle

azimuth angle

angular velocity

Superscripts
range of suffix is converted

summed value

Subscripts
value at j-th blade segment of Blade
#b at i-th time step
value at j-th blade segment of Blade
#b at i-th time step induced by vor-
tex ring released by k-th blade seg-
ment of Blade #c at [-th time step
value at j-th blade segment of Blade
#1 at i-th time step
value at j-th blade segment at of
Blade #1 at i-th time step induced by
vortex ring released by 4-th blade
Blade #b
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segment of every blade at [-th time
step
_(under score)
= time step from initial

1. INTRODUCTION

The earliest among the important studies of the
propeller has been done by Betz". He has shown
the condition that the minimum induced loss pro-
peller must satisfy, which is known as Betz condi-
tion. Prandtl obtained the approximate solution of
the minimum induced loss propeller that satisfies
the Betz condition. Further, Goldstein” obtained the
exact solution of the minimum induced loss propel-
ler that satisfies the Betz condition. The most im-
portant and fundamental studies of propellers were
done by these researchers and are based on the lift-
ing-line theory. Though it is known that these theo-
ries are valid even in the middle disk-loading con-
dition in practice, these theories are only rigorous in
the light disk-loading condition. Sometimes, how-
ever, a windmill, which is usually designed in the
high disk loading condition, is designed by using a
method based on Prandtl’s approximate solution.

As described in Appendix A, vortex sheets are
deformed by the velocity induced by themselves.
On the other hand, performance of propellers heav-
ily depends on the shape of vortex sheet which re
quires a vast number of calculations to be deter-
mined. The development of computers allows us to
calculate the shape of the vortex sheet precisely.
Consequently, use of the precise shape of the vortex
sheet yields an accurate calculation of the perform-
ance of propellers or windmills. The use of vortex
sheet is particularly important when we design a
windmill and calculate its performance, since the
windmills are designed to absorb the energy of air
as much as possible, in other words, it is designed
for the high disk-loading condition. Although the
use of precise shape makes the calculation accurate,
an increase of the accuracy is very small when the
disk loading is light. Therefore, when the light disk
loading condition is assumed, the rigid wake model,
that is the vortex sheets from Archimedean screw-
like surfaces with constant pitch and constant di-
ameter, makes the calculation sufficiently accurate.

Indeed, an ordinary propeller is usually designed in
the light disk-loading condition.

Since 1998, the National Aerospace Laboratory
of Japan (NAL), Telecommunications Advance-
ment Organization of Japan (TAQO) and Communi
cations Research Laboratory (CRL) have developed
a stratospheric platform that serves for the high-
speed telecommunication, traffic observation and
carth observation. This stratospheric platform is a
blimp that absorbs energy by using the solar cells
attached on the upper surface of the hull and stays
20km above a city for a few years. One of the dif-
ficulties of this stratospheric platform is the design
of the propeller. The propeller and the propulsive
system must be highly efficient and light, since the
energy stored for night operation is limited and it is
difficult to obtain buoyancy at high altitudes. From
the standpoint of the aerodynamics, the single
large-diameter propeller installed at the stern is
ideal®. This concept can be seen in the eaﬂy stage
of the studies of the stratospheric platform® > and
is very common in the field of submarines. The
propeller at the stern is covered by the boundary
layer whose velocity is lower than the outer flow, as
shown in Fig 1.1.

Consequently, the propulsive efficiency of the
propeller increases by 40% as shown by momentum
theory. However, the propeller increases the drag of
the hull, since the propeller sucks the hull back-
wards. As a result, the total increase of the propul-
sive efficiency is approximately 20%. Though this
efficiency increase caused by the stern propeller is
quite attractive, it is difficult to install one single
large propulsive system at the stern, since the rigid-
ity of the hull at the stern is not strong enough to
support the system. Therefore, one must reinforce
the stern structure by a hard material, which causes
a weight increase of the blimp. Furthermore, the
stern propeller causes a concentration of mass on
the stern, which makes it difficult to place the cen-
ter of gravity beneath the center of buoyancy. As a
result, though the stern propeller is ideal aerody-
namically, it is not ideal structurally.

The conventional blimp uses two propellers in-
stalled on a gondola that is supported by catenary
curtains, and the internal combustion engines drive

This document is provided by JAXA.



Without stern end propeller

JAXA Research and Development Report JAXA-RR-03-016E

With stern end propeller

Boundary Layer Propelier

Fig. 1.1 Side view of stern propeller

Catenary curtain  catenary rope

/

Hull Vertical stabilizer

=, i I
Forward balionet Gondola

=

Propelir

\ After ballonst 1076 ntal stabilizer

Center ballonet

Internal combustion engine

Fig. 1.2 Side view of a conventional blimp

the propellers as shown in Fig 1.2. This configura-
tion is structurally quite rational, which enables the
designer to concentrate heavy equipment such as
the landing gear, the engines, the propellers and the
payload into the gondola. The load caused by the
concentrated mass is distributed by catenary cur-
tains over the upper membrane of the hull. Though
this configuration is structurally efficient, the di-
ameter of the propeller is smaller than that required
aerodynamically. This is partly because the large
propeller requires heavy structures such as long
struts and a tall gondola. Thus the efficiency of the
propeller of the conventional blimp is as small as
60% because of its small diameter.

On the other hand, the concept that multiple
small propulsive units be distributed on the surface
of the hull, as shown in Fig. 1.3 and Fig. 1.4, is pro-
posed by the authors. This concept makes it possi-
ble to remove the catenary curtain and goundola,
since the propulsive unit is directly attached to the
membrane of the hull. The validity of this concept
was proved by the experiment shown in Fig. 1.5
Though the maximum thrust was as much as 50 N,
the unit was attached to the inflated membrane
firmly without any vibration. Further, by uniting the
propeller, the motor and the batteries into one small
unit as shown in Fig 1.4, the following merits are
expected.

This document is provided by JAXA.
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First, the length of the power line that causes the
power loss and the increase of the weight is mini-
mized. Second, the total weight of the propeller
blades becomes light because of the scale effect.
Third, the development of the stratospheric plat-
form becomes easy, since the increase of the re-
quired thrust during the development of the strato-
spheric platform can be adjusted by the increase of
the number of propulsive units. Fourth, the hull
stress caused by the mass concentration is allevi-
ated by distributing the propulsive unit, which is the

Huil

ot

heaviest among the equipment. Fifth, the disk-load-
ing of propeller becomes light, which is the most
important factor for increasing the propulsive effi-
ciency since the total area of the propeller disks can
be increased by increasing the number of the pro-
pulsive units. Sixth, and this is the issue treated in
this paper, the increase of the propulsive efficiency
is expected to increase in the same way as the pro-
pulsive efficiency of the stern propeller, since. the
small diameter propeller can be designed to work in

the boundary layer.
Solar sell Vertical stabilizer

Horizontal stabilizer

Propulsive unit

Fig.1.3 Concept of the multi small distributed propulsive unit. Side view of a 25m class blimp

Propeller

Attachment plate

.

Batteries

Base

Fig. 1.4 Bird's eye view of the propulsive unit.
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Fig. 1.5 Experiment of the propulsive unit. The power of the motor is IkW. The

weight of the unit is 1.5kg. The maximum thrust is S50N. The deferential pressure

in the inflated membrane is 100~400Pa.

Of course, the efficiency of the small propeller may
also be decreased by the effect of the lower Rey-
nolds number.

It is estimated that the length of the stratospheric
platform for commercial use is nearly 200m, the
maximum velocity, U_, , is 30m/s and the flight
altitude is 20km. If it is assumed that the hull is a
flat plate and the boundary layer is the turbulent
boundary layer, the thickness of the boundary layer,
S is given by®;

5(x)=037x(U, x/v)"” (1.1)
where x is the distance from the bow and v is the
kinetic viscosity of air. & at x=100m is approxi-
mately 1.3m. Thus, a propeller with 1.0m diameter
can work in the boundary layer whose velocity is
lower than the outer flow. The propulsive efficiency
of the propeller in the boundary layer is higher than
that in the outer flow, as described in the explana-
tion of the stern propeller. Unlike the stern propel-
ler, however, the inflow velocity is not symmetrical
about the rotating axis. Thus, the action of the pro-
peller in the boundary layer is unsteady. The de-

velopment of the optimum design of this unsteady
propeller in the wind gradient is the purpose of this
paper. The velocity of the air in the turbulent

boundary layer, u, is approximately given by:

ulU,, =(y/6)" (1.2)

where y is the vertical distance from the surface.
Fig. 1.6 shows the profile of u/U,, . This also
shows one of the propellers for the stratospheric
platform. The diameter of this propeller, D, is 0.8
and the clearance between the surface and the pro-
peller is 0.28. In this case, the gradient of the veloc-
ity of the air that passes the propelier disk, wy, is
approximately given by:

wy=02U,, /D (1.3)

This equation is only one of the equations that
for w,, whose value depends on the relative size of
the propeller based on the value of &.

Windmills have close relation to propellers and
can be regarded as a special case of propellers that
generate power instead of consuming power. It is

This document is provided by JAXA.
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U= U 70.2U,, /D (/3 - 0.6)

I

0.4} U/ = (y78)"

0.28, cleararice

1.2 1.4

Fig. 1.6 Velocity of air in the turbulent boundary layer.

not, however, adequate to apply Prandtl’s approxi-
mate solution to the design of the windmill, since
the windmill is designed in the high disk-loading
condition. This condition is inevitable, since the
purpose of the windmill is absorb the energy of
wind as much as possible. However, the rotor for a
windmill ship is designed to minimize (drag)/(pow-
er). The concept of the windmill ship is old.

The windmill ship absorbs power from the wind
by using roter, and rotates the screw by the power
as shown in Fig 1.7. Though it is possible to travel
against the wind by the power from the windmill,
the practical windmill ship may use the combined
system consisting the rotor and a conventional
power source such as a diesel engine. When the
windmill ship travels against the wind, it is required

that the drag of the windmill be small. Thus, the
light disk-loading assumption can be applied to
thedesign of this windmill. It is known that there is
a wind gradient over the sea and ground. The wind-
mill on the ground can work in the uniform wind
high above the ground by using a high pole. How-
ever, the use of a high mast in the windmill ship is
dangerous, since the rolling moment caused by the
windmill increases. Thus, the windmill ship must
use low masts and the windmill works in the wind
gradient.

The main purpose of this paper is to introduce a
method for obtaining the optimum propeller (wind-
mill) in the wind gradient, and to show examples of

the calculation.

200m

Dynamo } Windmill

e

B

Fﬂ] Pov)/er Line

/

Motor

Fig 1.7 200m class windmill ship.
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2. Optimum design by Momentum Theory

2.1. Problem

In this chapter, the thrust distribution of a pro-
peller rotating in a wind gradient is optimized by
using an expanded momentum theory. The radius of
the propeller is R(m) and the angular velocity of the
propeiler is (rad/s) as shown in Fig. 2.1. The ve-
locity of the wind at z=0 is V{m/s), and the wind
gradient is a function of z, Vgrap(z)(m/s); where z is

cq
i
v/ !m Ic\ I
AVATT 7

;\(

KVGMD(Z)(m/S)
o Z’
| ,\
£
= 4

JAXA Research and Development Report JAXA-RR-03-016E

the height from the axis of the propeller. Thus, the
wind velocity far ahead of the propeller disk, V)
(m/s}, is given by :

Vise =V + Vorap {Z> (2.1)

It is assumed that the flow behind the propeller

is non-rotating and steady. By this assumption, 2
simple momentum theory can be used.

Propelier in a2 wind gradient

No rotation

Steady flow

O(radfs)

[
L

Fig. 2.1 Side view of a propeller in a wind gradient

2.2, Simpie Momentum Theeory

In this section, a conventional propeller in a uni-
form flow and the simple momentum theory are
briefly discussed. Tt is assumed that the velocity
behind the propelier is uniform. Fig. 2.2 shows the
flow around the propeller. The velocity of the flow
far ahead of the propelier is Vyr. The propeller ac-
celerates the flow at the propelier disk, and the ve-
locity becomes:

Vioisx=Vinrtv (2.2)

where v is the induced velocity. Far behind the

propeller, the velocity becomes”:

Voown=Vmrt2v (2.3)

The mass of the air that passes through the pro-
peller disk per unit time, m(kg/s), is:

th = pS(Vye + V) (2.4)

where S(m’) is the area of the propeller disk (also
referred as the “actuator area”) and p(kg/m’)
is the density of air. The thrust is the reaction of the
increase of the momentum of the air. Thus, the
thrust of the propeller is given by:

T = MVpogy — MV =205V (Ve +7) (2.5)
Furthermore, the power consumed by the propeller,

P, equals the difference of energy between the up-
stream and downstream flow.

P =—mVpomy Y g (2.6)
From Egs.(2.2), (2.3) and (2.6), P is given by:
P=20Sv(Vyp + V) (2.7)

This document is provided by JAXA.
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VIN

Vinptv=

VDISK

1%

Vinet2v=Vp o

Qc
~

Propeller disk

Fig. 2.2 Flow around the Propeller

2.3. Expanded Momentum Theory

In this section, the thrust distribution of a pro-
pelier rotating in a wind gradient is optimized. It is
assumed that small segments of the propeller disk,
dydz, do not interfere each other. Thus the simple
momentum theory can be applied to each small seg-
ment as if the small segments were isolated small
actuator areas. Fig. 2.3 shows this concept briefly.
The velocity of the flow far ahead of propeller, Vi,
is given by Eq. (2.1). By expanding

Vipisk™Vinetv

the concept of Eq. (2.5), the local thrust on the
small segment, 47, is given by:

dT = 2pv(Vype + v )dydz (2.8)

Also, by expanding the concept of Eq. (2.7), the
local power on the small segment, dP, is given by:

2
dP =2pv(V e + V) dydz 2.9
Vpoun=Yinr+2v
VINF VDISK= VINF+ v
/ z VDOM/N: NF+2V

i

Propeller disk

Fig. 2.3 Concept of an isolated propeller disk segment

By integrating Eq. (2.8) and (2.9), the total thrust, 7,
and total power, P, becomes:

7= 5{ 209V e +v) dvdz (2.10)
&

P= jgi“ 209V +v) dydz 2.11)

The problem of optimizing the thrust distribution of
a propeller rotating in a wind gradient can be re-
written as follows:

Problem
maximize T
subjectto  P=Py

where Py is constant. From Egs. (2.10) and (2.11),
the Hamiltonian of Problem becomes:

H =2p0(F e +v)+ ARy (Ve +vF | (2.12)

where A is Lagrange’s parameter. H is a function of
only v and z, thus Euler’s Equation becomes:

This document is provided by JAXA.
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g d{dH
————1=0 (2.13)
& dz\ v

where * denotes the partial derivative with respect

to z. Bq. (2.12) into Eq. (2.13) gives:

%[ZpV(VWF )+ AL +vF =0 1)

From this we obtain:

Yy =

—3%% (14 24V VA AV ™ + AV e +1 }(215}
Although Eq. (2.15) has + and — signs ahead of the

root itive sign does not give a posi-

square root, the positive si
tive value of v. Thus only the negative sign is valid.
Eq. (2.15) seems to give the value of v, but it still
contains the unknown parameter A. This must be
determined by using Eq. (2.11) and the condition,
P=P, However, it is almost impossible to deter-
mine A analytically. Therefore, A is obtained by
computation.

2.4. Example

To compute Lagrange’s parameter, A, for a spe-
cific example, the following values were used: the
radius of the propeller, R, is 1.0m; the velocity of
flow far ahead of the propeller center, Vy, is 10 mv/s,
the wind gradient function, Verap (2), is given by:

Verin (2)=2.02 (2.16)

Fig. 2.4 shows the relation between A and the total
power, P, of the propeller in the wind gradient.
From this figure, we obtain A=—0.9689 for P=100W
and A=0.9926 for P=0W. When P=100W, total
thrust is 11.7N, whereas the thrust is 9.87N when
P=100W with no wind gradient. Furthermore, even
when P=0W, thrust has a positive value, 1.92N.
That is, a propeller in a wind gradient can generate
thrust without power. Fig. 2.5 shows the induced
velocities, v, as functions of z, and Fig. 2.6 shows
the local thrusts as functions of z. These figures
show that the region where the propeller generates
thrust corresponds to the region where the Vg is
lower than Vyy the region where the propeller gen-

erates drag corresponds to the region where the Ve
is higher than V,y Fig. 2.7 shows the local powers

as functions of z. This figure shows that the region
where the propeller consumes the power ap-
proximately corresponds to the region where the
Vi is lower than 7,y and the region where the pro-
peller absorbs the power from the air approximately
corresponds to the region where the Vs is higher
than Vyy

1500

1000 "

-1500 : ‘ ‘ ‘ ‘
02 -018 -016 -044 -0.12 -0.1 -0.08
Lambda
Fig. 2.4 Lambda and Power
1.5 ‘
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o Lo TN NG e @
g 05 TN S 8
kel ‘ I L
8 2N v
20 : / : IR >
£ A N @
Bosl PEI00W. N =
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S ) =
74 .08-06-04-02 0 02 04 06 08 1
Height(m)
Fig 2.5 Induced Flow Distribution
30 ——r———— :
— Power=1o0W
oo NG T Power=100W
Eoq0r o NG e 3
z £
T ob- kN -y
[0
» . . . . .
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3 100W 117N 2
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Fig. 2.6 Thrust Distribution
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Fig. 2.7 Power Distribution

3. Analysis of Steady Propeller by Vortex
Method
3.1. Propeller Model in Uniform Flow

In the previous chapter, the thrust distribution of
a propeller in a wind gradient was optimized using
the expanded momentum theory. The result of the
previous chapter has shown that a propeller in a
wind gradient generates thrust without power. This
result is amazing but doubtful since the momentum
theory is not exactly accurate and is valid only with
strong assumptions. In this chapter, the method for
calculating the performance of a propeller that
works in a uniform flow is described.

Fig. 3.1 shows the propeller treated here, which
has the following properties: the radius of the pro-
peller is R(m); the number of the blades is B; the
angular velocity of the propeller is (U(rad/s); The

Vine(mis) >

chord length of the propeller blades is c(m); The
geometrical angle of the propeller blades is 6(rad).
Further, the velocity of air far ahead of the propeller,
Vine{m/s), is uniform and constant. The purpose of

this chapter is to describe the method for calculat-
ing the thrust generated by the propeller with the
effect of the profile drag, Tp(N), the power con-
sumed by the propeller with the effect of the profile
drag, Pp(W), the thrust generated by the propeller
without the effect of the profile drag, 7(N), and the
power consumed by the propeller without the effect
of the profile drag, P(W). It is assumed that the in-
duced velocity is much lower than the wind veloc-
ity. This assumption is valid only when the
disk-loading is very light. However this assumption
makes it easy to use the vortex method, because the
vortex method has usually an inevitable difficulty.
That is, it is difficult to determine the shape of the
trailing vortices because the induced velocity de-
forms the wake and elongates the pitch of the wake,
d(m). This difficulty is very important and dis-
cussed further in Appendix A. If the induced veloc-
ity is negligible small, both the deformation of the
wake and the elongation of the pitch are negligible,
vortices form an Archimedean

and the trailin

iT viciirids

screw like surface.
3.2. Definitions
The propeller is described by using a right-hand

coordinate system as shown in Fig. 3.2: the number

Tip vortices

/ fropelier blade / \

R{m)

o contractio

Chord line

Fig. 3.1 Side view of a propeller in a uniform stream
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of blades is B; Blade #1 is on the y-axis; the rotat-
ing direction of the propeller is counterclockwise;
the trailing vortices form an Archimedean screw
like surface with constant pitch, d{(m). From the
previous assumption, this d is given by:

d= LSNF 3.1)

Further, the trailing vortices are designated by the

following definition as shown in Fig. 3.3.

@  Fach blade is divided into NV segment
width of the segments is dR{m).

®  The bj-th trailing vortex is released from the
inner end of the j-th segment of Blade #b.

®  The j-th control point, C.P.(j), is located on
the middle of the j-th blade segment of Blade
#1.

The current j-th dividing point, D.P.(5, 0, j), is
located on the inner end of the j-th segment of
Blade #1.

The bij-th dividing point, D.P.(b, i, j), stands
for the position of the j-th dividing point of
Rlade #b at the i-th time step, idi(sec).

€  The b-th vortex sheet stands for the vortex
sheet released from Rlade #5.

®  The bj-th blade segment stands for the j-th
blade segment of Blade #5.

©  The range of i is [-M, 0], and A is very large
number

®  The bj-th horse shoe vortex consists of the

bj-th trailing vortex, vortex A, and the bound

vortex on the bj-th blade segment, and the (),
j+1)th trailing vortex, vortex B as shown in

Fig. 3.3. ]

The strength of the circulation around bj-th

horse shoe vortex is I';, and it is assumed that

the j-th horse shoe vortices of each blade are

@

identical.

3.3. Infiuence Coefficients

Influence coefficients, (3¢;, ¥, £;), are defined
as the magnitude of the induced velocities at C.P.(i),
(vxi, vy, Vzi), induced by the j-th horse shoe vortex
with a unit circulation strength on each blade.
Therefore, vy, vy; and vz are given by:

Blade #1

Trailing vortices

Fig. 3.2 Coordinates of propeller: B=3

dar Blade #1
=/

Fig. 3.3 Definition of points on the vortex
sheet released from Blade #1

Point B

Circulation I

Point AcC

Induced Velocity v

Point O
Fig. 3.4 The Biot-Savart law. The Velocity at
Point O Induced by the circulation around
Segment A-B.
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N

Vg = Zﬁyfj (3.2)
=
]v

Vi = Z\gjfj (3.3)
=
N

Vo = Zgij?j (3.4
=1

When a trailing vortex is the straight segment be-
tween Point A and Point B, A-B, as shown in Fig.
3.4, the velocity of the flow at Point O induced by
the circulation around A-B is obtained from the
Biot-Savart law as:

i faxt ] 1 3:5)

where ¢ and & are vectors from Point O to Point A
and Point B respectively and 7/is & - 4.

Rotating axis

Rotating axis [}

7

Blade #1

DRk
D.P.(bk-1, )

Jj-th horse shoe vortex on
the b-th vortex sheet

C.P.()

|
) |

DP.(bk j+1) DPAbA, j1)

e
al
|

Blade tip

Fig. 3.5 Definition of vectors on the b-th vortex sheet.

The vortex sheet is flattened to illustrate.

In a similar fashion, the influence coefficients between C.P.{7) and the j-th horse shoe vortex

@y, Yy, £), are given by:

(¢, v,

z,J =

ij?

where ap, by, ¢, and 4, are vectors from C.P.{i) of
Blade #1 to D.P.(b, k, j}, D.P(b, k-1, j}, D.P.(b, %,
jt1) and D.P.(b, k-1, j*+1) respectively as shown in
Fig. 3.5; §, is the vector defined by §, = by-a; and 7'
is dp-cp. In Eqg. (3.6), the first term represents the

R ayxi, | b, @, exly [ dy, e |
1 _axhy | By @y | SXh Y, (3.6)
47’@?;1@1 ‘ggbxéb ’ (léb} ﬁb!] ’ !sbxﬂa!z ( j b

2] feu]

influence of the circulation around the vortex seg-
ment between D.P.(b, k, j) and D.P.(b, k-1, j). Also,
the second term represents the influence of the cir-
culation around the vortex segment between D.P.(5,
k, j+1) and D.P.(b, k-1, j+1).
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3.4. Thrust and Power with Effect of Profile Drag

In this section the total thrust generated by the
propeller with the effect of the profile drag, T, and
the total power consumed by the propeller with the
effect of the profile drag, Pp, are obtained.

The angle of attack of 1i-th blade segment, o
(rad), and the relative velocity between this seg-
ment and the air, Vy{(m/s), are given by the vector
diagram shown in Fig. 3.6: where Vp(m/s) is the
relative velocity at C.P.(7) tangential to the rotating
disk; Vpi{m/s) is the relative velocity at C.P.{7) per-
pendicular to the rotating disk; ¢,(rad) is the angle
of flow to the rotational disk; 6,(rad) is the geomet-
rical angle of the 1i-th blade segment; 7; is the dis-
tance between the center of rotation and C.P.(J).
From this diagram, /5y and Vp; are given by:

Vi =1 —vy G-7

Ver=Vir =V (3.8)

and V; is given by:

V=4 yTiz + VP;'Z (3.9)

Using Vpy and Vp, ¢; is given by:

o | Ve
¢, =tan (V ] (3.10)

Ti

From Fig. 3.6, o is given by;
@, =6,—¢, G.10)

The lift generated by the 1i-th blade segment, L{N),
is: )

L = % pV2C, (e, Re,)edR - (3.12)
where p(kg/m’) is the density of air: ¢(m) is the
chord length of the 1i-th blade segment; C; is the
lift coefficient that is a function of o and Reynolds
number, Re. Also the drag generated by the li-th
blade segment, D{N), is:

D; = —i_pV;ZCD(aisRei>cidR (.13)

Vo= VineVxi

Fig. 3.6 Vector diagram of i-th blade segment of
Blade #1.

V.

!

Fig. 3.7 Forces act on the i-th blade
segment of Blade #1

where Cp is the drag coefficient that is a function of
o and Re. From Fig. 3.7, the force of the 1i-th blade
segment perpendicular to the rotating disk, Fp;, is
given by:

Fp =L, cos ¢, — D, sin ¢i (3.14)

Similarly, the force of the i-th blade segment tan-
gential to the rotating disk, Fp, is given by:

F, =D,cos ¢, + L;sin ¢, (3.15)

The summation of Eq. (3.14) multiplied by B gives

the total thrust:
S 3.16
Iy = BZF Pi (3.16)
=1
Similarly, Eq. (3.15) gives the total power:
N
By=BY Fy0 @17
i=1
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IfR, Vine, & ¢y, 8, Cr{o) and Cp(ar) are given, it
seems possible to obtain 7p and Pp from the above
equations. However, Tp and Pp still contain the un-
known variables, I,

3.5. Thrust and Power without Effect of Profile
Drag

In this section the thrust generated by the propel-
ler without the effect of the profile drag, 7{N), and
the power consumed by the propeller without the
effect of the profile drag, P(W), are obtained.

From the Kutta-Joukowsky theorem the thrust
caused by the circulation around the 1i-th blade
segment, TN}, is given by:

T, = pI'V,dR (3.18)

Similarly, the power caused by the circulation
around the 1i-th blade segment, P{W), is given by:

P, = pTV,dRr Q (3.19)

The summation of Eq. (3.18) multiplied by B gives
the total thrust, 7(N), caused by the circulations:

N
T=B) A V,dR (3.20)
i=1

Further, Egs. (3.4), (3.7) and (3.20) give:
N N
T=By | nQ-) Z,T; iR (3.21)
i=l j=1 )

Similarly, the summation of Eq. (3.19) multiplied
by B gives the total power, P(W), caused by the
circulations:

N
P=B) plV,dRrQ (3.22)
i=1

Further, Egs. (3.2}, (3.8) and (3.22) give:

N N
P=B) pE{V,NF —ZXij]ngQ (3.23)
i=l j=1

3.6. Determination of Circulations
The lift from Eq. (3.12) equals the lift caused by
the circulation given by:

L, = pTV,dR (3.24)

Therefore, the following equation holds:

é pV2C, (a,Re, Jc.dR = pTV.dR  (3.25)

one thus obtains:
I =r.C, (ai’Rei )ci (3.26)

where o is the angle of attack of 1i-th blade seg-
ment as described before. From Egs. (3.7), (3.8),
(3.10) and (3.11), o is given by the function of the
induced velocities:

o, =06, —tan" (Mj (3.27)

R -vy,

- Furthermore, Egs. (3.2) and (3.4) into Eq. (3.27)

gives this as a function of the circulations:

N
( VINF - z Sgijrj
1

o,=0—tan| ——— (3.28)
’GQ‘ZZJJ
j=t

Eq. (3.28) into Eq. (3.26) then gives closed equa-
tions for the circulations:

g G (3.29)

It is very difficult to solve Eq. (3.29) analytically
because of its nonlinearity. However, the following
iteration procedure may be used to solve Eq. (3.29):

Step 1: Select the initial values of I, &,
where ¢ indicates the iterating number.
For example =0,

Step 2: Calculate the values of I';
™ and Eq. (3.29)

Step 3: Calculate the index of error, g™ de-
fined by:

D using T
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L) _ i frie _pf (330)

i=]

Step4: Evaluate eV, If e < g, (where g is
a small number) then stop, otherwise
repeat Step2:

Once the circulations are obtained, induced veloci-
ties are given by Egs. (3.2), (3.3) and (3.4). Further,
Tp and Pp are given by Egs. (3.7) through (3.17),
and T and P are given by Egs. (3.21) and (3.23).

3.7. Procedure of Steady Propeller Analysis
Ty and Pp have been obtained. The procedures
to calculate them is as follows:

1. Specify the propeller, Vivr, Q, R, M, N, df, ¢; and
6.
2. Determine the position of C.P.(i) and D.P.(b, i,
D
. Calculate ¥, Y;; and Z; from Eq. (3.6)
. Determine T'; by using the iterative procedure

EENIROS

described in Section 6.
. Calculate vy and vz using Egs. (3.2) and (3.4)
. Calculate Tp and Pp using Egs. (3.7) through

(3.17)

h

@2

T and P have been also obtained here for the con-
venience in the later chapters. The procedure to
calculate them is the same procedure described

(VGRAD(Z)(m/S)

I}

%Tropeﬂer blade

above except Procedures 5 and 6. Instead of Proce-
dures 5 and 6, the following procedure is used:

5. Calculate T and P using Egs. (3.21) and (3.23)

Note that the light disk-loading assumption in
which vy and vy are negligible small compared
with Vyr is employed here in order to make it pos-
sible to determine the shape of the trailing vortices.
Hence, Tp, Pp, T and P obtained by the above pro-
cedure are not reliable, if vy and vy are not negligi-
bly small compared with V.

4, Analysis of Unsteady Propeller by Vortex

Method
4.1, Propelier Model without Effect of Vortex

Shear

In the previous chapter the method for calculat-
ing the thrust and the power of a propeller in a uni-
form wind has been described. In this chapter, the
method for calculating the thrust and the power of a
propeller that works in a wind gradient is described.
At first, the trailing vortices and the shed vortices
are assumed to form an Archimedean screw-like
surface instead of a sheared Archimedean screw
surface.

Fig. 4.1 shows the propeller treated here, which
has the following properties: the radius of the pro-
peller is R(m); the number of the blades is B; the
angular velocity of the propeller is (Xrad/s); the

Assumed iip vortices

ual tip vortices

Chord line

Fig. 4.1 Side view of the propeller in 2 wind gradient.
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chord length of the propeller blades is ¢{(m); the
geometrical angle of the propeller blades is &rad).
Further, the velocity of air ahead of the propeller,
Vne{/s), is the function of the height given by:

V[NF = EYAV + VGRAD (Z) (41)

where Vyp is the velocity of the air far ahead of the
propeller center and Vigryp 18 2 wind gradient func-
tion. The purpose of this chapter is to describe the
method for calculating the thrust generated by this
propelier with the effect of the profile drag, Tp(N),
the power consumed by the propeller with the effect
of the profile drag, Pp (W), the thrust generated by
this propelier without the effect of the profile drag,
T(N), and the power consumed by the propeller
without the effect of the profile drag, P(W).

As in Chapter 3, it is assumed that the induced
velocity is much lower than the wind velocity. Also
it is assumed that the trailing vortices and the shed
vortices form an Archimedean screw-like surface
instead of a sheared Archimedean screw surface.

4.2, Definitions

R AP

described by using a xp-yp-zw coordinate system
that is conveyed by the wind with the velocity, Vyp,
but does not rotate as shown in Fig. 4.2. On the
contrary, xp,-Vps-zpy Coordinate systems are fixed on
Blade #5, and rotate with Blade #b, and are used to
describe the flow around the blade segments. The
rotating direction of the propeller is counterclock-
wise. The trailing vortices and the shed vortices
form an Archimedean screw-like surface with con
stant pitch, d(im). From the previous assumption,
this d is given by:

g2 ar 4.2)

Q

In contrast with the development in Chapter 3, vor-
tex rings are used here instead of trailing vortices
and shed vortices in order to satisfy the Helmholtz’s
theorem automatically. The vortex sheets are speci-
fied by the following definitions:
The number of the rotating cycle is L.
The number of time steps in one cycle is M.
One blade is divided into N blade segments.
The width of the blade segments is dR(m).
The length of the time step is df(sec).
The initial position of Blade #1 is on the

Vp-axis.

@

® 0 ® e o

A

PAV%

"V I ‘1 BT
“m‘ﬂ

RSN L L o
R e T

SO v“'\'\
Sy
Y

3 at initial position

Fig. 4.2 Coordinates of the propeller; B=3. xyyy~zy, coordinates systemare conveyed by
the wind but does not rotate, while x,-V5,-25, coordinates systems are fixed on Blade #b,
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D.P.(b, F+1, j+1)

D.P.(b, I+1, j)

bKI-th vortex ring

Fig.4.3 Definition of points on the b-th vortex sheet.

Rotating axis
Flattened vortex sheet

Lo et Do sz Lh cycle

(L-1)th cycl

bKl-th vortex ring with circulation T,

<]

r Fb, 41
b, 4,2

/ /

First cycle

N TTTTTTT]

|

7 D.P.(b, I+1, j}

D.P.(b, K+1, I}_|

1 .
ARRRRA

C.P.(b, I, J)

|
\
\
\

HEEEE!

L~

RREETNY \

) ||

T T

. ()
= D.P.(b, 1, f+1)
L}

EEEEEEN

[ i

4

D.P.(b, K, 1+1), |

et
D.P.(b, K+1, 1+1)

R S S G |

J
‘1 \,

L, %L v Blade #b at thel-th time step d
J

-y _ ST

rb, L& N

»

BbEN+1

)

Fig. 4.4 Definition of points on the b-th vortex sheet. The vortex sheet is flattened to illustrate.

I and K are variables for the time step from the
initial time (instead of using 7 and % for the
sake of the later convenience).

A number with an underscore represents that
the number is counted from the initial time.
The circulation around the bound vortex on the
Jj-th blade segment of Blade #b at the I-th time
step is represented by I'yy.

Suffix blj represents a physical value of the
Jj-th blade segment of Blade #b at the I-th time
step. :

The blj-th blade segment stands for the j-th
blade segment of Blade #b at the I-th time
step.

The blj-th vortex ring stands for the vortex
ring released from the j-th blade segment of
Blade #b at the /-th time step.

The b-th vortex sheet represents the vortex
sheet released from Blade #b.

The cKl-th dividing point, D.P.(¢c, K, [}, is lo-
cated on the inner end of the ¢K/-th blade seg-
ment.

The blj-th control point, C.P.(b, I, j), is located
on the middle of the blj-th blade segment,
which is positioned between D.P.(b, I+1, j)
and D.P.(b, [+1, j+1) as shown Figs. 4.3 and
44.

The bKI-th vortex ring forms the rectangle
consisting of D.P.(b, K+1, I), D.P.(b, K+1,
+1),D.P(b, K, H1)and D.P.(b, K, I).

The strength of the circulation around the
bK]-th vortex ring is equal to that of the circu-
lation around the bound vortex on the bK/-th
segment at the K-th time step.
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4.3, Influence Coefficients

Influence coefficients, (Kojexi, Yojexss Lpiern)s
are defined as the magnitude of the velocity at
C.P.(b, 1 J), (vwy vy V), induced by a unit cir-
culation strength around the cKi-th vortex ring.
Upon using these influence coefficients, vy Ve
vy ar€ given by:

LM N

B
Vi = z Z Z Eib]]‘cKchKl \ (4.3)

c=l K=1 I=1

B LM N

Yy = Z Z i %A?bljcKchKl 4.4

c=1 K=1 [=1

LM

ZgbljcKchKl (4.5)

I=

B
Ve = 2

c=l K=

LN
—

\
0% et Voo Zoesa ]
bljcKI> = bljcKl> ==bljcKl

_i!ﬁ}_‘i b_2],
4r faxi,[\[p| fal)

]
%Xﬁz

4 E__E -1
b1, \[el [Bl)

Also, the tangential component of the induced ve-
locity, vgy, 1s given by:

Vo =~V SN Wy + vy, cos ¥y (4.6)

where W,y is the azimuth angle of the blj-th blade
segment as shown in Fig. 4.2. The above equation
is also expressed as:

B LM

Yoy = Z Z 2 b[jcKIr Kl 4.7)

c=1 K=1 I=1

where @pjex; is defined by:

Ospexs = Yy SIN Wy + 2, COS'F, (4.8)

DLCKLE

In a similar fashion to Eq. (2.6), the influence coef-
ficients between C.P.(b, I, j) and the cKl-th vortex

Tiﬂg, (Egb[jdg, %b]jdg) Zb]jcKl)a are given by

exly (& e dxi, 1a d},
LA R B kT
lexégz[léi ) Iﬁx§4\2(1@\ @J §4}

3
('@bchKl s %gbycm > g1.51jc1<1

where a, b, ¢ and 4 are vectors from C.P.(b, [, k) to
D.P(c, K+1, ), D.P{c, K+1, [+1), D.P.(c, K, H1)
and D.P.(c, K, [) respectively as shown in Fig. 4.5.
i, I,, {5 and I, are the vectors defined by b-a, c-b,
d-¢, a-d respectively. When K>, the first expres-
sion of Eq. (4.9) does not have physical meaning.

=<@ 0 (})T‘KMT

(4.9)

Thus the second expression is necessary.

For example, X,;.x is calculated by using Eq (4.9)
as shown in Table 3.1. The numerical example is as
follows: R=1.0m, V,=10.0m/s, (O=5.0xn rad/s, B=2,
L=2, M=4, N=3.
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. . b-th vortex sheet
/ Ro‘é/atmg axis /

/ / ¢-th vortex sheet

/
t l i M" ) (E’Z 's,_/)

cKi-th vortex ring with circulation I,

Y N
RPN
DIP.(c, K+1,1)
/| &
M

N4

a

=
\\F;W\

5

)CPQLﬁ\

— D.P{c, K I}

L
i R I

/
/i
/]
R
-

/

K i

Y) I 1| DPe ket, 11y DP(c, K 1+1) /
| // / 1
/ Blade tip \

Fig. 4.5 Definition of vectors for the definition of the influence coefficients.
Vortex sheets are flattened to illustrate.
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4.4, Thrust and Power with Effect of Profile
Drag '

In this section the total thrust generated by the
propeller at the I-th time step with the effect of the
profile drag, Tp;, and the total power consumed by
the propeller at the /-th time step with the effect of
the profile drag, Ppy, are obtained.

The angle of attack of the bJj-th blade segment,
apy; (rad), and relative velocity between this seg-
ment and air, Vj;(m/s), are given by the vector dia-
gram shown in Fig. 4.6: Vpy(m/s) is the relative
velocity at C.P.(b, I, j) tangential to the rotating
disk; Vppy(m/s) is the relative velocity at C.P.(J, 7, j)
perpendicular to the rotating disk; ¢,5(rad) is angle

PGt ial 838, WhH]

by

of the flow to the rotational disk; 8;y(rad) is the
geometrical angle of the bJj-th blade segment; 13y is
the distance between the center of rotation and
C.P.(b, 1, j). From Fig. 4.6, Vpy, Vppyy are given by:
Vasg = 7oy @ = Vany 4.10)

I — — 7
Vs = Vivesy = Viog 4.11)

where Vinrpy is obtained from Eq. (4.1). Further Vyy
is given by:

¥ 2 1 2
Vb{j =4 VTb[j T S/Pblj (4.12)
’Using Visy and Vg, @pp is given by:

Voo
¢b1,' = tan | —&
VTbIj

From Fig. 4.6, oy is given by:

(4.13)

4.14
C Oy =0, — 0y (4.14)
The lift generated by the bij-th blade segment, Ly,
is:

1 (

2
Ly, =2 PV Coleyy Rey, Joy,dR (4.15)

5
s R -
Veb]i—\_l Toif?

: 0, | -
Do e/ Vo= o2 Venyy
Zg : bij \
| 0
Bb ; A
| 1 — . Chord line
VINFbIj \

V= Vinrbr=Vxog SN\

Fig. 4.6 Vector diagram of the blj-th blade
segment. From xp-yp-z; coordinates system
fixed on Blade #b.

Vi

Fig. 4.7 Forces of the blj-th blade
segment. From xp-yz-7p coordinates
system fixed on Blade b#

where p(kg/m’) is the density of air: ¢y is the chord

length of the blj-th blade segment; C; is the lift co-

efficient that is a function of a. Also the drag gen-

erated by the bJj-th blade segment, Dy, is:
1

Dy, = EpVbIjZCD (051,1]- Reyy Jeuy AR

(4.16)

where Cp is the drag coefficient that is a function of
o. From Fig. 4.7, the force of the blj-th blade seg-
ment perpendicular to the rotating disk, Fpyy, 18
given by:

(4.17)

Froy = L, cos ¢sz — D, sin Py

Similarly, the force of the bJj-th blade segment tan-
gential to the rotating disk, Fry, is given by:

Fry = Dy, €08 ¢y + Ly, sin ¢, (4.18)
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The summation of Eq. (4.17) gives the total thrust
at the /-th time step, Tpr.

B N
T :ZZFPZ)[]‘

b=l j=I

(4.19)

Similarly, (4.18) gives the total power at the /-th
time step, Ppy

Fp = ZZ 7o TS
b=l j=l1

If R, Viy, Voran, €2, cop Opy, Cr(0) and Cn(ar)
are given, it seems possible to obtain Tp; and Ppy

(4.20)

from the above equations. However, Tp; and Ppy;
still contain the unknown variables, Iy

4.5, Thrust and Power without Effect of Profile
Drag :

In this section the thrust at the /-th time step
without the effect of profile drag, T{N), and the
power at I-th time step without the effect of profile
drag, Pr (W), are obtained.

From the Kutta-Joukowsky theorem, the thrust
caused by the circulation around the bound vortex
on the blj-th blade segment, T,;{(N), is given by:

T,y = Ty V gy AR (4.21)
Similarly, the power caused by the circulation
around the bound vortex on the 5l/-th blade seg-
ment, P (W), is given by:

Py = TV ony dR7 1, 422)

The summation of Eq. (4.21) gives the total thrust,
T{N), at the /-th time step caused by the circula-
tions:

B N
Z LoV R
=1

(4.23)

Egs. (4.7), (4.10) and {4.23) give:

B N B LM N
133t 0353 O ik (42

b=l j=1 e=1K=1I=1

Similarly, the summation of Eq. (4.22) gives the

total power, P; (W), at the /-th time step caused by
the circulations:

B
P = Zi OV RO

b=l j=1

(4.25)

Egs. (4.3), (4.11) and (4.25) give:

B N B LM N
Iy :Zzp b]j( INFbIj Zzzg‘i‘b[]d{l cKl)dR;%IJ

b=1 j=1 c=1 K=} /=1
(4.26)
4.6, Determination of Circulations
In a similar fashion to the development in Chap—
ter 3, the Circulations, 'y, can be determined. The
lift from Bq. (4.15) equals the lift caused by the
circulation and is given by:

(4.27)
Ly = pUyVydR
Therefore, the following equation holds:
1 2 .
5PV’ C (0 )CoydR = pT, ViydR — (4.28)
and one thus obtains:
Loy =V {\ablj }Cblj (4.29)

where oy is the angle of attack of the bij-th blade
section as described before. From Egs. (4.10),
(4.11), (4.13) and (4.14), o,y is given by a function
of the induced velocities as follows:

V -V
_ ~1} 7 INFbIj XD
oy = 6, —tan [——

erQ—v%ﬁ

(4.30)

Furthermore, Egs. (4.3) and (4.7) into Eq. (4.30)
gives this as a function of the circulations:

B LM N

Vs = Z Z Z KbchchKz

c=1 K=1 =1
B IM N

Tfd— EZZ®bchfF Kl

c=1K=11=1

Oy = Gy — 12 n' 431

Eq. (4.31) into Eq. (4.29) then gives closed equa-
tions for the circulations:
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B LM N
V vy Zzzglﬂjc{d Kl

(4.32)

_ -1 c=1 K=1 I=1
Ly = Vb[jCL gsz —tan

It is almost impossible to solve Eq. (4.32) analyti-

cally because of its non-linearity. However, the fol-

lowing iteration procedure may be used to solve Eq.

(4.32):

Step 1: Select initial values of the circulations
around the bound vortex on the blj-th

M

blade segment, I'y;; ; where O indicates

the iterating number. For example, Fby(l):().

Note that the subscript is not bJj, but blj
which means the j-th blade segment of
Blade #b is at the first time step.
Step 2: Let /=1 and N=1.
Step 3: Calculate the new values of Ty
Ty and Eq. (4.32)

WD ysing

Step 4: Calculate the index of errors, &™) de-
fined by:
B N
(N+1) {T (N+1) (N)}Z
"= Ty Ty (4.33)
b=l j=1

Step 5: Bvaluate g 1 g D<g, (where gp is a
small number) then go to Step 6; otherwise
repeat Step 3.

Step 6: Let I=/+1 and N=1.

Step 7.1If I>LM then stop, otherwise repeat Step 3.
Once T’y are obtained, induced velocities
are given by Egs. (4.3) and (4.7), Tp and Pp
are given by Egs. (4.10) through (4.20), T
and P are given by Egs. (4.24) and (4.26)

4.7. Reduction of Variable Number

So far, the method for calculating the thrust and
the power of the propeller in the wind gradient from
the first cycle to the L-th cycle has been described.
Also, the previous section has shown the most la-
borious procedure in this method is the procedure to
determine the circulations. Thus the problem of
calculating the thrust and power is almost identical
to the problem for calculating the circulations.
From now on, the problem for calculating the thrust
and power is expressed as the problem for calculat-

,Reby Cpy

8 bijcKl L

ing the circulations.

By the way, it is only the converged periodical
set of the circulations in the last full cycle that this
paper intends to obtain. Note that “set of circula-
tion” stands for the MN circulations on a vortex
sheet in one cycle. However the solution obtained
by the method described above contains not only
this, but also the transitional sets of the circulations
in the early cycles as shown in Fig. 4.8-a. Further-
more, every previous set of the circulations must
have been obtained in order to calculate the set o
circulations in the last full cycle, because the in-
duced velocity in the last full cycle is produced by
every vortex ring that the blades have left previ-
ously. Of course, it is not meaningless to calculate
every set of the circulations from the initial cycle to
the last cycle. However, it is not efficient to calcu-
late the sets of circulations in every cycle in order
to obtain the converged periodical set of the circula-
tions in the last full cycle. This inefficiency is
solved in this section.

If the calculation of the circulations converges, it
is expected that the last few sets of the circulations
should be almost periodical as shown in the gray
region of Fig. 4.8-a. That is to say:

Top= T, fonng g (L-1)MSISLM (4.34)
where #n is an arbitrary natural number that is not
large. To solve the inefficiency stated above, the
following approximation is introduced here.
Approximation

The every set of circulation in every cycle is

identical to the set of circulations in the last
full cycle. That is: '

Fb, InM,j— Fb]j;

1<b<B, (L-1)M+1<I<LM, 1<j<N, 1<n<L-1
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Fig. 4.8 Sets of circulations obtained by Eq

ANA NN N NN AN

P-th set of circulations

WVvvvvvvvvaV\

1st through (P-1)th set of circulations

. (3.35): (a) change of thrust in P-th cycle

(b) change of thrust in O-th cycle; (¢) change of thrust in P-th cycle using

Eq. (3.35).

28 ;—SM AM
2nd voriex sheet
‘ Ddos™oes Thdza™lhemss o4
L] I
i
5th cycle 4th cycle 3rd cycle 2nd cycle istcycle T
[T REREN EITTT AEERER BEREN
M=12
Fig. 4.9 Basic concept of Eq. (3.35): L=5, M=12, N=6, b=2, I=53, j=3.

The basic concept of this approximation is shown in
Fig. 4.9. In other words, only the set of circulations
in the last cycle is the object of the calculation, and
every set of circulations in every previous cycle is
supposed to be identical to the set of circulations in
the last one cycle. This approximation reduces the
number of the circulations tremendously, but it may
seem that it also reduces the accuracy of the circu-
lations. On the contrary, however, this approxi-

mation can increase the accuracy of the circulations.

This reason is described as follows. The most im-

portant factor for obtaining an accurate solution is
the accuracy of the induced velocities in the last
cycle. Further, to increase the accuracy of the in-
duced velocities, very long vortex sheet must be
used. However this means the number of cycles, L,
must be vast value, which is not dealt with by ac-
tual calculations. Let this vast value be ¢ and the
value that can be dealt by actual calculations be P.
Of course, P<<Q. If the calculation using L=0
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could be executed, Eq. (4.35) should hold in the last
P cycles very well, as shown in Fig. 4.8-b. Addi-

where @}, is defined by:

z{}b]]c[( nM I

1<b<B, 1<c<B, 1N, 1<I<N,
(L-1)M+1<K<LM, (L-1)M+1<I<LM

tionally, the influence of the vortex rings is propor-
tional to the inverse-square of the distance. Hence,
at the last cycle, the influence of the vortex rings
released from the initial time step to (Q-P)th time
step is negligibly small. Therefore the accuracy of
solution of the calculation neglecting these vortex

o' bljckl —

(4.37)

This summation is illustrated in Fig. 4.10. The

rings is still good as shown in Fig. 4.8-c. Thatis, Eq. ~ range of / and K in Eq. (4.36) is [(L-1)M+1, LM].
{4.35) works well. Thus, the number of variables has been reduced
Eq. (4.35) into Eq. (4.7) gives: from BLMN to BMN.
B LM N
Var = Z Z zbljcKZFcKl (4.36)

e=1 K=(L-1)M+1 I=1

Tangential compornent of the
induced velocity caused by T, 5, 5is

=0, because K>1.

1st Voriex sheet 2 r
/ 1,50,4,2,53,3 * 2,53,3 a r
|| e + L 1,50,4,2,53,3 ~2,63,3
1,504,2,44,3 * 2533 E /
) +
N ®1,éa,4,2,;s,3 Fz,gg,s
A S S
// @1,&;,4,2,.1;,3 F2,53,3
ST 3
2nd Vortex sheet / 1504253 12533
- Ly | RN T H
RN RN ]
\il EEER- L ﬁ .
= 5th cycle 4th gycle +3rd C.G Z2nd gycle st yc‘
O | | j 1/ r 1 1 I T | .
HEREN \z/H% H/ LT H/\M \HH
M=12 - - _r ’ —r
Lusoms Las s IazsTlhms an,s L sss

Fig. 4.10 Basic concept of redefinition (3.37): L=5, M=12, N=6, b=1, 1=50, j=4,
c=2, K=53, [=3. Tangential compornent of the induced velocity at C.P.(1, 50, 4)

caused by Fz,ééj i8 @!1’@’4’2,5§=,3 F2,§$,3'

However it is inconvenient to use these large num-
bers for the range of 7 and K. Therefore, the circula-
tions are redefined as follows.

r (4.38)

bi rb,l—(L—l)M,j

This equation means that the ranges of / are con-
verted from [(L-1)M+1, LM] into [1, M] by using i.
In other words, i is the number of time steps from
the start of the last cycle, while 7 is the number of
time steps from the initial time. Also, k is the num-
ber of time steps from the start of the last cycle

Thus & is redefined as follows.

bijckl

(4.39)

- t
o' bijed = ® b I—(L=D)M ,j.c,K—(L-1)M ]

By this redefinition, the range of fand Kof
®'bier is converted from [(Z-D A1, LM to [1,
M, and Eq. (4.36) can be expressed by the
simple form as follows:

B M N
?ZXZ'WHF

c=1 k=1 [=1

Vewij (4.40)

In a similar fashion, Eq. (4.35) into Eq. (4.3) gives:

1 4.41
Vo = Z Z Z Xbijckl Lo ( )
o=l k=l -1
where X, is defined by:
£ \F f
gszﬂd =Sy I (LM, je K —(L-)M ] (4.42)
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and XK, is defined by: the same as that of Table 3.1. Furthermore, there is
i1 a simple relation among I'y;, [y, ... and sy as
HKopera = 2 X, ekl shown in Fig. 4.11. This relation can be expressed

n=0 as follows:

1<b<B, 1<c<B, 1SN, 1<I<N,
(L-D)MHISKSLM, (L-DM+ISIKLM - (4.43) Ty ooers; =1

ijs

i-bM /B>0

For example, X, ., are calculated by Eq. (4.43) Uy iomrvaess,; =1y -0M /B0

as shown in Table 3.2. The numerical example is

Table 3.2
Influence coefficient, X'y 5 5 ; «; transformed from
Table 3.1 by using Eq.(3.43)

k
Blade #1 4 3 2 - 1

1 -0.0046 -0.0027 0.1162 0.0102
[ 21-0.0063 -0.0057 -0.9638  0.0027
3 -0.0056 -0.0078 0.467 0.0018

k
Blade #2 4 3 2 i
11-0.0013 -0.0003 -0.0184 -0.0274
[ 21-0.0102 -0.0024 0.0019 -0.0423
31-0.016 -0.0032 0.0071 -0.0421
C.P.(2,4)=C.P.(150,4) M
1st vortex sheet M T .= T )
\ 1,533 4,3 14,3 » 43 4,3
] N 7 B
>
/ +—-5th cyéfh 4th c:y‘c:!:v 2nd cyllc‘!e 1st cyb!
IR N VOO I | I A i 1 1 [l ()
Phase
2nd Vortex shest Fzyé\g.h/;/g,3=?4y3 17‘4’3 :‘4’3 T“ F43
1 i i 7] i
A f
———5th cycle 4th cycle 3rd cycle 2nd cycle 1st cycle
| | ) I D O O | R I
. T cans =T Phase
3rd vortex shest 3.83+M-24/B,3 74,3 Ls v};’““
! ¥ N
i |
| 5th cycle 4th cycle 2nd cycle
N N | Ll | A I I N B |

Fig. 4.11 Map of circulations with same strength: B=3, L=5, M=12, N=6
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where I'; is identical to I'y. From now on, I is
used instead of I'y;. Note that the difference of ex-
pression between I'y and @'y is only the number of
the subscripts, however the difference of the mean-
ing is very large. By Eq. (4.42), the number of
variables has been reduced from BMN to MN. Fur-
ther, Eq. (4.44) into Eq. (4.40) gives:

M N
Yoy = ZZ'W Ly (4.45)
k=1 I=1
where ®,, is defined by:
B
@vijk! = Z @el,i,j,c,f(c,k),l (4.46)

c=1

and f{c, k) is the function of ¢ and & given by:
flek)y=k—(c-1)M/BJj—(c-1)M/B>0

fleg)=k+M —{c-1)M/Bk—(c-1)M/B<0

Similarly, Eq. {4.44) into Eq. (4.10) gives:

M N R
V=3 S, (449
X = gt

k=l =1

where 3, is defined by:
X - i X' (4.49)
S = Lij.e.f ()l
c=1

For example, 3}, are calculated by Eq. (4.49) as
shown in Table 3.3. The numerical example is the
same as that of Table 3.1.

Table 3.3
Influence coefficient, X’y 5 ; transformed from
Table 3.2 by using Eq.(3.49)

k
4 3 2 1
11-0.023 -0.0301 0.1149  0.0099
[ 2-0.0044 -06.048 -0.974 0.0003
31 0.0015 -0.0499 0451 -0.0014

4.8. Redefinition of Tp, Pp, T and P

In the previous section, the number of the circu-
lations is reduced from BLMN to MN, which re-
duces the labor of the calculation tremendously.
Before the reduction of the number of the circula-
tions, BLMN circulations must be treated. By the
reduction, however, only MN circulations on the
first vortex sheet at the last cycle need to be treated.
While the circulations on the b-th vortex sheet at
the last cycle are expressed as I'yy, the circulations
on the first vortex sheet at the last cycle are ex-
pressed as the simplified expression, 'y, which is
introduced in the previous section. To use I'; effi-
ciently, equations in the section 4 and 5 must be
redefined. In this chapter Tp, Pp, T and P are rede-
fined.

(4.47)

Using the same procedure of the reduction of
variables, Eqs. (4.16) through (4.20) are trans-
formed and the suffixes are simplified as follows:

Vg = 1,9 — vy, (4.50)
Vg =Vineg — Vg (4.51)
(4
V=V +V (4.52)
V..
¢, =tan™| L
y 7, (4.53)

oy = 590. — 525,] (4.54)
1 2

Ly =2pV,C, (¢ .Re, JeydR (4.55)
1

D, = p¥,’C, (o .Rey eydR - (4.56)

Fp; =L;cos ¢, — D, sin ¢, (4.57)

Fp =D,cos ¢, + L, sin ¢, (4.58)
N

T =D Fry (4.59)
=1
JN

Fpi = ZFT%Q (4.60)
=1
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where Tp; in Eq. (4.59) is the thrust generated by
Blade #1 at the i-th time step, while Tp; in Eq.
(4.19) is the total thrust at the /-th time step. Also
Pp; in Eq. (4.60) is the power consumed by Blade
#1 at the i-th time step, while Pp; in Eq. (4.20) is
the total power at the /-th time step.

Similarly, Egs. (4.21) and (4.22) are transformed
and the suffixes are simplified as follows:

M N
T, = ply (F’zjg - sziﬂd Fkl)dR (4.61)

k=1 I=1

)a’Rr Q (4.62)

M N
( INFz Zzgytl

k=1 I=

UN

Also, Egs. (4.24) and (4.25) are transformed and
the suffixes are simplified as follows:

' ?kzjdﬁ (4.63)

N M
£= Zﬁﬁy(ﬂw -3 ,],,n,\azferg (4.64)

s the thrust generated by
Blade #1 at the i-th time step, while 77 in Eq. (4.24)
is the total thrust at the /-th time step. Also P; in Eq.
(4.64) is the power consumed by Blade #1 at the
i-th time step, while P; in Eq. (4.25) is the total
power at the /-th time step.

Furthermore, Eqg. (4.32), which is the closed
equations for the circulations, is also transformed as

follows:
M N
Vg — Z Zgwrkz
1 k=1 -1
F,j = VijC‘L 9,-]- —tan —— ,Reij ¢y
ry€d~ ZZ@W 3%
k=1 =1
(4.65)

Using this transformation, the iteration procedure in
the section 6 is written as:
Step 1:Select initial values for every circulation,

I, %; where O indicates the iterating number.

For example [';(V=0.
Step 2:Calculate new values of I';; @D ysing
and Eq. (4.65)

Fij )

Step 3:Calculate the index of error, ™D defined
by:

L) ii {Fij(NH) __?ij(N) }2

=1 j=l

(4.66)

Step 4:Evaluate eV, If €D < gy (where g is a
small number) then stop, otherwise repeat
Step 2.

4.9. Procedure of Unsteady Propelier Analysis
without Effect of Vortex Shear
Tri, Ppi, T; and P; have been obtained. The pro-
cedure to calculate Tp;, Pp; is as follows:

1. Specify the propeller, Viyp, Q, R, M, N, dt, c; and
;.

2. Determine the position of C.P.(b, I, [} and D.P.
(. L D).

3. Calculate X1 and @y using Eqgs. (4.8) and
4.9).

4. Redefine X'y and ®'yyn using Egs. (4.37),
(4.39), (4.42) and (4.43).

5. Redefine X'y and ®'yy using Egs. (4.46) and
(4.49)

6. Determine I'y by using the iterative procedure
described in Section 9.

7. Calculate vy and vey; using Egs. (4.41) and
(4.40).

8. Calculate Tp; and Pp; using Egs. (4.50) through
(4.60).

T; and P; have been also obtained here for the
convenience of the later chapters. The procedure to
calculate them is the same procedure described
above except Procedures 7 and 8. Instead of Proce-
dures 7 and 8, the following procedure is used:

7. Calculate T; and P; using Egs. (4.63) and (4.64)

Note that the assumption that vy, and ve; are negli-
gible small compared with Viyr is employed here in
order to make it possible to determine the shape of
the trailing vortices. Hence, Tp;, Pp;, T; and P; ob-
tained by the above procedure are not reliable, if vy
and vey are not negligibly small compared with

Vinr.
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5. Effect of Vortex Shear

5.1. Propeller Model with Effect of Vortex Shear

The effect of vortex shear was not treated in the
previous chapter in order to simplify the problem.
In this chapter, the method for calculating the thrust
and power of a propeller in a wind gradient, with
the effect of vortex shear, is described.

Fig. 5.1 shows the propeller treated here, which
has the same properties as described in the previous
chapter. The purpose of this chapter is to describe

"VGRAD(Z)(m/S)

1

?ropeller blade 7

the method for calculating the thrust generated by
this propeller with the effect of the profile drag,
Tp(N), the power absorbed by the propeller with the
effect of the profile drag, Pp (W), the thrust gener-
ated by this propeller without the effect of the pro-
file drag, T(N), and the power absorbed by the pro-
peller without the effect of the profile drag, P(W),
considering the effect of the vortex sheets shear.

As in Chapter 4, it is assumed that the induced
velocity is much lower than the wind velocity.

W

I~ 7

Al
R

A/

\
XypXg —Vavirels)

I
L

o vortices

j Q(rad/s)
]

Chord line

/

Fig. 5.1 Side view of the propeller in a wind gradient.

5.2, Definitions

The control points and the dividing points are
described by using a xp-yp-zw coordinate system
that is conveyed by the wind with the velocity, Vp,
but does not rotate. Furthermore almost all defini-
tions are the same as in the previous chapter.

However, vortex sheets are conveyed by the ve-
locity, Vpr, that is a function of the height given by
Eq. (4.1). Thus the pitch of the vortex sheet, dj, is
given by:

2r

dy ="V oy (.1)

This equation means that the pitch of the vortex
sheet is also a function of the height. Thus, the
shear of the Archimedean screw-like vertex sheet
increases as time lapses as shown in Fig. 5.2. Hence
the absolute position of the dividing points de-
scribed by the wind coordinate system is a function
of the time step. That is:
® D.P(c, K, ) at the I-th time step is expressed
by D.P.(, ¢, K, ).

The definitions of the points are shown in Fig. 5.3.
Although the shape of the vortex ring varies, the
Kelvin’s theorem requires the strength of the circu-
lation around a vortex ring to not vary. Thus Iy
has the same value at any time step.
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Tip vortices released
in the first cycle.
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Xy Yz coordinate system
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Tip vortices released in
the first cycle are sheared
by the wind gradient.
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Fig. 5.2 The deformation of the vortex sheets caused by the wind gradient. (a) The
shape of the vortex sheets at the end of the first cycle. (b) The shape of the vortex
sheets at the end of the second cycle.
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Flattened vortex sheet bKI-th vortex ring with circulation T, r
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Blade #b at the I-th time step

Tb, iN

Fig. 5.3 Definition of points on the b-th vortex sheet at the I-th time step. The vortex sheet
is flattened to illustrate.

the definitions of &, &, ¢ and 4 are different from the
previous definitions: @, 5, ¢ and 4 are defined as the
vectors from C.P.(b, I, I) to D.P.(I, ¢, K+1, [},
D.P(I, ¢, K+1, #1),D.P.(I, ¢, K, +1) and D.P.(J, c,
K, ), respectively, as shown in Fig. 5.4.

5.3. Influence Coefficients

The @glﬂjcm %fbgcma
Zypex1), arve defined in a similar way to the previous
chapter. The only difference is the use of D.P.(J, c,
K, Iy instead of D.P.(c, K, I). In this chapter, (¥pjexs,
Y syexs, Zsgext) 18 also defined by Eq. (3.9). However

influence coefficients,
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b-th vortex sheet at the I-th time step

Rotating axis /

¢-th vortex sheet at the I-th time step
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Fig. 5.4 Definition of vectors for the definition of the influence coefficients.

Vortex sheets are flattened to illustrate.

5.4, Procedure of Unsteady Propeller Analysis
with Effect of Vortex Shear

The influence coefficients that account for the

fect of the vortex-sheet shear are obtained. The

procedures to calculate Tpy, Pp;, T; and P; are almost

the same procedures as described in Section 9 of

Chapter 4. The procedure to calculate Tp;, Pp; is as

follows:

1. Specify the propeller, Vi, Q, R, M, N, dt, ¢; and
;.

2. Determine the position of C.P.(b, , [) and D.P.(J,
¢, K, D).

3. Calculate Xpjexs and Opjexy using Egs. (3.8) and
(3.9).

4. Redefine X'y and @'y using Egs. (3.37),
(3.39), (3.42) and (3.43).

5. Redefine X'y and @'y using Egs. (3.46) and
(3.49)

6. Determine I'; by using the iterative procedure
described in Section ¢ of Chapter 4.

7. Calculate vy; and ve; using Egs. (3.41) and
(3.40).

8. Calculate Tp; and Pp; using Egs. (3.50) through
(3.60).

The difference between the above procedures and
the procedures described in Section 9 of Chapter 4
is only Procedure 2.

T; and P; are also obtained by the same proce-
dures as described in Section 9 of Chapter 4. Note
that the assumption that vy, and vey; are negligible
small compared with 7jr is employed here in order
to make it possible to determine the shape of the
trailing vortices. Hence, Ty, Pp;, 7; and P; obtained
by the above procedure are not reliable, if vy; and
vey are not negligibly small compared with Viyp.

6. Propeller Design as Optimization Problem
6.1. Optimization Problem

So far, the method for calculating the thrust and
the power of a propeller in a wind gradient has been
described. However, the purpose of this paper is to
describe the method for optimizing the circulation
distribution that minimizes the energy loss of the
propeller. In this chapter, using the equations and
symbols that are defined in the previous chapters,
the problem for optimizing the propeller is trans-
formed into a minimizing problem of a quadratic
objective function with a quadratic constraint func-
tion.
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Usually, it is not easy to obtain even the local
optimal solution of an optimization problem be-
cause of the high nonlinearity of the objective func-
tion and the constraint functions. Fortunately,
however, the cobjective function and the constraint
function of this problem can be described by quad-
ratic functions whose Hessian matrices are positive
definite. Thus, this problem is classified as a con-
vex programming problem, which has been inves-
tigated very well”. Usually, it is not easy to solve a
convex programming problem. However the con-
vex programming problem treated here is solved
easily, since the convex programming problem is
consists of one quadratic objective function and one
quadratic constraint function. Therefore, by trans-
forming the problem for optimizing the propeller
into the minimizing problem of a quadratic objec-
tive function with a quadratic constraint function,
the problem can be easily solved. The procedure to
solve this problem is described in Appendix B
briefly.

6.2. Classification of Problems
There are two kinds of optimization problems

that correspond to the problems in the previous

chapters:

1. The optimization problem of circulation distribu-
tion of the propeller in a uniform wind. This
problem corresponds to the problem in Chapter
3.

1-1. without the effect of the profile drag.
1-2. with the effect of the profile drag.

2. The optimization problem of circulation distribu-
tion of the propeller in a wind gradient with the
effect of shear of the vortex sheets. This prob-
lem corresponds to the problem in Chapter 5.

2-1. without the effect of the profile drag.
2-2. with the effect of the profile drag.

The first problem is named Problem 1 and the sec-

ond problem is named Problem 2, for convenience.

Problem 1 and Problem 2 have two important dif-

ferences. One is the optimization problem without

the effect of the profile drag, and another is the op-
timization problem with the effect of the profile
drag. The former is named Problem X-1 and the

latter is named Problem X-2. Though Problem X-2

can be transformed into the convex programming
problem consists of the quadratic functions, the
derivation of the quadratic function is quite com-
plex and needs numbers of pages. Therefore, trans-
formation of Problem X-2 is not described in this
paper.

6.3. Quadratic Objective Function of Problem
1-3
In this section, Problem 1-1 is transformed intc a
minimizing problem of a quadratic objective func-
tion with a quadratic constraint function.
The total thrust without the effect of the profile
drag, 7, given by Eq. (2.21), can be rewritten as:

N N N
T =Y BpQrdRT,-) > BpdRZ,TT, (6.1)
i=1 i=l j=1
Upon introducing the Einstein’s notation, Eqg. (6.1)
can be rewritten as:
T=-A,UTT -8BT (6.2)
where Einstein's notation omits the symbol Z if, in
the same term, a suffix occurs twice

and A; and B, are:
A, =BpdRZ, ©3)
B,=-BpQrdR 6.4)

Eq. (6.2) is a typical quadratic function. Thus, it has
been shown that the thrust of a propeller in a uni-
form wind can be expressed by a quadratic function.
Further, the total power without the effect of the
profile drag, P, given by Eq. (2.23) can be rewritten
as:

N N N
P =) BpV,dRrQr,— > > BpdRrQX T,
i=1 i=1 j=1

(6.5)

which can be expressed as:
P=C,TT,+B T, (6.6)

where ©;; and B; are:
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@ij = wB,OdRriQXy (6.7)
D, = BpV jym dRr ,Q (6.8)

That is, Problem 1-1 can be transformed. into the
following problem:
Problem 1-1°

minimize &, ;LT
subject to @ rr,

where, P, is the value of the designated power.

Problem 1
;{_}rgbi& 1. Note that the constraint condition is not an

-17 is classified as a convex programming
equation, since the constraint condition of the con-
vex programming problem must be the form shown
above. Furthermore, Problem 1-1° is expressed by
quadratic functions only. Thus, It is easy to solve
Problem 1-1°.

6.4. Quadratic Objective Function of Problem
2-1

In this section, Problem 2-1 is transformed into a
minimizing problem of a quadratic objective func-
tion with a quadratic constraint function.

T; given by Eq. (3.61) is the thrust generated by
Blade #1 at the i-th time step without the effect of
the profile drag. 7 is not adequate for the objective
function since 7 is not a scalar but a vector. One of
the scalars adequate for the objective function is the
average thrust generated by the propeller in one
cycle without the effect of the profile drag, 7y, de-
rived from Eq. (3.61):

(6.9)

where @'y is defined in Chapter 5. This may be
rewritten as:

(6.10)

Upon introducing Einstein’s notation, Eq. (6.10)

becomes:
Ty = ﬁyklryrkl “§ijrij
where &g and By are:
A, =2 pdre’
s =7 PIRO (6.11)
B
B, =—— pdRr,Q (6.12)

M

P; given by Eq. (3.62) is also a vector. A con-
straint condition can be a vector form. However,
one scalar constraint condition is more easily
solved. Thus, the following scalar is used for the
constraint condition in this paper: the average
power absorbed by the propeller in one cycle with-
out the effect of the profile drag, Py, derived from

Eq. (3.62):

Py :”—ZZP V iy

M N

N z Z :i%lﬂ/‘ kzjdﬁryQR

k=1 =1

(6.13)

This may be expressed as:

Py :ﬁﬁ‘g’ Vn\szdKr Qj

Z]

M N M
ZZZZ L PR AL S

i=t j=1 k=11

(6.14)
Similarly, Eq.(6.14) can be rewritten as:
Py =€ uyl;Ty +B,T; (6.15)
where ©jjy and B are:
B '
€ = —— pdRr; QK (6.16)
M
@ pf/;NFl dRr Q (6.17)

That is, Problem 2-1 can be transformed into the
following problem: '
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Problem 2-1°

minimize A, 0,0, +8,T,,

subjectto &, I, +B, T, -F <0.

Also, Problem 2-17 1s classified as a convex pro-
gramming problem. Furthermore, Problem 2-1° is
expressed by guadratic functions only. Thus, Prob-
lem 2-1" is also easily solved.

7. Seolution Evaluation of Steady Propeller

Design
7.1. Qutline of Evaluation

So far, the method for optimizing the circulation
distribution that minimizes the energy loss of a
propeller in a wind gradient has been developed. In
this chapter, the following are described: First,
Prandil’s approximate solution” is introduced in
order to be used as a reference for the accuracy of
the solutions of Problem 1-1°, and the concepts of
v’ and F are also introduced for the later conven-
ience. Second, based on Prandtl’s approximate so-
lution, the validity and accuracy of the solution of
Problem 1-1” are evaluated and the adequate values

for the nu
€ nu

or the number of blade segments and the number

of the time steps are determined, which are used in
the later calculations. Third, based on the solution
of Problem 1-1°, the validity and accuracy of the
solution of Problem 2-17 without wind gradient are

also evaluated.

7.2, Prandtl’s Approximate Solution

Prior to evaluations of the validity and the accu-
racy of the present method, Prandtl’s approximate
solution is introduced. The main purpose of this
section is the introduction of v’ and F that are de-
fined by Betz and Prandtl""). The precise description
of Prandtl’s approximate solution is not shown here,
since it is beyond the scope of this paper. However,
this solution has been precisely described by Larra-
b@eg)’ 10), 11)'

Though Prandtl’s approximate solution is used
as a reference for the accuracy of the proposed
method in this paper, it is an approximate solution
because of the following two reasons. First, Prandtl
modeled the effect of the blade tips by using an

analogy with the flow about an infinite array of
semi-infinite plates. Second, Prandtl used vortex
sheets with a constant pitch that does not take the
effect of the induced velocity into consideration.
The second approximation is only valid when a
propeller is ‘lightly loaded’. Goldstein® has estab-
lished a propeller theory without the first approxi-
mation, however, the second approximation is also
necessary in his theory. Even though Goldstein’s
solution is more accurate than Prandtl’s approxi-
mate solution, Prandtl’s approximate solution is
used in this paper because of its simplicity and ap-
plicability.

Betz has defined v’ in his propeller theory as fol-
lows:

vi=w/cos ¢, (7.0

where w is the induced velocity on the vortex
sheet far behind the propeller and exactly normal to
the vortex sheet, when the vortex sheet consists of
the trailing vortices only.
The helical angle, ¢, is defined by:

Vine + Wy

tan g, = (71.2)

r—w,
where w, Is the axial component of w, and is de-
fined by:

Wy = wcos @, (7.3)

and w, is the tangential component of w, and is
defined by:

w, = wsin g, (7.4)

These definitions are illustrated in Fig. 7.1. Betz
has also shown that in the optimized propeller, the
vortex sheets far behind the propeller are conveyed
backward with a uniform velocity. Further, Betz has
shown that for a coordinate system fixed to the air,
that uniform velocity is v’. This is called Betz con-
dition. Furthermore, it can be easily seen that there
is no flow that crosses the vortex surface. As a re-
sult, the flow far behind the propeller is identical to
the flow generated by the rigid helical surfaces that
are conveyed backward in the air with the velocity,
v’. Thus v’ is called vortex displacement velocity.
As mentioned above, Prandtl modeled the flow by
using an analogy with the flow about an infinite

This document is provided by JAXA.



36 JAXA Research and Development Report JAXA-RR-03-016E

w is nomal to the Wy
vortex sheet.
/
N 1
\ i
w
Vine
\_— 6, helical angle
Qr e

Fig. 7.1 Vector diagram of the flow on the surface of a vortex

sheet far behind the propeller. w is induced velocity.
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Fig.7.2 Principle concept of function F.(a) Flow about an infinite array of semi-infinite Plates.
(b) Average axial velocity y of Fig.1-(a). This velocity is given by Fv.(c) Flow aboutvortex sheets.

array of semi-infinite plates as shown in Fig. 7.2-(a). and fis given by:
In Fig. 7.2-(a) plates are traveling with velocity, v. X
Fig. 7.2-(2) shows that there is a flow that rounds /= 7[; (7.6)
the tip of the plates. By this flow, the average axial where x is the distance from the plate tip and s is
flow is reduced as shown in Fig. 7.2~(b), and the the distance between the plates. Prandt] considered
average axial flow is given by Fv; where F' is a that the average axial flow about the propeller
function introduced by Prandtl and defined by: shown in Fig. 7.2-(c) is also given by Eq. (7.5).
- 2 S s However, the value of 5 must be modified because
F="cos'le ) (1.5) . .
P of the effect of the vortex sheet helical angle, ¢,
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Thus, in the model shown in Fig. 7.2-(c), Eq. (7.6)
is modified as:

Ve +1°0°

f= § N mwe TS 1— r (1.7
2 }VINF R

Prandtl has shown that the circulation distribution

of an optimized propeller is given by:

Q 2 ]"2

0%

- 27
= VeV’

BO

F (7.8)

VINF

In Eq. (7.8), v’ is an unknown variable that is de-
termined by the designated consumed power, 7. To
obtain the value of v’, Larrabee’s method” is con-
venient.

7.3. Selution Accuracy of Problem 1-1°
In this section, the validity and accuracy of the
solution of Problem 1-1° are evaluated. The numeri-
cal example is as follows: R=1.0m, Vpz—=10m/s,
Q=10m rad/s, B=2, p=1.225kg/m’, P=100W, the
length of vortex sheets, Ly, is 10m. The number of
the time steps in one cycle, M, and the number of
the blade segments, N, are parameters. The follow-
ing cases are selected for calculations:
- Case 1, N=10, M=18, 36, 180,
Case 2, N=30, M~18, 36, 180.
v, is calculated in each case, and the results are
shown in Figs. 7.3 and 7.4. As mentioned above,

T T T

07 Case?, Nr?‘iO ‘ ‘

O e o _;6”;
os e e =
& , :
& 04 ‘ ‘ 1
N = === M=18

0.3 pre e =36

02 M=180 |-

; Prandtl
0.1 _ : 7

0 01 02 03 04 05 06 07 08 09 i

/R
Fig. 7.3 Distribution of v'. N=10.

the Betz condition requires v; to be constant. As
seen in both figures, the values of v]s are almost
constant and approximately equal to that of
Prandtl’s approximate solution. This means that
solutions given by the proposed method have good
accuracy. Further, it can be seen that the more Mc
increases, the more constant vlf becomes. Thus, an
increase of M effectively improves the accuracy of
the calculation. Though Case 2 uses more NV than
Case 1, the values of v]s of Case 2 are not more
constant than those of Case 1. This means that there
is an appropriate ratio between N and Mc. The pro-
pulsive efficiencies, ns, as functions of N and Mc¢
are plotted in Fig. 7.5. This shows that 1 in each
case agrees well with 1 of Prandt!’s approximate
solution, and m in each case approaches that of
Prandtl’s approximate solution as M increases.
This tendency is appropriate for a computational
result. In addition, it should be noted that the results
of Case 1 are more accurate than those of Case 2 in
spite of the small number of V.

Also, the distributions of T';s are shown in Fig.
7.6. Since every result is very similar to each other,
only the results of the two extreme cases and
Prandtl’s approximate solution are shown. One i
the case that the number of the variables is the
smallest: =10 and M~=18.

0.8 T
i ’
Case2, N=30 s
0.7y P ¥
. ~
0s S
0.5 T 9":” == s I
@ - : : : :
E 04 . ‘ ‘__ ' b
< | === - M=18
03 A —— =36 |
0.2 : mmmm—— f\/fc‘—"'iSO -
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0 01 02 03 04 05 06 07 08 08 1

/R
Fig. 7.4 Distribution of v'. N=30.
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0.975 T
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N=30 |-
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Fig. 7.5 m as a function of N and M.

Another is the case that the number of the vari-
ables is the largest: N=30 and M=180. Both distri-
butions of the circulation are similar to that of
Prandtl’s approximate solution and much more
similar to that of Goldstein’s exact solution”. In
addition, it should be noted that the results of Case
1 is more accurate than those of Case 2 in spite of
the small number of N. This is probably caused by
the improper ratio between N and M.

To sum up the above evaluations, the ac

of the solution of Problem 1-1° is acceptable and

curacy

greatly depends on the number of M., but is not
very dependant on the number of N. Hence, it is
desirable to use a large number of M¢ in order to
obtain an accurate solution. However, the number
of operations to solve this optimization problem is
proportional to the cube of the number of the dect-
sion variables, in the worst case. Therefore, from
now on, 10 and 38 are used as the numbers of N
and M respectively from a standpoint of the cost
performance.

7.4. Selution Accuracy of Problem 2-1° without
wind gradient

In this section the validity and accuracy of the
solution of Problem 2-1" without wind gradient,
which must agree with the solution of Problem 1-1°,
are evaluated.

The numerical example is the same as that used
in the previous section; R=1.0m, V,~=10m/s,
O=10r rad/s, B=2, p=1.225kg/m’>, P=100W, the

0.35 g —

08 g/, - N

0.25 //
;g\ 02 45 . %\_
o 015 bf. 5 _
- = = = N=10, M=18 ‘}
01 | N=30, M=180 |
0.05 /f/ Prandil

]

0 01 02 03 04 05 068 07 08 09 1

/R
Fig. 7.6 Distribution of I';.

number of the cycle, L, is 5. The number of the time
steps in one cycle, M, and the number of the blade
segments, N, are 38 and 10 respectively, as deter-
mined in the previous section. Though Problem
2-1’ is an optimization problem of a propeller in a
wind gradient, the magnitude of wind gradient is
chosen as Om/s/m in order to compare this solution
with the solution of Problem 1-1°,

The thrust obtained is 9.733N. Hence, 1 is 0.9733
that agrees with 1 plotted in Fig. 7.5. Further, the
distribution of 'y is shown in Fig. 7.7. The distribu-
tion of T is steady as shown in Fig. 7.7, since the
wind is uniform.

Also, the I, distribution of the solution of Prob-
lem 1-1” in the previous section is shown by the
bold line. The T’ distribution of Problem 2-1" and
that of Problem 1-1’ are exactly same, as seen in
Fig. 7.7. Furthermore, v distribution of the solu-
tion is shown in Fig. 7.8. Also, v| distribution of
the solution of Problem 1-1” in the previous section
is shown by the bold line. This shows that v;. of
Problem 2-1” is constant and steady, and exactly
agrees with that of Problem 1-1°. From these results,
it is shown that the solution of Problem 2-1° with-
out wind gradient is valid and accurate.
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Fig.7.7 Distribution of I'; of the solution of Problem 2-1’ without t wind
gradient.
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Fig.7.8 Distribution of v of the solution of Problem 2-1" without t wind
gradient.
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8. Solution Evaluation of Unsteady Propeller

Design
8.1. Solutien Accuracy of Preblem 2-1° with

Wind Gradient

In the previous chapter, the validity and accu-
racy of the solutions of Problem 1-1’ and Problem
2-1” without the wind gradient are shown. In this
chapter, based on the results of the expanded mo-
mentum theory described in Chapter 2, the validity
and accuracy of the solutions of Problem 2-1" with
the wind gradient are evaluated.

The numerical example is almost the same as
that used in the previous chapter; R=1.0m,
Vy=10m/s, O=10nrad/s, B=2, p=1.225kg/m33
P=100W, L=5, M=36, N=10. The difference be-
tween this condition and the previous condition is
the existence of the wind gradient. The magnitude
of the wind gradient is 2m/s/m. Hence, the wind
velocity, Vivey, given by Eq. (4.1) becomes:

Vg =10 +2.0z, @.1)

The thrust value of the solution obtained here is
10.56N. Hence, n is 1.056, while 1 obtained by the
extended momentum theory is 1.17 and n of the
normal propeller obtained in the previous chapter is
0.973. That is, though 1 of the solution obtained
here is less than 1 of the expanded momentum the-
ory, it is greater than 1 of the normal propeller and
even greater than 1.0.

The distribution of T'; obtained here is shown in
Fig. 8.1. As seen in the figures, although the distri-
bution of I'; is unsteady because of the existence of
the wind gradient, the distribution of I'; is almost
symmetrical about the z-axis. Further, it is seen
from Fig. 8.1-b that the value of T'; at each radius is
almost proportional to the height, z;. Furthermore,
the absolute values of I'y; shown mn Fig. 8.1 are
much larger than those of I'; shown in Fig. 7.7.
Thus, the induced velocities, which are assumed to
be much smaller than Vjwy, must be evaluated in
order to confirm that the induced velocities satisfy
the light disk-loading assumption. Fig. 8.2 shows
the distribution of the axial induced velocity at the
propeller disk,—v, and the axial induced velocity
obtained by the expanded momentum theory. Fig.
8.2-a shows that —v,, obtained by the present

method agrees well with the induced velocity ob-
tained by the expanded momentum theory. Further
Fig. 8.2-a shows that the maximum absolute value
of —v Xi exceeds 1.0, which is 10% of Vg Thus,
the light disk-loading assumption does not hold
properly.

8.2. Correction of Influence Coefficients

However, the gradient of —v,, in Fig. 8.2-b is
about -1m/s/m, which means that the gradient of the
axial induced velocity at the vortex sheet far behind
the propeller disk is about —2m/s/m, since the in-
duced velocity at the propeller disk is half the value
of that far behind the propeller disk. Thus the axial
induced velocity at the vortex sheet, far behind the
propeller disk, almost cancels the wind gradient
shown Fig. 8.3. That is, the wind gradient in the
propeller wake disappears and the vortex sheet trav-
els with approximately uniform velocity if the ef-
fect of the rotating component of the induced veloc-
ity is negligible.

Note that although the vortex sheets travels with
uniform velocity, a small amount of vortex shear
exists. The reason is that the induced velocity near
the propeller is half the value of that far behind the
propeller disk, and the wind gradient does not dis-
appear near the propeller disk as shown in Fig. 8.3.
Furthermore, as mentioned in the previous chapter,
the vortex sheet travels with the vortex dis-
placement velocity, vlfj, because of the existence of
the rotating component of the induced velocity.
Therefore, a more precise discussion of vortex
shear must be done by using v;j , not by using
V-

The vortex displacement velocity vl'.j is defined
by Eq. (6.1) and Betz condition requires v to be
constant when the vortex sheet consists of only the
trailing vortices. In this problem, however, the vor-

tex sheet consists of not only trailing vortices but

also shed vortices. Thus, the Betz condition does
not make sense and the induced velocity, w;,
shown in Fig. 8.4 is not normal to the vortex sheet.
From Fig. 8.4 v}, may be written as:

2 W
¢ _ " INFjj Xij
v = T T OV (8.2)

This document is provided by JAXA.



Optimum Propeller or Windmill Design in a Wind Gradient 41

Fig. 8.5 shows the distribution of vj+ V.
This shows that although there is a singular point at
the center, the vortex sheet travels with an almost
uniform velocity, 10.7m/s. Hence, it can be seen
that the influence coefficients with the effect of vor-
tex shear are not proper for the optimum propeller
designs, and those without the effect of the vortex
shear is proper for the optimum propeller designs.

8.3. Solution Accuracy of Problem 2-1° without
Wing Gradient

So far, it is shown that the influence coefficients

without the effect of the vortex shear, defined in

Chapter 4, are proper for optimum propeller designs.

Thus, the calculation for the same case is executed
again by using the influence coefficients without
the effect of the vortex shear. 1} of this solution is
1.059, which agrees very well with 1 of the previ-
ous solution, 1.056. Further, the distribution of I';; is
shown in Fig. 8.6. The figures show that the differ-
ence between I'; shown in Fig. 8.1 and I'; shown in
Fig. 8.6 is very small. Hence, it is seen that the ef-
fect of the vortex shear is small. From now on,
every calculation is executed by using the influence
coefficients without the effect of the vortex shear.
Also, the distributions of —v,, of the solution and
that given by the expanded momentum theory are
shown in Fig. 8.7. This shows that the distribution
of —vy, is similar to that of Fig. 8.2. That is, the
effect of the vortex shear is small.

8.4. Local Propulsive Efficiency
Although the gradient of —v,, is approxi-
mately the same as the induced velocity derived

from the expanded momentum theory, —v,, isnot

i
the average axial induced velocity but the axial in-
duced velocity on the blade. The average axial in-
duced velocity near the propeller disk, —vy,, is

given by:

Vg =V (8.3)

where F is given by Fig. 6.5. Hence, there are two
kinds of the induced velocities. One is the axial in-
duced velocity on the blade, —v,,, and the other is
the average axial induced velocity near the propel-

ler disk, -—17Xij.

It is also important to compare the thrust distri-
bution of the solution and that given by the ex-
panded momentum theory. For the convenience of
comparison with the expanded momentum theory,
the thrust per unit area, 7, is defined as follows:

:BTI.].

meij

where T is the thrust of the jj-th blade segment
given by Eq. (3.61). The ¢, distribution of the so-
lution and the thrust per unit area given by the ex-
panded momentum theory are shown in Fig. 8.8.
This shows that the former is not similar to the lat-
ter, while the distribution of —v,, is similar to that
of the axial induced velocity given by the expanded

{

(8.4)

i

momentum theory. It is, however, not —v,, bu
Vy; that should be compared with the induced ve-
locity given by the expanded momentum theory.
Here, the thrust per unit area derived from Vv i f,{js
is defined as:

8.5

o~
p—e

Ziyj = “ZP(KNF —Vy }‘7 Xij
The distribution of £ is shown in Fig. 8.9. Al-
though the distribution of z‘lfj is not symmetrical
about z-axis, the shape of the distribution of f;j is
similar to that of Z;. Thus, the relation between 1
and —v, is rational. Also, the power per unit area,
P;» is defined as follows:

BP,
plj - Y (8'6)
27;7;7

where P, is the power consumed by the ij-th
blade segment given by Eq. (3.62). The distribution
of p; of the solution and the power per unit area
derived from the expanded momentum theory are
shown in Fig. 8.10. This also shows that the former
is not similar to the latter. However, the shape of
the distribution of p,; is quite similar to that of 7.

Thus, it is expected that 7; / p; is constant. By the

way, the local propulsive efficiency, M, can be
defined by:
Voot
ny; = RIS 8.7

Py
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That is, M, is V), times f,/p;. Therefore, it
is also expected that 1, is proportional t0 Vg, .
However, the distribution of 1), shown in Fig.
8.11 is not regular. The propulsive efficiency can be
also derived from the vector diagram at the propel-
ler disk shown in Fig. 8.12 as follows. From
Kutta-Joukowsky theorem, T}; and P are given by:

T, = plr, Qv JT,dR 8.8)
1Di;‘ = p(VINFij _VXij}Iﬂy?;]gzdR (89>

The local propulsive efficiency, n;.j , 18 given by:

v w
v _ T INF§

My = P (8.10)
ij
Egs. (8.8) and (8.9) into Eq. (8.10) gives:
o Vi (7/; Q- V&ij) (8.11)

=
(VJNFij Vi ijQ
From Fig. 8.12, the following equation is obtained:

vy 8
— N : 8.12)
VINFij Vi V’]\TFij +Vpy ( ’

where VDU is the vortex displacement velocity at

the propeller disk. Eq. (8.12) into Eq. (8.11) gives:
14

INFij

15 = (8.13)

Vi + Vb,-j
Eq. (8.13) shows that m given by this very sim-
ple equation consists of V., and v, Also, the
distribution of 7 is shown in Fig. 8.13. Fig. 8.13
agrees with Fig. 8.11 exactly. This means that both
n, and 7 is correct and vy, can be an index

of 7.

8.5. Energy Flow

In Fig. 8.7-b, the region where —v xy 1S negative
is indicated by the gray regions. In this region, the
air is not accelerated but decelerated. Further, this
region approximately corresponds to the region
where the wind velocity is higher than the average
velocity. Also, in Figs. 8.8-b and 8.10-b, the regions
where 7, and p, are negative value are indicated
by the gray regions respectively. These regions also
approximately correspond to the region where the
wind velocity is higher than the average velocity.
Thus, the optimum propeller in the wind gradient
absorbs the energy of the air whose velocity is
higher than the average velocity and consumes the
energy by accelerating the air whose velocity 1is
lower than the average velocity.
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Fig.8.6 T'; distribution of Problem 2-1°(a) bird’s-eye view;(b) front view. The
wind gradient is 2m/s/m. The infruence coefficients are calculated without the effect
of the vortex shear.
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Fig. 8.11 mj distribution of Problem 2-1'.The wind gradient is 2m/s/m. There is a
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Fig.8.12 Vector diagram of the flow on the surface of a vortex sheet at the propeller
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those of Fig.6.1
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9. Solutions to Various Conditions
8.1, Caleulation Con

SEEEERERV AR U RFSEREERE

ditions

In the previous chapter, the validity and accuracy
of the solutions of Problem 2-1” with wind gradient
are shown. In this chapter, Problem 2-1" with vari-
ous conditions are calculated. Further, the per-

formance of an example windmill ship is calculated.

The numerical example is almost the same as in the

previous chapter: R=1.0m, Vy=I10mvs, O=10rradfs, 52,
p=1.225kg/n’, L=5, M=36, N=10. The designated
power, P, (W), and the wind gradient,
wg{m/s/m), are parameters. The influence coeffi-
cients are calculated without the effect of the vortex
shear. The calculation condition of each case is
shown in Table 9.1.

Table 9.1
Calcuiation conditions of each case.

Case No Py(W) wo(m/s/m) | Case No. Po(W) we(m/s/m)
A-1 0 2.0 B-1 100 2.0
A2 0 1.0 B-2 160 1.0
A-3 0 0.5 B-3 100 0.5
A-4 0 0.2 B-4 100 0.2
A-5 G 0.0 B-5 100 0.0

Case No. Py(W) wl{m/s/m)

C-1 -100 2.0
C-2 -100 1.0
C-3 -100 0.5
C-4 -100 0.2
C-5 -100 0.0
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9.2, Efficiency of Propeller in Varicus Condi-
tions

Fig. 9.1 shows the average thrust, 7, in each
case by circles. Fig. 9.1-a shows that the optimum
propeller in the wind gradient can generate thrust
without power supply, in theory. Especially, the
optimum propeller in the wind gradient, 2m/s/m,
generates 0.9N. It requires 9W to generate this 0.9N.
Thus, this propeller absorbs the power that is as
much as 9W from the wind gradient. Also, Fig.
9.1-b shows that the optimum propeller in the wind
gradient generates more thrust than the optimum
propeller in a uniform flow in theory. Thus, the ad-

¢ of the propelier in the wind gradient is ob-

Both Fig. 9.1-a and 9.1-b show that 7,, in-
creases progressively regardless of the value of Py
as W, increases. Figures also show that the curves
of the polynomials exactly fit each result. In Fig.
9.1-a the polynomial is 0.228%2, and in Fig.
9.1-b the polynomial is 9.733 + 0.215WG2. These
polynomials indicate the following results: first, the
increase of 7,, is proportional to the square of
Wwg. Thus, the great advantage of the propsﬂer in
the wind gradient can be expected when the abso-
lute value of w,, is large. Second, the 7, values
of Case B-1 to B-5 are approximately given by su-
perposing T, of Case A-1 to A-5 and 7, of
Case B-5 respectively. However, this superposition
only yields an approximate 7,,, notan exact 7,,,
since Problem 2-1” is expressed by the nonlinear
functions. This nonlinearity can be seen in the poly-
nomials. That is, the coefficient of sz of the
polynomial for Fig. 9.1-a is 0.228 while that for Fig.
9.1-b is 0.215. Also, the thrust obtained by the ex-
panded momentum theory in each case is shown in
Fig. 9.1 by the broken lines. Although the value of
the thrust obtained by the expanded momentum
theory is almost twice as large as 7, the figure of
the thrust given by the expanded momentum theory
supports the results mentioned above.

9.3. I'; Distribution in Various Conditions

Fig. 9.2 shows I'; distributions of Case A-1 to
A-4, The Fij distribution of Case A-5 is not shown,
since I, of Case A-5 is zero obviously. Figures

shows that the I'; distribution of each case is simi-
lar to each other and the value of I, is approxi-
mately proportional to w,. However, the value of
I, is not exactly proportional to w, because
Problem 2-1’ is expressed by the nonlinear func-
tions as mentioned above. This nonlinearity can be
confirmed by calculating the error, (I7; of Case
A-1)-(T; of Case A-4)x10. If there is no nonlinear-
ity in Problem 2-1°, the error must be zero. Fig. 9.3
shows the distribution of the error and the nonlin-
earity of Problem 2-1°. However the nonlinearity is
quite small. Thus, it is useful to obtain the ap-
proximate solution by multiplying the results of
Case A-4.

Fig. 9.4 shows I'; distributions of Case B-1 to
B-5 and (Case B-5 + Case A-1). Figs. 9.4-ato 9.4-¢
show that I'; distributions vary gradually, and Fig.
9.4-a agrees very well with Fig. 9.4-f. Thus it is
seen that I'; in an arbitrary condition is approxi-
mately given by the superposition of Case B-5 and
Case A-1. The validity of this approximation can be
evaluated by calculating the error, (I, of Case
B-5) + (I'; of Case A-1) - (I; of Case C-1). Fig.
9.5 shows the distribution of the error. The error of
the approximation is about 1.5%, which is negligi-
bly small.

9.4. Example of Windmill

The present method is also valid for designing
an optimum windmill in the wind gradient. How-
ever, the optimum windmill obtained by the pro-
posed method is not the conventional windmill that
absorbs the energy of the wind as much as possible,
but it is a special windmill that minimizes (drag) /
(power). This special windmill is suitable for wind-
mill ships, which generate thrust by rotating the
screw by consuming energy transferred from the
windmill, since the drag of the windmill decelerates
the ship when ship moves against the wind.

An average drag of the windmill, D,,, is iden-
tical to —T,, and the power generated by the
windmill is given by —F,. Thus the problem that
gives the optimum windmill in the wind gradient is
identical to the problem that gives the optimum pro-
peller in the wind gradient. The calculation of the
optimum windmill in a wind gradient is only a spe-
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cial case of the optimum propeller in the wind gra-
dient. The numerical example is shown in Table 9.1
as Case C.

Fig. 9.6 shows the average drag, D,,, in each
case by circles. Though the graph in Fig. 9.6-a is
nearly the same as the graph shown in Fig. 9.1-a,
the vertical axis indicates D,, instead of T ,.
Fig. 9.6-b shows that the optimum windmill in the
wind gradient generates less drag than the optimum
windmill in uniform flow, in theory. Thus, the ad-
vantage of the windmill in the wind gradient is ob-
vious.

The result of the calculation shown in Fig. 9.6-b
can be fitted by a polynomial that is given by
10.291-0.243w,,’, and the thrust obtained by the
expanded momentum theory in each case is shown
by the broken line. Fig. 9.6-b supports the results
obtained in Section 2. That is: first, the decrease of
D,, is proportional to the square of w,. Second,
D,, of Case C-1 to C-5 are approximately given
by superposing D,, of Case A-1to A-Sand D,
of Case C-5 respectively.

Fig. 9.7 shows I, distributions of Case C-1 to

y

C-5 and (Case C-5 + Case A-1). Figs. 9.7-at0 9.7-¢

shows that T'; distributions vary gradually and Fig.

9.7-a agrees very well with Fig. 9.7-. Thus, I, in
an arbitrary condition is approximately given by the
superposition of Case C-5 and Case A-1. The valid-
ity of this approximation can be evaluated by calcu-
lating the error, (I, of Case C-5) + (I, of Case
A-1) - (I; of Case C-1). Fig. 9.8 shows the distri-
bution of the error, which is about 1.9% and is neg-

ligibly small.

9.5. Example of Windmill Ship

From the result of the calculation, the perform-
ance of the windmill ship shown in Fig. 8.9 can be
estimated. The hull is designed to be under the wa-
ter surface in order to avoid the complicated calcu-
lation of wave drag. The numerical example is as
follows:  R=1.0m, Q=10nradls, B=2,p=
1.225kg/m’, V,,=8.0m/s, w,=2.0m/s/m, the ve-
locity of the ship, V, is 2my/s, efficiency of the
screw is 80%, the efficiency of the energy transmis-
sion is 80%, the fineness ratio of the hull, /D is §,
the density of the water, Dy, is 1000kg/m’, the

drag coefficient of the hull, C,,;, is 0.03. From the
result of the calculation of Case C-1, the windmill
generates D, , 9.32N with power absorption
100W. The screw generates a thrust of T,=32N,
since the power supplied to the screw is 80W and
efficiency of the screw is 80%. The effective thrust
7, is given by:

T,=T,~D, @®1)

From the above results, 7, is 22.7N. On the other
hand, the drag of the hull in the water, D, is
given by:

1
Dy = 5IOWVSZCJ:JHQZ/3 (8-2)
where O is the volume of the hull and is approxi-
mately given by:
2
0=2a LY _L_ (83)
32 LZL/ D

where L is the length of the hull. Further, the fol-
lowing equation holds:

D =T @4
~H “E

Egs. (8.1), (8.2) and (8.3) into Eq. (8.4) give:
L=0.641,/Tg-D,, (8.5)

From Eq. (8.5), the length of the hull is 3.05m’.

If the wind gradient does not exist, D, is
10.29N from the result of the calculation of Case
C-5. Therefore, the length of the hull is 2.99m’.
Further, the increase of the length of the hull by
using the effect of the wind gradient is 2%, in this
condition.
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Fig. 99 Concept of the windmill ship. The velocity of the ship is 2.0m/s. V4,=8.0m/s.

we=2.0m/s. The windmill absorbs 100W from air. This power is transmitted via

the dynamo, the power line and the moter. The efficiency of transmission is 80%.

The efficiency of the screw is 80%.

10. Conclusicns

Based on the lifting line theory, an optimum
propeller or windmill design problem in a wind
gradient has been transformed into a convex pro-
gramming problem that consists of one quadratic
objective function and one quadratic constraint
function This transfer has important meaning, since
the procedure for solving the resultant problem is
quite simple. Furthermore, the reduction of the
number of unknown variables based on the periodi-
cal characteristic of the solution tremendously re-
duced the number of the computational operation.
As a result, by the present method consists of the
above two procedures, an optimum propeller or
windmill design problem in a wind gradient is eas-
ily solved.

Also, based on Prandtl’s propeller theory, the
validity and accuracy of the present method are
carefully evaluated, and the result of the evaluation

was very good. Further, it was shown that the shape
of the vortex sheet of the optimum propeller in a
wind gradient, which was expected to be sheared by
the wind gradient, is kept approximately constant.
Therefore, although it was expected that the influ-
ence coefficients with the effect of the vortex shear
give more accurate solution than that without the
effect of the vortex shear, influence coefficients
should be calculated without effect of the vortex
shear.

Many numerical examples are calculated and it
was shown that the propulsive efficiency of an opti-
mal propeller in a wind gradient is higher than that
in a uniform wind. Further, the distribution of the
induced velocity, local thrust and local power are
calculated to investigate the mechanism of the pro-
pulsive efficiency increase. As a result, the mecha-
nism is described as follows: first the propeller ab-
sotbs energy of the air whose velocity is higher
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than the average velocity; second the propeller ex-
pels the energy to the air whose velocity is lower
than the average velocity. Numerical examples for
windmill are also calculated and the advantage of a
windmill in a wind gradient has been shown. The
performance of the windmill ship in 2 wind gradient
has calculated and the advantage of the windmill
ship with the effect of the wind gradient. Above
all, the most important part of these results is that a
propeller in a wind gradient can generate thrust
even without power supply.

Though the circulation of the optimum propel-
ler (windmill) has been shown, how to realize this
circulation is not shown. One of the ideal methods
for realizing this circulation given by the present
theory is to arbitrarily control both the chord length
and geometrical angle of the blade segments.
However, it is very difficult to do that. Especially,
the arbitrary control of the chord length is almost
impossible, and only the arbitrary control of the
geometrical angle of the blade segments can be
possible, by use of smart materials. Thus, the chord
length of the blade segments must be an adequately
constant value, which means that the blade seg-
ments generate only drag when the required circu-
lation is zero. Therefore, it is important to take the
effect of the profile drag into consideration in de-
signing the optimum propeller in the wind gradient.
In addition, the optimum solution shown here is
purely theoretical, since the effect of the profile
drag is ignored. However, it is meaningful that the
present method has shown that the optimum pro-
peller without power input in wind gradient can
generate thrust, in theory.
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Appendix A
Limit of Prandtl’s Propelier Theory
Both Prandtl’s theory and Goldstein’s theory
must use the light disk-loading assumption, since

the deformation of the vortex sheet can not be ob-
tained analytically. There are three kinds of vortex
sheet deformations: first, the contraction of vortex
sheet as shown in Fig. A.1-a; second, the elongation
of the pitch as shown in Fig. A.1-b; third, the roll
up of the vortex sheet as shown in Fig. A.1-c.

The first phenomenon is caused by the accelera-
tion of the induced velocity. The momentum theory
shows the following relation between the axial in-
duced velocity at propeller disk, v,, and that far
behind the propeller disk, wy:

v, =w, (A1)

Therefore, the axial velocity at the propeller disk,
V., and that far behind the propeller disk, V), are
given by:

=Yyt v 42)

V,=V,+2v, (A.3)
where ¥, is the velocity of the air far ahead of the
propeller disk. The conservation law requires that:

pSV, = pS,V, (A4)
where p is density of air and S, S, are the area
of the cross section of the stream tube. Egs. (A.2)
and (A.3) into Eq. (A.4) gives:

T
_ oty

- (A.5)
Vy+2vy

SZ 1
Eq. (A.5) shows that the contraction of the vortex
sheet exists. The second phenomenon is obviously
caused by the acceleration of the induced velocity.
The pitch of the vortex sheet is not constant, since
V, is smaller than V), as mentioned above. If the
effect of the rotating component of the induced ve-
locity is negligible, the pitch of the vortex sheet at
the propeller disk, d,, and that far behind the pro-

peller disk, d,, is given by:

d, =2l Vx (A.6)
Q)
d, = Zﬂ-ﬂ (A7)
a
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where {2 is the propeller angular velocity. Eq.
(A.6) and Eq. (A.7) show that d, is longer than
d,. The third phenomenon is caused by the instabil-
ity of the vortex sheet. It is generally known that
the vortex sheet rolls up and makes vortex clouds.
The difficulty of the propeller design is caused
by these phenomena, especially the second phe-
nomenon. That is, Prandtl’s theory and Goldstein’s
theory require the pitch of the vortex sheet to be
constant, in spite of the fact that the pitch is not
constant. Prandtl and Goldstein kept the rigorous-
ness of their theory by using the light disk-loading
assumption in which v, is much smaller than V.
Though this assumption make it difficult to apply
their theories to practical propeller design, it is in-
evitable that one must use the constant-pitch vortex
sheet in their theories. Thus the pitch used in
Prandtl’s theory and Goldstein’s theory is the pitch,
d,, without the effect of the axial induced velocity
given by: ‘

d0=272‘~V-0~

A8
o (A.8)

It is easily expected that the accuracy of Prandtl’s
theory and Goldstein’s theory may increase by us-
ing d, or d, instead of d,. However, the proper
pitch for an accurate design, ¢, is longer than d
and shorter than d, obviously. There is, however,
no analytical method to determine the value of 4.
Thus the attempt to increase the accuracy of
Prandtl’s theory or Goldstein’s theory by the elon-
gation of the vortex sheet into consideration is ana-
Iytically fultile. Though it is impossible to analyti-
cally take the effect of the elongation of the vortex
sheet into consideration, it is possible to do it by
laborious iterative computations. However, it is
generally known that the increase of the accuracy
for the propeller design, achieved by such computa-
tion of the vortex shape, is small.
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Fig. A.1 Deformation of the vortex sheet: (a) contraction of the flow tube; (b)
elongation of the pitch of the vortex sheet; (c) roll up of the vortex sheet.
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Appendix B
Procedure for Selving Problem 1-1° and 2-1°
The fundamental form of the problem treated in
this paper is as follows:
Problem 1

minimize x’ Ax +x'B
subjectto x' Cx+x"D-P, <0

where 4 and C are mxm matrices, B, D and x are
m vectors and P, is a scalar. 4 and C are not
symmetric matrices in this paper. Thus the follow-
ing operations are necessary.

&:%(@T +A) (B.1)
C= %(@T c) (B.2)

From the result of the calculations in this paper, A4

and C are positive definite matrixes. Thus the

following is a convex programming problem.
Problem 2

e T T
minimize x Ax+x B
subjec "Cx+x"D-P,<0

ttn ¥
LU X LA T XA £y =

e

Further, the following definitions are introduced for
the later convenience:

f(x): XTL&X'{‘XTB {}33)
g(x)=x"Cx+x"D-P, (B.4)
L(xA)= f(x)+ 2g(x) (B.5)

Problem 2 is solved by using the Kuhn-Tucker
condition. It is, however, beyond the scope of this
paper to discuss the condition. Thus the
Kuhn-Tucker condition is not described here and
only the procedure to solve Problem 2 is shown,
which is as follows:

Step. 0 Solve the following equation.
g 1dx=0 (B.6)

This may be rewritten as:

2Ax+B =0 (B.7)
Let the obtained solution be x . Evaluate
the restrictive condition. If x satisfies
the restrictive condition, x is the solution
W9 = A,, k=1. A, must be positive.
For example, A =1

Solve the following equation:

Step 1

Step 2

OL/dx =0

This may be rewritten as:

(B.3)

2(}; + A @ﬁ + (E + /%(")E}) =0 (B.9)

Let the obtained solution be x*.

Step 3  Evaluate the error defined by:

o =l

(k

1t eM<g,, x* is the solution, where &,

is a very small positive number.
W= 2Bt ), where dh is a very
small number.

Step 4

Step 5 Solve the following equation:

A&+ T +(B+49D)=0  (B.10)
Iet the obtained solution be x“+dx®.

Step 6  Calculate (dg/ 5%}(10 given by:

e ®

(o)) =(20x® +D)
74 ) ( X )

(B.11)

Step 7 Calculate A**" given by:

(k+1) _

= W{R} — g(x® )4+ a®

(B.12)

k=k+1.
Repeat the procedure from Step 1.

Step 0 is the procedure for the special case where
A=0. The Kuhn-Tucker condition requires the solu-
tion to satisfy Eq. (B-8). In this procedure, the func-
tion g{x} is a function of x transformed into the
function g{k} that is the function of A by using
Egq. (B-8). Step 2 to Step 7 is the procedure to
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search for a X that satisfies g(A)=F, by using
the Newton-Raphson method. An example of func-

1)

2)

3)

4)

3)

tion gé(?\,) is shown in Fig. B.l1. The calculating
condition is the same as Case A-1 in Chapter &.
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Fig. B.1 g versus .
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