
JAXA Research and Development Memorandum

High Sustained Performance and Scalability on a
Multicore-Based Massively Parallel Cluster of

JAXA Supercomputer System
Yuichi Matsuo, Naoyuki Fujita and Ryoji Takaki

March 2015

Japan Aerospace Exploration Agency

ISSN 1349-1121
JAXA-RM-14-011E

This document is provided by JAXA.

3

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of JSS

High Sustained Performance and Scalability
on a Multicore-Based Massively Parallel Cluster of

JAXA Supercomputer System*

Yuichi Matsuo*1, Naoyuki Fujita*1, and Ryoji Takaki*1

ABSTRACT
Multicore processing has become a major trend in high-performance computing. However, there are two major issues with
multicore technologies: 1) how to make full use of modern multicore CPU capability with reduced user workload, and 2) how
to achieve better scalability up to a high degree of parallelism for memory-intensive applications such as computational fluid
dynamics. First, the multicore-based massively parallel cluster of the Japan Aerospace Exploration Agency (JAXA)
supercomputer system, which uses the Fujitsu FX1 as the core computer, is described. Notable features such as a high-speed
barrier network, enhanced memory bandwidth, and an integrated mechanism to hide latency, i.e., the integrated multicore
parallel architecture, which comprises a hardware barrier, L2 cache shared among cores, and an associated automated
parallelization complier, are described. Second, the process to achieve significantly high sustained performance (>90%, high-
performance Linpack benchmark) on the multicore CPU cluster system is explained. Finally, performance measurement
results for JAXA applications are provided.

Keywords: Sustained performance, Scalability, Multicore, Massively parallel cluster system, JAXA supercomputer system

1. INTRODUCTION
The Japan Aerospace Exploration Agency (JAXA) has
been involved in various activities in aerospace fields,
including research, development, and application of
aerial/space vehicles. The 20 consecutive successful
launches of the H-IIA launch vehicle No. 26 in 2014 was a
significant achievement. Since the era of the National
Aerospace Laboratory of Japan, a predecessor of JAXA,
JAXA has recognized the importance of numerical
simulations using high performance computers. JAXA has
promoted the installation and operation of large-scale high
performance computing systems like the Numerical
Simulator (NS) [1,2,3]. Real applications in the aerospace
field tend to require large-scale simulations with high-
speed computing or large amounts of memory, i.e., large-
scale parallel computers.

All of the recent large-scale parallel computers used in
scientific computations face the following two challenges.
The first is how to utilize a multicore CPU easily and
efficiently. The ability to increase CPU clock speed shows
signs of leveling off, and the methodology to increase CPU
performance is changing from clock-up to increasing the
number of cores in a CPU. The second issue is how to
improve parallel scalability to allow applications to use an
extremely large number of cores effectively. Currently,

practical applications use several hundreds of cores, and
applications that use tens of thousands of cores are
expected. However, the methodology to ensure parallel
scalability with tens of thousands of cores has not been
established.

Under the abovementioned circumstances, JAXA
operated the Central Numerical Simulation System
(CeNSS), a symmetric multiprocessor (SMP) cluster-type
large-scale parallel computing system from October 2002
to April 2009. In April 2009, it was replaced with a
multicore-based scalable parallel cluster with
approximately 12,000 cores, peak performance of
120Tflops, and main memory of 94TB. This is the main
component of the JAXA Supercomputer System (JSS).

The remainder of this paper is organized as follows. First,
we review the history of supercomputing systems at JAXA.
Then, we present the concept and design of the JSS and
describe the new multicore-based scalable parallel cluster
system comprising a Fujitsu FX1 node, which is the
primary computing engine of the JSS. We also present the
results of a performance evaluation using the high
performance Linpack (HPL) benchmark and the current
aerospace computational fluid dynamics (CFD)
applications on the cluster.

* Received 19 December, 2014
*1 Supercomputer Office, Security and Information Systems Department

This document is provided by JAXA.

4

JAXA Research and Development Report JAXA-RM-14-

2. BACKGROUND
2.1 Numerical Simulator III
Since October 2002, JAXA operated a terascale SMP-
cluster supercomputer system, called NS-III [3]. The NS-III
had approximately 1,800 scalar processors, peak
performance of 9.3Tflops, and main memory of 3.6TB. The
main computing subsystem of the NS-III was the CeNSS,
which had 18 cabinets, i.e., physical hardware units. Each
cabinet was a Fujitsu PRIMEPOWER HPC2500 server
with 128 CPUs and shared memory of 256GB. At
maximum configuration limits, it was able to act as a 128-
way SMP system. The CPU was the SPARC64TM V scalar
chip with a 1.3GHz clock. The theoretical peak
performance per CPU was 5.2Gflops and 665.6Gflops per
cabinet. Each chip employed a shared L2 cache of 2MB. A
cabinet could be partitioned into two or four nodes
according to the computational requirements. Here from an
operating system perspective, a node is a logical unit. In the
CeNSS, each compute cabinet was partitioned into four
nodes, where each node was a 32-way SMP with a 64GB
shared memory, giving a total of 56 compute nodes. All
nodes were connected to a crossbar interconnect network
through one data transfer unit per node.

Regarding the programming environment, we adopted
the so-called hybrid programming paradigm, i.e., we used
the “thread parallel” model within a node with automatic
parallelism or OpenMP, and we used the “process parallel”
model with the message passing interface (MPI) or
XPFortran (similar to HPF) among nodes. For example, a
triple do-loop, which is commonly used in CFD, is
parallelized as follows. The outermost do-loop can be
parallelized by process parallelism, and the remaining inner
do-loops can be parallelized by thread parallelism if the
loops are independent. The use of automatic parallelization
strongly helped users execute applications written for the
vector processor system in the past and on the new scalar
processor system. Program modifications were not
necessary because automatic parallelism can only be
attained by specification during compilation and execution.
In practice, hybrid parallelization, i.e., the combined
application of process and thread parallelism, is quite
difficult for users; thus, automatic parallelism is better than
OpenMP. In the case of inner do-loop parallelization, it is
better to parallelize the outer do-loops as often as possible
in terms of the parallelization overhead. However, when the
compiler failed to parallelize outer do-loops due to the
limited capability of the automatic parallelization compiler,
the compiler parallelized the innermost do-loop.
Consequently, the performance and scalability of thread
parallelism was not as good as expected. Therefore, the
benefit of the large-size SMP was not attainable.

In the past, we used a SIMPLEX mode for job execution.
Users were able to accurately predict the elapsed time for a
job subject to the computational cost. The CeNSS had a

function similar to the SIMPLEX mode. However, the
elapsed time fluctuated whenever a user re-ran a job.
Consequently, we could not generate accurate job
execution plans. The fluctuation in the elapsed time was
due to the inherent characteristics of the SMP machine.
When only one process executes on one node, the process
can use all of the node’s memory bandwidth. However,
when N processes execute on the same node, one process
can only use 1/N of the total memory bandwidth. The
memory bandwidth that each process can occupy decreases
or is affected by other processes because, in practice, it is
difficult to assign only one process to one node. In
particular, some memory intensive jobs strongly affected
the elapsed time of other jobs running on the same node.
The fluctuation of the elapsed time not only makes job
execution planning difficult but also makes program tuning
terribly difficult. Whether the fluctuation of the elapsed
time is due to program tuning or memory contention caused
by other jobs has not been identified. The influence among
jobs sharing the same node is an inherent characteristic of
the SMP machine, and a fundamental solution is desired.

2.2 JAXA Supercomputer System; JSS
The JSS is the first supercomputer system implemented
since the creation of JAXA in October 2003. It is expected
to contribute significantly to JAXA’s missions by fully
utilizing numerical simulations. In addition, the JSS is a
symbol of “One JAXA,” the integration of Japan’s three
space agencies. In addition to previous activities in
aeronautics, active expansion to the space field is an
important part of JAXA’s long-term vision, which is
referred to as JAXA 2025. Numerical simulations with the
powerful supercomputer can make great contributions to
JAXA’s mission through improved reliability, reduced cost
and lead time, and creation of innovative concepts for
aerospace systems.

The primary requirement for the JSS is computational
power, and the peak performance should be at least 10 to
20 times greater than that of the NS-III. Unsteady three-
dimensional simulations with quite fine grid resolution,
typified by large eddy simulations, are indispensable for
current numerical simulations in the aerospace field. Such
simulations require the management of large amounts of
three-dimensional and time-dependent data. Therefore, in
addition to computational power, the JSS should have high-
performance data management capabilities, such as high-
speed I/O and a large-scale data archive function. To apply
numerical simulations directly to aerospace vehicle
development, the system should be user friendly. For
example, it should be able to handle commercial
application programs and open-source software, achieve
optimization easily, enable flexible job scheduling, and
demonstrate operational and middleware reliability to
realize a large number of parametric studies. Moreover, a
seamless and secure environment is important to enable the
JSS to be used by remote JAXA field centers. Finally, to

JAXA Research and Development Memorandum JAXA-RM-14-011E2

This document is provided by JAXA.

5

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of JSS

avoid interfering with the ongoing JAXA projects, which
depend largely on supercomputers, smooth and rapid
transition from the NS-III to the JSS is important.

JAXA introduced the JSS in April 2009. The system
consists of the following: a large-scale parallel computing
system, a storage system, a shared memory system, and a
remote access system, as shown in Figure 1.

The large-scale parallel computing system comprises the
Main (M) system and the Project (P) system. Both systems
comprised Fujitsu FX1 clusters, which are multicore-based
scalable parallel clusters. The peak performance of the M
and P systems is 120TFlops and 15TFlops, respectively.
The amount of main memory of the M and P systems is
94TB and 6TB, respectively. The storage system has 1PB
for disk storage and 10PB for tape storage. The effective
performance of the disk I/O is greater than 25GB/s. The
hierarchical storage management has been introduced to
manage large data transfers between disk and tape storage.
The shared memory system consists of an application (A)
system and a vector (V) system. The A system comprises a
Fujitsu SPARC Enterprise M9000 node, which has 1TB
main memory and 32 scalar processors. The V system
comprised three NEC SX-9 nodes. The NEC SX-9 has a
peak performance of 4.8TFlops, 3TB main memory, and 20
TB local storage. Each SX-9 node has 16 vector processors
and is connected with an IXS crossbar network.

Figure 1: Overview of the JSS

The main JSS systems are installed at the Chofu field
center and remote access systems are installed at major
field centers. These remote access systems act as file
servers and front-end servers at each field center, and they
are connected through a virtual private network called
JSSnet.

The JSS has approximately 15 times greater peak
performance, 25 times more memory, and 20 times greater
storage than those of NS-III. The JSS also has a high
memory bandwidth (i.e., B/F = 1; ratio of bytes per flops)
to enhance the effective computing performance, full-band
interconnect, and powerful I/O capability. Moreover, the V
system and the A system are prepared for vector users and
pre-post processing, respectively. The large-scale parallel
computing system and the storage system are the key parts
of the JSS, whose details are described later.

3. FX1 CLUSTER DESCRIPTION
3.1 System overview
The JSS consists of several subsystems; however, the
central system is a scalable parallel cluster system based on
Fujitsu FX1. The FX1 cluster is a massively parallel system
in which 3,008 compute nodes are connected with a full
bisectional bandwidth fat-tree interconnection InfinibandTM
DDR (Double Data Rate) network. Figure 2 shows the
configuration of the FX1 cluster, and its major
specifications are listed in Table 1.

Each compute node contains one quad-core SPARC64TM
VII chip (2.5GHz clock speed), two specially designed
chipsets called JSC, DIMM memory modules, power units,
and HCA for inter-node communication. A compute node
has a theoretical performance of 40Gflops with 32GB
memory. The CPU chip has a mechanism called integrated
multicore parallel architecture (IMPACT), which comprise
a hardware barrier among cores, 6MB shared L2 cache, and
the associated compiler technology. This architecture
enables automatic and high-speed parallel-thread execution
on a multicore CPU without adding OpenMP directives.
Moreover, a dedicated chipset to realize a high memory
bandwidth enables high performance.

Essentially, the FX1 cluster performs data
communication using a fat-tree network. It has another
network, called the high-speed barrier network, which
speeds up barrier synchronization and global collective
operations, and mitigates the operating system interference
among nodes.

We can attempt to solve large-scale problems using
IMPACT and the high-speed barrier network without
considering a parallel programming model that is suitable
for multicore CPUs and degradation of parallel efficiency
in large-scale parallel execution.

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of
JAXA Supercomputer System

3

This document is provided by JAXA.

6

JAXA Research and Development Report JAXA-RM-14-

3384

Node Node Node Node

3290

[288PSW#1]
283Ports

[288PSW#12]
283Ports

IB Spine SW

IB Leaf SW
12ports

[24PSW#1]
12ports

12ports
[24PSW#276]

12ports

5Ports
[HFSW#1]

5Ports
[HFSW#4]

282

HSBN Spine SW

HSBN Leaf SW

24

Node Node

3008 nodes

Node Node

[288PSW#1]
282Ports

[288PSW#12]
282Ports

12ports
[24PSW#1]

12ports

12ports
[24PSW#282]

12ports

6Ports 6Ports
[HFSW#4]

14Ports
[HFSW#16]

1Port

12Ports
[HFSW#1]

1Port

14Ports
[HFSW#16]

1Port

12Ports
[HFSW#24]

1Port

3384

Node Node Node Node

3290

[288PSW#1]
283Ports

[288PSW#12]
283Ports

IB Spine SW

IB Leaf SW
12ports

[24PSW#1]
12ports

12ports
[24PSW#276]

12ports

5Ports
[HFSW#1]

5Ports
[HFSW#4]

282

HSBN Spine SW

HSBN Leaf SW

24

Node Node

3008 nodes

Node Node

[288PSW#1]
282Ports

[288PSW#12]
282Ports

12ports
[24PSW#1]

12ports

12ports
[24PSW#282]

12ports

6Ports 6Ports
[HFSW#4]

14Ports
[HFSW#16]

1Port

12Ports
[HFSW#1]

1Port

14Ports
[HFSW#16]

1Port

12Ports
[HFSW#24]

1Port

Figure 2: FX1 cluster configuration

Table 1: FX1 cluster specifications

CPU
Microprocessor SPARC64TM VII
L2 cache 6 MB shared

Node

of CPU 1
Memory 32 GB
Memory bandwidth 40 GB/s

I/O InfinibandTM DDR
HCA

Chassis
of nodes 4
Height 5U

Rack # of chassis 8
System # of racks 94

Figure 3: FX1 node structure

(a) SPARC64TM VII chip

(b) Compute node board

(c) Chassis

(d) Rack

(e) System

Figure 4: FX1 system packaging

CPU

JSC

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

8Byte x 8

JSC

CPU

JSC

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

8Byte x 8

JSC

JAXA Research and Development Memorandum JAXA-RM-14-011E4

This document is provided by JAXA.

7

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of JSS

The structure of a single FX1 node is shown in Figure 3,
where two JSC chipsets are implemented. This enables a
high memory bandwidth (1 Byte/Flop). Figure 4 shows the
FX1 components: a quad-core SPARC64TM VII chip, a
board (i.e., compute node), a chassis that contains four
boards, and a rack that contains eight chassis. In total, 94
racks are installed in the 3,008-node FX1 cluster.

3.2 FX1 cluster features
The major features of the FX1 cluster are as follows.
 SPARC64TM VII processor: The SPARC64TM VII is a

quad core CPU based on the SPARC V9 architecture. It is
designed and produced by Fujitsu. Each core is a 64-bit
microprocessor with a clock speed of 2.52GHz
augmented with two M&A floating point operation units
that provide two fused multiply add operations per cycle
for a total of 10.08Gflops per core or 40.32Gflops per
CPU.

 Simple but high-performance compute node: A compute
node is composed of a single CPU, memory module, IO
module, and a DC-DC converter. This is quite simple and
compact, which makes it possible to have a high memory
bandwidth and short memory latency, which leads to high
sustained performance.

 Integrated multicore parallel architecture (IMPACT):
IMPACT is accomplished by a combination of hardware
and software technologies. IMPACT consists of a shared
L2 cache among the SPARC64TM VII cores and a
hardware barrier among the cores. The FX1 employs an
advanced automatic parallelization compiler for the
software. Highly efficient automatic parallelization of the
innermost loops is possible with IMPACT. Note that this
used to be difficult; however, we can now handle a
multicore CPU as a single CPU virtually. In addition, in
combination with the special chipset that enables a high
memory bandwidth (1 Byte/Flop), high parallel thread
performance can be obtained.

 High performance and high function interconnect:
The compute nodes are connected with multiple
interconnection networks.
1. High-bandwidth data network: This network is the

main network of the FX1 cluster. It handles MPI
packets or network file access. The network is a full
bisectional bandwidth fat-tree network with
InfinibandTM DDR, which alleviates sustained
performance degradation caused by communication
conflicts and minimizes communication time variation.
The fat-tree network comprises 24 24-port
InfinibandTM leaf switches and 12 288-port
InfinibandTM spine switches. This two-stage fat-tree
network results in a hop count of at most five with
low latency, and I/O nodes and an application node
that serve as pre/post processing are also connected

with InfinibandTM.
2. High-speed barrier network: This network is used to

speed up the inter-node barrier and global collective
operations, such as broadcast and reduction, and
serves to mitigate interference from operating systems,
both of which could be bottlenecks at a high degree of
parallelism. The high-speed barrier network is
implemented such that it is added to the high-
bandwidth network, and specially designed high-
function switches are used.

3.3 FX1 cluster parallelization
Figure 5 shows the parallelization models for a multicore
CPU on the FX1 cluster. The flat-MPI model assigns each
MPI process to each core in a CPU, and the IMPACT
model assigns each thread to each core in a CPU. The
IMPACT model is typically recommended with the FX1
cluster. The IMPACT model is a type of hybrid
parallelization model that assigns each process (MPI or
XPFortran) to each node (where each node is equal to a
CPU), in which four threads are parallelized automatically.
In this model, process parallelism should be written
explicitly by users; however, thread parallelism is realized
automatically by the automatic parallelism compiler.

a) Flat-MPI model

b) IMPACT model
Figure 5: Parallelization models (Flat-MPI and IMPACT)

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of
JAXA Supercomputer System

5

This document is provided by JAXA.

8

JAXA Research and Development Report JAXA-RM-14-

Figure 6: Loop parallelism

In thread parallelism, loop parallelization dominates the

entire parallelization of the code. One important problem is
which loop should be parallelized in the parallelization of
multiple loops, as shown in Figure 6. Typically,
parallelization of the outermost loop is the most efficient;
thus, the automatic parallelism compiler attempts to
parallelize the outer loop as often as possible. However,
due to the loop complexity of real applications and limited
capability of the compiler, the compiler tends to parallelize
the innermost loop rather than the outermost loop. In
innermost loop parallelization, the parallelization overhead
has a considerable impact on thread scalability and
decreases the parallel performance. Thus, the past
automatic parallelism model could not deliver high
performance in thread parallelization. On the other hand,
IMPACT can achieve high performance even in the
innermost loop parallelization due to a considerable
decrease in the thread parallelization overhead. The high
thread scalability in the innermost loop parallelization and
the analytical capability enhancement of data dependency
and operations in the loop increase the potential region and
performance of thread parallelization. Moreover, efficient
thread parallelization in the innermost loop theoretically
improves thread scalability for applications optimized for
the vector processor. In the case of vectorization, a part of
the data dependency cannot be vectorized, e.g., inverse
dependency. However, IMPACT can parallelize such a
case. The IMPACT technology increases the potential
region of automatic thread parallelization and achieves
considerably good scalability.

Here, we present an example to show the superiority of
IMPACT. We provide a detailed discussion of the overall
performance of the FX1 cluster in Section X. The hardware
feature of IMPACT is a shared L2 cache and a high-speed
barrier among cores. The shared cache can decrease the
number of unnecessary data transfers between caches in the
thread parallelization and improve thread scalability, which
is degraded by false sharing. Figure 7 shows the effects of

Figure 7: Effect of shared cache

the shared cache in DAXPY (EuroBen Kernel 8 [4]). The
shared cache can improve performance dramatically.

The high-speed barrier among cores is implemented by
the hardware, demonstrating a rate that is 10 times faster
than when implemented by software. The performance
achieved with IMPACT is approximately equal to the
initiation overhead of a vector pipeline. These technologies
decrease the thread parallelization overhead dramatically
and achieve highly scalable thread parallelism.

4. MICRO-BENCHMARKS AND
KERNEL PERFORMANCE

To understand the performance characteristics of the
system, we measured the performance of individual
components using micro-benchmarks and kernels.

4.1 Performance of micro-benchmarks
Here, the kernel performance of the FX1 cluster is
compared in micro-benchmark programs with that of the
Fujitsu HX600 [5] with an AMD Shanghai CPU, which has
a clock speed of 2.3GHz and four cores (equivalent to the
FX1).

Figure 8 shows the performance of STREAM TRIAD
[6] with 4-core execution. The result of the FX1 cluster is
13.7GB/s, which is twice as fast as the HX600 due to
FX1’s superior memory bandwidth. Therefore, even for
real applications (e.g., CFD) that require a high memory
bandwidth, high memory performance can be expected.
However, the effective performance
(=measured/theoretical) of the memory access of the FX1 is
approximately 34.25%, which is lower than that of the
HX600. This is due to the adoption of the Chipkill
technology in the FX1, which can correct a 4-bit memory
error and improve the availability and reliability of systems

10

100

1,000

10,000

10 100 1,000 10,000

Pe
rfo

r
m

a
e

(M
Loop length

with shared cache
with independent cache

8

JAXA Research and Development Report JAXA-RM-14-

Figure 6: Loop parallelism

In thread parallelism, loop parallelization dominates the

entire parallelization of the code. One important problem is
which loop should be parallelized in the parallelization of
multiple loops, as shown in Figure 6. Typically,
parallelization of the outermost loop is the most efficient;
thus, the automatic parallelism compiler attempts to
parallelize the outer loop as often as possible. However,
due to the loop complexity of real applications and limited
capability of the compiler, the compiler tends to parallelize
the innermost loop rather than the outermost loop. In
innermost loop parallelization, the parallelization overhead
has a considerable impact on thread scalability and
decreases the parallel performance. Thus, the past
automatic parallelism model could not deliver high
performance in thread parallelization. On the other hand,
IMPACT can achieve high performance even in the
innermost loop parallelization due to a considerable
decrease in the thread parallelization overhead. The high
thread scalability in the innermost loop parallelization and
the analytical capability enhancement of data dependency
and operations in the loop increase the potential region and
performance of thread parallelization. Moreover, efficient
thread parallelization in the innermost loop theoretically
improves thread scalability for applications optimized for
the vector processor. In the case of vectorization, a part of
the data dependency cannot be vectorized, e.g., inverse
dependency. However, IMPACT can parallelize such a
case. The IMPACT technology increases the potential
region of automatic thread parallelization and achieves
considerably good scalability.

Here, we present an example to show the superiority of
IMPACT. We provide a detailed discussion of the overall
performance of the FX1 cluster in Section X. The hardware
feature of IMPACT is a shared L2 cache and a high-speed
barrier among cores. The shared cache can decrease the
number of unnecessary data transfers between caches in the
thread parallelization and improve thread scalability, which
is degraded by false sharing. Figure 7 shows the effects of

Figure 7: Effect of shared cache

the shared cache in DAXPY (EuroBen Kernel 8 [4]). The
shared cache can improve performance dramatically.

The high-speed barrier among cores is implemented by
the hardware, demonstrating a rate that is 10 times faster
than when implemented by software. The performance
achieved with IMPACT is approximately equal to the
initiation overhead of a vector pipeline. These technologies
decrease the thread parallelization overhead dramatically
and achieve highly scalable thread parallelism.

4. MICRO-BENCHMARKS AND
KERNEL PERFORMANCE

To understand the performance characteristics of the
system, we measured the performance of individual
components using micro-benchmarks and kernels.

4.1 Performance of micro-benchmarks
Here, the kernel performance of the FX1 cluster is
compared in micro-benchmark programs with that of the
Fujitsu HX600 [5] with an AMD Shanghai CPU, which has
a clock speed of 2.3GHz and four cores (equivalent to the
FX1).

Figure 8 shows the performance of STREAM TRIAD
[6] with 4-core execution. The result of the FX1 cluster is
13.7GB/s, which is twice as fast as the HX600 due to
FX1’s superior memory bandwidth. Therefore, even for
real applications (e.g., CFD) that require a high memory
bandwidth, high memory performance can be expected.
However, the effective performance
(=measured/theoretical) of the memory access of the FX1 is
approximately 34.25%, which is lower than that of the
HX600. This is due to the adoption of the Chipkill
technology in the FX1, which can correct a 4-bit memory
error and improve the availability and reliability of systems

10

100

1,000

10,000

10 100 1,000 10,000

Pe
rfo

rm
an

ce
 (M

flo
ps

)

Loop length

with shared cache
with independent cache

JAXA Research and Development Memorandum JAXA-RM-14-011E6

This document is provided by JAXA.

9

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of JSS

with very large amounts of memory. The effective memory
access performance of the FX1 is approximately one-half
that of the HX600, which has no Chipkill technology. This
is consistent with the theoretical fact that adoption of the
Chipkill technology decreases the effective performance of
memory access by half.

Figure 9 shows the performance of DAXPY (EuroBen
Kernel 8 [4]) with 4-core execution. The FX1 cluster with
IMPACT shows much better performance than the HX600
at the region where the loop length is relatively small. This
is due to the small overhead of thread parallelization
realized by IMPACT.

Figure 10 and Figure 11 show the effects of the high-
speed barrier network on the performance of MPI barrier
and Allreduce communications, respectively. The latency
of both communication methods was measured with up to
256 nodes, showing a nearly constant time due to the high-
speed barrier network. In Figure 11, the increase in the
latency for six and eight nodes is due to software
implementation rather than hardware implementation. This
is due to

Figure 8: STREAM TRIAD performance

Figure 9: DAXPY performance

hardware resource limitations in the real operating
environment. However, this occurs for less than eight nodes,
and the increased latency is not crucial; thus, this issue does
not become a problem in actual operation.

For MPI barrier communications, latency was measured
with up to 512 nodes, showing 9.94 µs at 512 nodes. The
high-speed barrier network can connect a maximum of 768
nodes, and measured good performance is expected for up
to 768 nodes. However, the latency with 1024 nodes
increases significantly to 248.51 µs. For more than 768
nodes, the high-speed barrier network cannot be used, and
barrier synchronization is performed by software, which
results in significant performance degradation.

The performance enhancement with more than 768
nodes remains a future issue. However, we can show the
reasonable effectiveness of this approach, such as the high-
speed barrier network for large-scale computation.

Figure 10: MPI barrier performance

Figure 11: MPI Allreduce performance (8 bytes)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

1 2 3 4

FX1

HX600 shanghai 2.5GHz

of Cores

10

100

1000

10000

10 100 1000 10000

R
a
te

 (
M

fl
o
p
/
s)

of loop iterations

DAXPY

Y(I) = Y(I) + Const * X1(I), I = 1,N

FX1 2.52GHz 4threads

HX600 shanghai 2.5GHz 4threads

0.00

20.00

40.00

60.00

80.00

100.00

120.00

2 4 8 16 32 64 128 256

La
te
nc
y
(m

icr
o
se
c)

of Nodes

High speed barrier off

High speed barrier on

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

2 4 8 16 32 64 128 256

La
te
nc
y
of
 8
By

te
 o
p
(m

icr
o
se
c)

of Nodes

High speed barrier off
High speed barrier on

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of
JAXA Supercomputer System

7

This document is provided by JAXA.

10

JAXA Research and Development Report JAXA-RM-14-

Table 2: NPB 3.1 Class C performance

Code MOPS Scalability

 1 Nodes
(4 Cores)

256 Nodes
(1,024 Cores)

EP 17.5 4,258.9 242.8
BT 1,425.7 281,681.5 197.6
CG 396.1 65,979.3 166.6
FT 653.0 185,539.6 284.1
IS 74.2 6,356.1 85.6
LU 1,781.0 382,233.9 214.6
MG 1,327.9 494,243.3 372.2

4.2 Performance of NPB
The performance of the FX1 cluster was measured using
NAS parallel benchmarks (NPB) [7]. The NPBs are a small
set of programs designed to help evaluate the performance
of parallel supercomputers, including eight benchmarks
(e.g., EP, BT, CG, and several problem size classes: A, B,
C). The measured results for NPB 3.1 Class C are listed in
Table 2. The measurements were conducted with a single
core and 256 nodes (i.e., 1,024 cores). A combination of
MPI and IMPACT was used with 256 nodes. The average
speed increase ratio with 256 nodes is approximately 220,
showing good scalability for the speed-up problem with a
fixed problem size. A compiler message during compilation
showed an error for the automatic parallelization for EP
and BT. Therefore, both cases were measured again with
manual parallelization using OpenMP directives, which
showed good scalability. This indicates that the current
automatic parallelism compiler requires improvement.

4.3 HPL results
We measured HPL [8] on the FX1 cluster. The parameters
and measurement results are summarized in Table 3 and
Table 4.

The current HPL results can be characterized by high
sustained performance and high sustained efficiency
(���� �����⁄). As can be seen in Table 5, systems are
selected from the Top500 List [9] (November 2008), in
which the number of cores is greater than 10,000 and
efficiency is greater than 80%. Note that the FX1 has the
highest sustained efficiency.

The reasons why such high sustained efficiency can be
achieved with the FX1 cluster for HPL are summarized as
follows.
High-performance BLAS

On the FX1, a high-performance BLAS library [10] is
employed. This library is optimized such that the
maximum performance of SPARC64TM VII can be
achieved.

Table 3: HPL parameters

N 3,308,800
NB 440
P 32
Q 94
BCAST 2 ringM
DEPTH 1
L1 No-transposed
U Transposed

Table 4: HPL measurement results

System Fujitsu FX1 cluster
of nodes 3,008
of cores 12,032
Rmax 110.6 Tflops
Rpeak 121.3 Tflops
Efficiency 91.19 %
Execution time 60h 40 m

Table 5: HPL list sorted by efficiency

Specifically, high performance DGEMM [10] makes a
great contribution to the HPL performance improvement
because 97% of the execution time of HPL is spent on
DGEMM calculations. In this measurement, based on the
DGEMM routine, which is highly tuned for SPARC64TM
VII one core, and by further tuning to make the best use of
the shared L2 cache suited for IMPACT, we can obtain 2%
higher DGEMM performance. Thus, we can obtain 94.6%
of the peak hardware performance. The BLAS library is
used frequently in scientific computations; thus, supplying
high performance BLAS will significantly improve the
performance of such scientific computations.

Rank Computer Cores RMax RPeak Efficiency Nmax Exec
Time [h]

FX1 12,032 110,600 121,283 91.19% 3,308,800 60.65
14 Altix ICE 8200EX 12,288 128,400 146,736 87.50% 1,817,000 8.65
17 Altix ICE 8200EX 10,240 106,100 122,880 86.34% 1,535,480 6.32
46 Cray XT4 11,328 54,648 63,437 86.15% - -
75 Blue Gene/P 12,288 35,123 41,779 84.07% - -
56 Blue Gene/P 16,384 46,830 55,706 84.07% 933,887 3.22
57 Blue Gene/P 16,384 46,830 55,706 84.07% 933,887 3.22
24 Blue Gene/P 32,768 92,960 111,411 83.44% - -
32 Appro Xtreme-X3 10,000 76,460 92,000 83.11% 1,508,000 8.31
33 p5 575 12,208 75,760 92,781 81.65% 1,383,600 6.47
69 Blue Gene 16,384 37,330 45,875 81.37% 663,551 1.45
5 Blue Gene/P 163,840 450,300 557,056 80.84% 2,580,479 7.07

11 Blue Gene/P 65,536 180,000 222,822 80.78% 1,766,399 5.67
16 Blue Gene/P 40,960 112,500 139,264 80.78% - -
30 Cray XT5 10,400 76,800 95,680 80.27% - -
39 Altix 13,824 66,567 82,944 80.26% 1,478,736 9.00
4 Blue Gene 212,992 478,200 596,378 80.18% 2,456,063 5.74

JAXA Research and Development Memorandum JAXA-RM-14-011E8

This document is provided by JAXA.

11

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of JSS

Figure 12: Segmentation of L panel for data transfer

Communication latency hiding

In HPL, communication is overlapped such that, while
updating the C part, the L panel required for the next
iteration can be transferred in the column direction. In the
original HPL, the L panel communication between a
sender and a receiver is synchronized because the L panel
is large. Then, the sender must wait until the update of
the C part is finished and the receiver is ready. To solve
this problem, we modified the HPL such that the wait
time of the sender is reduced by the following process: 1)
update of the C part is divided into small sub-blocks
(Figure 12); 2) the receiver confirms whether the sender
is ready to send at the end of each sub-block; 3) the send-
receive action is completed after the negotiation; 4) all
small sub-blocks are updated until the right edge; and 5)
the rest of the C part (the greater part of C in Figure 12)
is updated simultaneously. As a result, we can obtain a
1% HPL performance improvement. In addition, we
reduced the number of processes that send and receive
messages with IMPACT parallelization. As a result, the
communication overhead was relieved on up to 12,032
cores.

Large problem size based on high hardware reliability
It is well known that the performance of HPL can be
improved by the increasing problem size. The
performance variation (peak performance ratio versus
problem size) using 512 nodes on the FX1 cluster is
shown in Figure 13. In HPL, the number of arithmetic
operations is proportional to the cube of the problem
size; thus, increasing the problem size will cause a
dramatic increase in the execution time. Typically, a
problem size with such an extended execution time (e.g.,
several hours) is selected because extended execution at
over 90% load will

Figure 13: HPL performance and data size

involve a considerable reliability risk. In this
measurement, under the conditions of maximum problem
size (= 3,308,800) inside the memory capacity and
no restricted execution time, we eventually achieved
91.19% average sustained performance for an extended
execution time (60 h 40 min). As a result, a 2%
performance improvement can be obtained as compared
to the case in which the problem size is half. In Table 5,
the execution time for the systems (except FX1) is less
than 10 h, demonstrating that the FX1 cluster is highly
reliable, even for scientific computations.

5. JAXA PARALLEL APPLICATIONS
5.1 Overview of the applications
The performance of five typical applications used at JAXA
(JAXA Benchmark Programs: JBP [1115צ]) were measured
on the FX1 cluster. An overview, typical computational
results, and characteristics are listed in Table 6, Figure 14,
and Figure 15, respectively. In Figure 15, the vertical and
horizontal axes show the data communication ratio and the
memory access ratio to the total CPU time, respectively.

Table 6: JBP list

Code Application in
aerospace Numerical Method Parallel

Strategy

P1 Combustion FDM + Chemistry MPI + IMPACT

P2 Aeronautics FVM (Structured) MPI + IMPACT

P3 Turbulence FDM + FFT XPF + IMPACT

P4 Space Plasma PIC MPI + IMPACT

P5 Aeronautics FVM
(unstructured) MPI + IMPACT

FDM: Finite Difference Method, FVM: Finite Volume Method,
PIC: Particle in Cell

L1

Cr

U1 U2 U3 U4 U5

C11 C12 C13 C14 C15

L2 C21 C22 C23 C24 C25

Lr

mmb

nnb

80%

82%

84%

86%

88%

90%

92%

5 10 15 20 25 30

P
e
ak

 P
e
rf

o
rm

an
c
e
 R

at
io

Data size/node(GB)

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of
JAXA Supercomputer System

9

This document is provided by JAXA.

12

JAXA Research and Development Report JAXA-RM-14-

Figure 14: Typical JBP results

Figure 15: JBP characteristics

5.2 Single-node performance
Table 7 shows a comparison of the execution time for JPB
between the FX1 and the HX600. Here, one FX1 node and
one HX600 socket, each having four cores, were used. The
average thread scalability of the FX1 is superior to that of
the HX600, showing the effectiveness of IMPACT. Here,
the Fujitsu automatic parallelism compiler without
IMPACT features was used with the HX600.

P5 is a list access program, and its performance is
limited by the memory bandwidth. Note that the FX1 and
the HX600 have different L2 cache replacement algorithms.

The FX1 has a conventional inclusive cache with an L2
cache of 6MB; the HX600 has an 8MB victim cache (6MB
L2 cache, 2MB L1 cache). The cache increment of the
HX600 improves the thread scalability of P5.

P3 is parallelized using XPFortran, and demonstrates a
great deal of data communication between nodes as
compared to other programs. Thus, the thread scalability of
P3 is relatively lower than that of other programs.

5.3 Multi-node performance
Table 8 lists the results for the JBP scale-up problem,
showing the execution time on a single node and on
multiple nodes. Single-node execution is a single process
execution with thread parallelization by IMPACT. The
multi-node execution is multi-process execution, whose
problem size is enlarged according to the number of
processes.

Table 7: Single-node execution results

Code
FX1 HX600 shanghai 2.5GHz

1 Core
[sec]

4 Core
[sec]

Scale
ratio

1 Core
[sec]

4 Core
[sec]

Scale
ratio

P1 515.6 149.2 3.46 559.2 216.5 2.58

P2 242.5 80.6 3.01 238.9 93.6 2.55

P3 211.3 93.5 2.26 201.1 146.7 1.37

P4 619.0 172.6 3.59 560.8 171.9 3.26

P5 320.9 134.2 2.39 346.9 127.7 2.72

Ave. - 2.94 - 2.50

Table 8: Multi-node execution results

Code

Execution on
single- node

Execution on
multi-node

of grids
Exec
time
[sec]

of grids # of
nodes

Exec
time
[sec]

P1 1,728,000 131.0 1,285,632,000 744 143.3

P2 512,000 71.0 384,000,000 750 91.5

P3 1,572,864 346.8 805,306,368 512 491.7

P4 65,536 164.0 49,152,000 750 193.0

P5 4,173 142.0 2,492,921 750 181.6

Memory access ratio

P3

P4

P2

Data transfer intensive

Memory access intensiveCPU intensive

P5D
at

a
tra

ns
fe

r r
at

io

Low

Low

High

High

P1

JAXA Research and Development Memorandum JAXA-RM-14-011E10

This document is provided by JAXA.

13

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of JSS

Figure 16: Scalability

Figure 16 shows the scale-up effect calculated using the
results listed in Table 6. The average value of five JBPs is
approximately 77.4%, ranging from 512 processes (2,048
cores) to 750 processes (3,000 cores). P3 and P4, which are
data transfer intensive programs, show good efficiency, i.e.,
70.5% and 85.0%, respectively. Thus, the good parallel
scalability of the FX1 cluster can be identified in actual
applications.

Figure 17 shows the advantage of the high-speed barrier
network for JBP. Performance with and without the high-
speed barrier network was measured and compared. Note
that there is no difference in the performance for P1 and P2
because these applications have low barrier synchronization
and a small number of reduction operations. The use of the
high-speed barrier network improves performance of P3,
P4, and P5. This is due to the significant usage of barrier
synchronization for P3 and P5, and the significant use of
reduction operations for P4. The high-speed barrier
network works well for applications with relatively high
barrier synchronization and a large number of reduction
operations.

Table 9 shows a JBP performance comparison between
the FX1 cluster and the CeNSS [3], which was the previous
system used at JAXA. The average speed-up ratio of JBP is
approximately 11.36. This ratio is greater than 7.75, which
is expected by the hardware enhancement, thereby showing
the good execution efficiency of the FX1 cluster.

Figure 17: Effects of high-speed barrier network

Table 9: Comparison between FX1 and CeNSS

Code # of
sockets

CeNSS
[sec]

FX1
[sec]

Performance
ratio

P1 744 1380.4 143.3 9.63

P2 750 1468.6 91.5 16.05

P3 512 3517.0 491.7 7.15

P4 750 3061.7 193.0 15.86

P5 750 1447.2 181.6 8.13

Ave. - 11.36

6. CONCLUSION
To keep up with the trends of multicore processing and
increased parallelism, we have installed the JSS, which
uses the Fujitsu FX1 multicore-based scalable parallel
cluster with IMPACT and high-speed barrier technologies.
In this work, through performance measurements of HPL
and JAXA’s real applications on the M system, which is
comprised primarily of the FX1, we were able to confirm
the following: 1) effective utilization of the multicore CPU
with IMPACT, and 2) high parallel-scalability with the
high-speed barrier network.

In future, we will continue to evaluate and enhance the
automatic compiler parallelization technology and expand
the use of IMPACT to newly developed applications. In
addition, we plan to investigate a suitable parallel
programming model for petascale scientific applications.

0

100

200

300

400

500

600

700

800

P1 P2 P3 P4 P5

Applications

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scale-up of grid size

Scale-up of performance

Scale-up efficiency

Sc
al

e-
up

 o
f g

rid
 si

ze

Sc
al

e-
up

 o
f p

er
fo

rm
an

ce

0.90

0.95

1.00

1.05

1.10

1.15

1.20

P1 P2 P3 P4 P5

Sp
ee

d
up

High Speed Barrier off
High Speed Barrier on

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of
JAXA Supercomputer System

11

This document is provided by JAXA.

14

JAXA Research and Development Report JAXA-RM-14-

ACKOWLEDGEMENTS
 The authors would like to thank the JSS development and
operation team at JAXA for their invaluable support. The
authors would also like to thank the Fujitsu HPC team for
their cooperation.

REFERENCES
[1] Miyoshi, H., Fukuda, M., Iwamiya, T., Nakamura, T.,

Tuchiya, M., Yoshida, M., Yamamoto, K., Yamamoto,
Y., Ogawa, S., Matsuo, Y., Yamane, T., Takamura,
M., Ikeda, M., Okada, S., Sakamoto, Y., Kitamura, T.,
Hatama, H., and Kishimoto, M., “Development and
Achievement of NAL Numerical Wind Tunnel (NWT)
for CFD Computations,” Proceedings of SC1994,
November 1994.

[2] Matsuo, Y., Nakamura, T., Tsuchiya, M., Ishizuka, T.,
Fujita, N., Ohkawa, H., Hirabayashi, Y., Takaki, R.,
Yoshida, M., Nakamura, K., Yamamoto, K.,
Suematsu, K., and Iwamiya, T., “Numerical Simulator
III–Building a Terascale Distributed Parallel
Computing Environment for Aerospace Science and
Engineering,” Parallel Computational Fluid
Dynamics, New Frontiers and Multi-Disciplinary
Applications, Elsevier (2003), 187-194.

[3] Matsuo, Y., Tsuchiya, M., Aoki, M., Sueyasu, N., Inari,
T., and Yazawa, K.,“Early Experience with Aerospace
CFD at JAXA on the Fujitsu PRIMEPOWER
HPC2500”, Proceedings of SC2004, November 2004.

[4] http://www.hpcresearch.nl/euroben/index.php
[5] Nakashima, H., “T2K Open Supercomputer: Inter-

University and Inter-Disciplinary Collaboration on the
New Generation Supercomputer,” Intl. Conf.
Informatics Education and Research for Knowledge-
Circulating Society (ICKS'08), Jan. 2008.

[6] http://www.cs.virginia.edu/stream/
[7] http://www.nas.nasa.gov/publications/npb.html
[8] http://icl.cs.utk.edu/hpl/index.html
[9] http://www.top500.org/
[10] http://www.netlib.org/blas/
[11] Mizobuchi, Y., Tachibana, S., Shinio, J., Ogawa, S.,

and Takeno, T., “A Numerical Analysis of the
Structure of a Turbulent Hydrogen Jet Lifted Flame,”
Proceedings Combustion Institute, Vol. 29, (2002),
2009-2015.

[12] Takaki, R., Yamamoto, K., Yamane, T., Enomoto, S.,
and Mukai, J., “The Development of the UPACS CFD
Environment,” Lecture Notes in Computer Science
2858, Springer (2003), 307-319.

[13] Abe, H., Kawamura, H., and Matsuo, Y., “Direct
Numerical Simulation of a Fully Developed Turbulent
Channel Flow With Respect to the Reynolds Number
Dependence,” Transaction of the ASME, Journal of
Fluids Engineering, Vol. 123, (2001), 382-393.

[14] Shinohara, I., Suzuki, H., Fujimoto, M., and Hoshino,
M., “Rapid Large-Scale Magnetic-Field Dissipation in
a Collisionless Current Sheet via Coupling between
Kelvin-Helmholtz and Lower-Hybrid Drift
Instabilities,” Phys. Rev. Lett. 87, 095001, 2001.

[15] Murayama, M., and Yamamoto, K., “Comparison
Study of Drag Prediction for the 3rd CFD Drag
Prediction Workshop by Structured and Unstructured
Mesh Method,” AIAA Paper 2007-0258, Jan. 2007.

JAXA Research and Development Memorandum JAXA-RM-14-011E12

This document is provided by JAXA.

Printed on Recycled Paper

This document is provided by JAXA.

	COVER

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	3. FX1 CLUSTER DESCRIPTION
	4. MICRO-BENCHMARKS ANDKERNEL PERFORMANCE
	5. JAXA PARALLEL APPLICATIONS
	6. CONCLUSION
	ACKOWLEDGEMENTS
	REFERENCES

