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ABSTRACT 
Multicore processing has become a major trend in high-performance computing. However, there are two major issues with 
multicore technologies: 1) how to make full use of modern multicore CPU capability with reduced user workload, and 2) how 
to achieve better scalability up to a high degree of parallelism for memory-intensive applications such as computational fluid 
dynamics. First, the multicore-based massively parallel cluster of the Japan Aerospace Exploration Agency (JAXA) 
supercomputer system, which uses the Fujitsu FX1 as the core computer, is described. Notable features such as a high-speed 
barrier network, enhanced memory bandwidth, and an integrated mechanism to hide latency, i.e., the integrated multicore 
parallel architecture, which comprises a hardware barrier, L2 cache shared among cores, and an associated automated 
parallelization complier, are described. Second, the process to achieve significantly high sustained performance (>90%, high-
performance Linpack benchmark) on the multicore CPU cluster system is explained. Finally, performance measurement 
results for JAXA applications are provided.  
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1. INTRODUCTION 
The Japan Aerospace Exploration Agency (JAXA) has 
been involved in various activities in aerospace fields, 
including research, development, and application of 
aerial/space vehicles. The 20 consecutive successful 
launches of the H-IIA launch vehicle No. 26 in 2014 was a 
significant achievement. Since the era of the National 
Aerospace Laboratory of Japan, a predecessor of JAXA, 
JAXA has recognized the importance of numerical 
simulations using high performance computers. JAXA has 
promoted the installation and operation of large-scale high 
performance computing systems like the Numerical 
Simulator (NS) [1,2,3]. Real applications in the aerospace 
field tend to require large-scale simulations with high-
speed computing or large amounts of memory, i.e., large-
scale parallel computers.  

All of the recent large-scale parallel computers used in 
scientific computations face the following two challenges. 
The first is how to utilize a multicore CPU easily and 
efficiently. The ability to increase CPU clock speed shows 
signs of leveling off, and the methodology to increase CPU 
performance is changing from clock-up to increasing the 
number of cores in a CPU.  The second issue is how to 
improve parallel scalability to allow applications to use an 
extremely large number of cores effectively. Currently, 

practical applications use several hundreds of cores, and 
applications that use tens of thousands of cores are 
expected. However, the methodology to ensure parallel 
scalability with tens of thousands of cores has not been 
established. 

Under the abovementioned circumstances, JAXA 
operated the Central Numerical Simulation System 
(CeNSS), a symmetric multiprocessor (SMP) cluster-type 
large-scale parallel computing system from October 2002 
to April 2009. In April 2009, it was replaced with a 
multicore-based scalable parallel cluster with 
approximately 12,000 cores, peak performance of 
120Tflops, and main memory of 94TB. This is the main 
component of the JAXA Supercomputer System (JSS).  

The remainder of this paper is organized as follows. First, 
we review the history of supercomputing systems at JAXA. 
Then, we present the concept and design of the JSS and 
describe the new multicore-based scalable parallel cluster 
system comprising a Fujitsu FX1 node, which is the 
primary computing engine of the JSS. We also present the 
results of a performance evaluation using the high 
performance Linpack (HPL) benchmark and the current 
aerospace computational fluid dynamics (CFD) 
applications on the cluster. 
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2. BACKGROUND 
2.1 Numerical Simulator III 
Since October 2002, JAXA operated a terascale SMP-
cluster supercomputer system, called NS-III [3]. The NS-III 
had approximately 1,800 scalar processors, peak 
performance of 9.3Tflops, and main memory of 3.6TB. The 
main computing subsystem of the NS-III was the CeNSS, 
which had 18 cabinets, i.e., physical hardware units. Each 
cabinet was a Fujitsu PRIMEPOWER HPC2500 server 
with 128 CPUs and shared memory of 256GB. At 
maximum configuration limits, it was able to act as a 128-
way SMP system. The CPU was the SPARC64TM V scalar 
chip with a 1.3GHz clock. The theoretical peak 
performance per CPU was 5.2Gflops and 665.6Gflops per 
cabinet. Each chip employed a shared L2 cache of 2MB. A 
cabinet could be partitioned into two or four nodes 
according to the computational requirements. Here from an 
operating system perspective, a node is a logical unit. In the 
CeNSS, each compute cabinet was partitioned into four 
nodes, where each node was a 32-way SMP with a 64GB 
shared memory, giving a total of 56 compute nodes. All 
nodes were connected to a crossbar interconnect network 
through one data transfer unit per node.  

Regarding the programming environment, we adopted 
the so-called hybrid programming paradigm, i.e., we used 
the “thread parallel” model within a node with automatic 
parallelism or OpenMP, and we used the “process parallel” 
model with the message passing interface (MPI) or 
XPFortran (similar to HPF) among nodes. For example, a 
triple do-loop, which is commonly used in CFD, is 
parallelized as follows. The outermost do-loop can be 
parallelized by process parallelism, and the remaining inner 
do-loops can be parallelized by thread parallelism if the 
loops are independent. The use of automatic parallelization 
strongly helped users execute applications written for the 
vector processor system in the past and on the new scalar 
processor system. Program modifications were not 
necessary because automatic parallelism can only be 
attained by specification during compilation and execution. 
In practice, hybrid parallelization, i.e., the combined 
application of process and thread parallelism, is quite 
difficult for users; thus, automatic parallelism is better than 
OpenMP. In the case of inner do-loop parallelization, it is 
better to parallelize the outer do-loops as often as possible 
in terms of the parallelization overhead. However, when the 
compiler failed to parallelize outer do-loops due to the 
limited capability of the automatic parallelization compiler, 
the compiler parallelized the innermost do-loop. 
Consequently, the performance and scalability of thread 
parallelism was not as good as expected. Therefore, the 
benefit of the large-size SMP was not attainable.  

In the past, we used a SIMPLEX mode for job execution. 
Users were able to accurately predict the elapsed time for a 
job subject to the computational cost. The CeNSS had a 

function similar to the SIMPLEX mode. However, the 
elapsed time fluctuated whenever a user re-ran a job. 
Consequently, we could not generate accurate job 
execution plans. The fluctuation in the elapsed time was 
due to the inherent characteristics of the SMP machine.  
When only one process executes on one node, the process 
can use all of the node’s memory bandwidth. However, 
when N processes execute on the same node, one process 
can only use 1/N of the total memory bandwidth. The 
memory bandwidth that each process can occupy decreases 
or is affected by other processes because, in practice, it is 
difficult to assign only one process to one node. In 
particular, some memory intensive jobs strongly affected 
the elapsed time of other jobs running on the same node. 
The fluctuation of the elapsed time not only makes job 
execution planning difficult but also makes program tuning 
terribly difficult. Whether the fluctuation of the elapsed 
time is due to program tuning or memory contention caused 
by other jobs has not been identified. The influence among 
jobs sharing the same node is an inherent characteristic of 
the SMP machine, and a fundamental solution is desired. 

2.2 JAXA Supercomputer System; JSS 
The JSS is the first supercomputer system implemented 
since the creation of JAXA in October 2003. It is expected 
to contribute significantly to JAXA’s missions by fully 
utilizing numerical simulations. In addition, the JSS is a 
symbol of “One JAXA,” the integration of Japan’s three 
space agencies. In addition to previous activities in 
aeronautics, active expansion to the space field is an 
important part of JAXA’s long-term vision, which is 
referred to as JAXA 2025. Numerical simulations with the 
powerful supercomputer can make great contributions to 
JAXA’s mission through improved reliability, reduced cost 
and lead time, and creation of innovative concepts for 
aerospace systems. 

The primary requirement for the JSS is computational 
power, and the peak performance should be at least 10 to 
20 times greater than that of the NS-III. Unsteady three-
dimensional simulations with quite fine grid resolution,  
typified by large eddy simulations, are indispensable for 
current numerical simulations in the aerospace field. Such 
simulations require the management of large amounts of 
three-dimensional and time-dependent data. Therefore, in 
addition to computational power, the JSS should have high-
performance data management capabilities, such as high-
speed I/O and a large-scale data archive function. To apply 
numerical simulations directly to aerospace vehicle 
development, the system should be user friendly. For 
example, it should be able to handle commercial 
application programs and open-source software, achieve 
optimization easily, enable flexible job scheduling, and 
demonstrate operational and middleware reliability to 
realize a large number of parametric studies. Moreover, a 
seamless and secure environment is important to enable the 
JSS to be used by remote JAXA field centers. Finally, to 
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avoid interfering with the ongoing JAXA projects, which 
depend largely on supercomputers, smooth and rapid 
transition from the NS-III to the JSS is important. 

JAXA introduced the JSS in April 2009. The system 
consists of the following: a large-scale parallel computing 
system, a storage system, a shared memory system, and a 
remote access system, as shown in Figure 1. 

The large-scale parallel computing system comprises the 
Main (M) system and the Project (P) system. Both systems 
comprised Fujitsu FX1 clusters, which are multicore-based 
scalable parallel clusters. The peak performance of the M 
and P systems is 120TFlops and 15TFlops, respectively. 
The amount of main memory of the M and P systems is 
94TB and 6TB, respectively. The storage system has 1PB 
for disk storage and 10PB for tape storage. The effective 
performance of the disk I/O is greater than 25GB/s. The 
hierarchical storage management has been introduced to 
manage large data transfers between disk and tape storage. 
The shared memory system consists of an application (A) 
system and a vector (V) system. The A system comprises a 
Fujitsu SPARC Enterprise M9000 node, which has 1TB 
main memory and 32 scalar processors. The V system 
comprised three NEC SX-9 nodes. The NEC SX-9 has a 
peak performance of 4.8TFlops, 3TB main memory, and 20 
TB local storage. Each SX-9 node has 16 vector processors 
and is connected with an IXS crossbar network. 

 

 
Figure 1: Overview of the JSS 

 
 
 
 
 
 
 

The main JSS systems are installed at the Chofu field 
center and remote access systems are installed at major 
field centers. These remote access systems act as file 
servers and front-end servers at each field center, and they 
are connected through a virtual private network called 
JSSnet. 

The JSS has approximately 15 times greater peak 
performance, 25 times more memory, and 20 times greater 
storage than those of NS-III. The JSS also has a high 
memory bandwidth (i.e., B/F = 1; ratio of bytes per flops) 
to enhance the effective computing performance, full-band 
interconnect, and powerful I/O capability. Moreover, the V 
system and the A system are prepared for vector users and 
pre-post processing, respectively. The large-scale parallel 
computing system and the storage system are the key parts 
of the JSS, whose details are described later. 
 

3. FX1 CLUSTER DESCRIPTION 
3.1 System overview 
The JSS consists of several subsystems; however, the 
central system is a scalable parallel cluster system based on 
Fujitsu FX1. The FX1 cluster is a massively parallel system 
in which 3,008 compute nodes are connected with a full 
bisectional bandwidth fat-tree interconnection InfinibandTM 
DDR (Double Data Rate) network. Figure 2 shows the 
configuration of the FX1 cluster, and its major 
specifications are listed in Table 1.  

Each compute node contains one quad-core SPARC64TM 
VII chip (2.5GHz clock speed), two specially designed 
chipsets called JSC, DIMM memory modules, power units, 
and HCA for inter-node communication. A compute node 
has a theoretical performance of 40Gflops with 32GB 
memory. The CPU chip has a mechanism called integrated 
multicore parallel architecture (IMPACT), which comprise 
a hardware barrier among cores, 6MB shared L2 cache, and 
the associated compiler technology. This architecture 
enables automatic and high-speed parallel-thread execution 
on a multicore CPU without adding OpenMP directives. 
Moreover, a dedicated chipset to realize a high memory 
bandwidth enables high performance.  

Essentially, the FX1 cluster performs data 
communication using a fat-tree network. It has another 
network, called the high-speed barrier network, which 
speeds up barrier synchronization and global collective 
operations, and mitigates the operating system interference 
among nodes. 

We can attempt to solve large-scale problems using 
IMPACT and the high-speed barrier network without 
considering a parallel programming model that is suitable 
for multicore CPUs and degradation of parallel efficiency 
in large-scale parallel execution.  
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Figure 2: FX1 cluster configuration 
 
 

Table 1: FX1 cluster specifications 

CPU 
Microprocessor SPARC64TM VII 
L2 cache 6 MB shared 

Node 

# of CPU 1 
Memory 32 GB 
Memory bandwidth 40 GB/s 

I/O InfinibandTM DDR 
HCA  

Chassis 
# of nodes 4 
Height 5U 

Rack # of chassis 8 
System # of racks 94 

 
 
 

 
Figure 3: FX1 node structure 

 

 
(a) SPARC64TM VII chip 

 

 
(b) Compute node board 

(c) Chassis 

 
(d) Rack 

 

 
(e) System 

Figure 4: FX1 system packaging 
 

CPU

JSC

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

8Byte x 8

JSC

CPU

JSC

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

D
IM

M

8Byte x 8

JSC

JAXA Research and Development Memorandum JAXA-RM-14-011E4

This document is provided by JAXA.



7 
 

 
 

High Sustained Performance and Scalability on a Multicore-Based Massively Parallel Cluster of JSS 

The structure of a single FX1 node is shown in Figure 3, 
where two JSC chipsets are implemented. This enables a 
high memory bandwidth (1 Byte/Flop). Figure 4 shows the 
FX1 components: a quad-core SPARC64TM VII chip, a 
board (i.e., compute node), a chassis that contains four 
boards, and a rack that contains eight chassis. In total, 94 
racks are installed in the 3,008-node FX1 cluster. 
 

3.2 FX1 cluster features 
The major features of the FX1 cluster are as follows. 
 SPARC64TM VII processor: The SPARC64TM VII is a 

quad core CPU based on the SPARC V9 architecture. It is 
designed and produced by Fujitsu. Each core is a 64-bit 
microprocessor with a clock speed of 2.52GHz 
augmented with two M&A floating point operation units 
that provide two fused multiply add operations per cycle 
for a total of 10.08Gflops per core or 40.32Gflops per 
CPU. 

 Simple but high-performance compute node: A compute 
node is composed of a single CPU, memory module, IO 
module, and a DC-DC converter. This is quite simple and 
compact, which makes it possible to have a high memory 
bandwidth and short memory latency, which leads to high 
sustained performance. 

 Integrated multicore parallel architecture (IMPACT): 
IMPACT is accomplished by a combination of hardware 
and software technologies. IMPACT consists of a shared 
L2 cache among the SPARC64TM VII cores and a 
hardware barrier among the cores. The FX1 employs an 
advanced automatic parallelization compiler for the 
software. Highly efficient automatic parallelization of the 
innermost loops is possible with IMPACT. Note that this 
used to be difficult; however, we can now handle a 
multicore CPU as a single CPU virtually. In addition, in 
combination with the special chipset that enables a high 
memory bandwidth (1 Byte/Flop), high parallel thread 
performance can be obtained. 

 High performance and high function interconnect: 
The compute nodes are connected with multiple 
interconnection networks. 
1. High-bandwidth data network: This network is the 

main network of the FX1 cluster. It handles MPI 
packets or network file access. The network is a full 
bisectional bandwidth fat-tree network with 
InfinibandTM DDR, which alleviates sustained 
performance degradation caused by communication 
conflicts and minimizes communication time variation. 
The fat-tree network comprises 24 24-port 
InfinibandTM leaf switches and 12 288-port 
InfinibandTM spine switches. This two-stage fat-tree 
network results in a hop count of at most five with 
low latency, and I/O nodes and an application node 
that serve as pre/post processing are also connected 

with InfinibandTM. 
2. High-speed barrier network: This network is used to 

speed up the inter-node barrier and global collective 
operations, such as broadcast and reduction, and 
serves to mitigate interference from operating systems, 
both of which could be bottlenecks at a high degree of 
parallelism. The high-speed barrier network is 
implemented such that it is added to the high-
bandwidth network, and specially designed high-
function switches are used. 

 

3.3 FX1 cluster parallelization  
Figure 5 shows the parallelization models for a multicore 
CPU on the FX1 cluster. The flat-MPI model assigns each 
MPI process to each core in a CPU, and the IMPACT 
model assigns each thread to each core in a CPU. The 
IMPACT model is typically recommended with the FX1 
cluster. The IMPACT model is a type of hybrid 
parallelization model that assigns each process (MPI or 
XPFortran) to each node (where each node is equal to a 
CPU), in which four threads are parallelized automatically. 
In this model, process parallelism should be written 
explicitly by users; however, thread parallelism is realized 
automatically by the automatic parallelism compiler.  
 

a) Flat-MPI model 

b) IMPACT model 
Figure 5: Parallelization models (Flat-MPI and IMPACT) 
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Figure 6: Loop parallelism 

 
In thread parallelism, loop parallelization dominates the 

entire parallelization of the code. One important problem is 
which loop should be parallelized in the parallelization of 
multiple loops, as shown in Figure 6. Typically, 
parallelization of the outermost loop is the most efficient; 
thus, the automatic parallelism compiler attempts to 
parallelize the outer loop as often as possible. However, 
due to the loop complexity of real applications and limited 
capability of the compiler, the compiler tends to parallelize 
the innermost loop rather than the outermost loop. In 
innermost loop parallelization, the parallelization overhead 
has a considerable impact on thread scalability and 
decreases the parallel performance. Thus, the past 
automatic parallelism model could not deliver high 
performance in thread parallelization. On the other hand, 
IMPACT can achieve high performance even in the 
innermost loop parallelization due to a considerable 
decrease in the thread parallelization overhead. The high 
thread scalability in the innermost loop parallelization and 
the analytical capability enhancement of data dependency 
and operations in the loop increase the potential region and 
performance of thread parallelization. Moreover, efficient 
thread parallelization in the innermost loop theoretically 
improves thread scalability for applications optimized for 
the vector processor. In the case of vectorization, a part of 
the data dependency cannot be vectorized, e.g., inverse 
dependency. However, IMPACT can parallelize such a 
case. The IMPACT technology increases the potential 
region of automatic thread parallelization and achieves 
considerably good scalability. 

Here, we present an example to show the superiority of 
IMPACT. We provide a detailed discussion of the overall 
performance of the FX1 cluster in Section X. The hardware 
feature of IMPACT is a shared L2 cache and a high-speed 
barrier among cores. The shared cache can decrease the 
number of unnecessary data transfers between caches in the 
thread parallelization and improve thread scalability, which 
is degraded by false sharing. Figure 7 shows the effects of  

 
Figure 7: Effect of shared cache 

 
the shared cache in DAXPY (EuroBen Kernel 8 [4]). The 
shared cache can improve performance dramatically. 

The high-speed barrier among cores is implemented by 
the hardware, demonstrating a rate that is 10 times faster 
than when implemented by software. The performance 
achieved with IMPACT is approximately equal to the 
initiation overhead of a vector pipeline. These technologies 
decrease the thread parallelization overhead dramatically 
and achieve highly scalable thread parallelism. 
 
 

4. MICRO-BENCHMARKS AND 
KERNEL PERFORMANCE 

To understand the performance characteristics of the 
system, we measured the performance of individual 
components using micro-benchmarks and kernels. 

4.1 Performance of micro-benchmarks 
Here, the kernel performance of the FX1 cluster is 
compared in micro-benchmark programs with that of the 
Fujitsu HX600 [5] with an AMD Shanghai CPU, which has 
a clock speed of 2.3GHz and four cores (equivalent to the 
FX1). 

Figure 8 shows the performance of STREAM TRIAD 
[6] with 4-core execution. The result of the FX1 cluster is 
13.7GB/s, which is twice as fast as the HX600 due to 
FX1’s superior memory bandwidth. Therefore, even for 
real applications (e.g., CFD) that require a high memory 
bandwidth, high memory performance can be expected. 
However, the effective performance 
(=measured/theoretical) of the memory access of the FX1 is 
approximately 34.25%, which is lower than that of the 
HX600. This is due to the adoption of the Chipkill 
technology in the FX1, which can correct a 4-bit memory 
error and improve the availability and reliability of systems 
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with very large amounts of memory. The effective memory 
access performance of the FX1 is approximately one-half 
that of the HX600, which has no Chipkill technology. This 
is consistent with the theoretical fact that adoption of the 
Chipkill technology decreases the effective performance of 
memory access by half. 

Figure 9 shows the performance of DAXPY (EuroBen 
Kernel 8 [4]) with 4-core execution. The FX1 cluster with 
IMPACT shows much better performance than the HX600 
at the region where the loop length is relatively small. This 
is due to the small overhead of thread parallelization 
realized by IMPACT. 

Figure 10 and Figure 11 show the effects of the high-
speed barrier network on the performance of MPI barrier 
and Allreduce communications, respectively. The latency 
of both communication methods was measured with up to 
256 nodes, showing a nearly constant time due to the high-
speed barrier network. In Figure 11, the increase in the 
latency for six and eight nodes is due to software 
implementation rather than hardware implementation. This 
is due to 

 
Figure 8: STREAM TRIAD performance 

 
Figure 9: DAXPY performance 

hardware resource limitations in the real operating 
environment. However, this occurs for less than eight nodes, 
and the increased latency is not crucial; thus, this issue does 
not become a problem in actual operation.  

For MPI barrier communications, latency was measured 
with up to 512 nodes, showing 9.94 µs at 512 nodes. The 
high-speed barrier network can connect a maximum of 768 
nodes, and measured good performance is expected for up 
to 768 nodes. However, the latency with 1024 nodes 
increases significantly to 248.51 µs. For more than 768 
nodes, the high-speed barrier network cannot be used, and 
barrier synchronization is performed by software, which 
results in significant performance degradation.  

The performance enhancement with more than 768 
nodes remains a future issue. However, we can show the 
reasonable effectiveness of this approach, such as the high-
speed barrier network for large-scale computation. 

 

 

 
Figure 10: MPI barrier performance 

 

 
Figure 11: MPI Allreduce performance (8 bytes) 
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Table 2: NPB 3.1 Class C performance 

Code MOPS Scalability 

 1 Nodes 
(4 Cores) 

256 Nodes 
(1,024 Cores)  

EP 17.5 4,258.9 242.8 
BT 1,425.7 281,681.5 197.6 
CG 396.1 65,979.3 166.6 
FT 653.0 185,539.6 284.1 
IS 74.2 6,356.1 85.6 
LU 1,781.0 382,233.9 214.6 
MG 1,327.9 494,243.3 372.2 

 

4.2 Performance of NPB 
The performance of the FX1 cluster was measured using 
NAS parallel benchmarks (NPB) [7]. The NPBs are a small 
set of programs designed to help evaluate the performance 
of parallel supercomputers, including eight benchmarks 
(e.g., EP, BT, CG, and several problem size classes: A, B, 
C). The measured results for NPB 3.1 Class C are listed in 
Table 2. The measurements were conducted with a single 
core and 256 nodes (i.e., 1,024 cores). A combination of 
MPI and IMPACT was used with 256 nodes. The average 
speed increase ratio with 256 nodes is approximately 220, 
showing good scalability for the speed-up problem with a 
fixed problem size. A compiler message during compilation 
showed an error for the automatic parallelization for EP 
and BT. Therefore, both cases were measured again with 
manual parallelization using OpenMP directives, which 
showed good scalability. This indicates that the current 
automatic parallelism compiler requires improvement. 

4.3 HPL results 
We measured HPL [8] on the FX1 cluster. The parameters 
and measurement results are summarized in Table 3 and 
Table 4. 

The current HPL results can be characterized by high 
sustained performance and high sustained efficiency 
(���� �����⁄ ). As can be seen in Table 5, systems are 
selected from the Top500 List [9] (November 2008), in 
which the number of cores is greater than 10,000 and 
efficiency is greater than 80%. Note that the FX1 has the 
highest sustained efficiency. 

The reasons why such high sustained efficiency can be 
achieved with the FX1 cluster for HPL are summarized as 
follows. 
High-performance BLAS 

On the FX1, a high-performance BLAS library [10] is 
employed. This library is optimized such that the 
maximum performance of SPARC64TM VII can be 
achieved.  

Table 3: HPL parameters 

N 3,308,800 
NB 440 
P 32 
Q 94 
BCAST 2 ringM 
DEPTH 1 
L1 No-transposed 
U Transposed 

 
Table 4: HPL measurement results 

System Fujitsu FX1 cluster 
# of nodes 3,008 
# of cores 12,032 
Rmax 110.6 Tflops 
Rpeak 121.3 Tflops 
Efficiency 91.19 % 
Execution time 60h 40 m 

 

Table 5: HPL list sorted by efficiency 

 
 

Specifically, high performance DGEMM [10] makes a 
great contribution to the HPL performance improvement 
because 97% of the execution time of HPL is spent on 
DGEMM calculations. In this measurement, based on the 
DGEMM routine, which is highly tuned for SPARC64TM 
VII one core,  and by further tuning to make the best use of 
the shared L2 cache suited for IMPACT, we can obtain 2% 
higher DGEMM performance. Thus, we can obtain 94.6% 
of the peak hardware performance. The BLAS library is 
used frequently in scientific computations; thus, supplying 
high performance BLAS will significantly improve the 
performance of such scientific computations.  

Rank Computer Cores RMax RPeak Efficiency Nmax Exec
Time [h]

FX1 12,032 110,600 121,283 91.19% 3,308,800 60.65
14 Altix ICE 8200EX 12,288 128,400 146,736 87.50% 1,817,000 8.65
17 Altix ICE 8200EX 10,240 106,100 122,880 86.34% 1,535,480 6.32
46 Cray XT4 11,328 54,648 63,437 86.15% - -
75 Blue Gene/P 12,288 35,123 41,779 84.07% - -
56 Blue Gene/P 16,384 46,830 55,706 84.07% 933,887 3.22
57 Blue Gene/P 16,384 46,830 55,706 84.07% 933,887 3.22
24 Blue Gene/P 32,768 92,960 111,411 83.44% - -
32 Appro Xtreme-X3 10,000 76,460 92,000 83.11% 1,508,000 8.31
33 p5 575 12,208 75,760 92,781 81.65% 1,383,600 6.47
69 Blue Gene 16,384 37,330 45,875 81.37% 663,551 1.45
5 Blue Gene/P 163,840 450,300 557,056 80.84% 2,580,479 7.07

11 Blue Gene/P 65,536 180,000 222,822 80.78% 1,766,399 5.67
16 Blue Gene/P 40,960 112,500 139,264 80.78% - -
30 Cray XT5 10,400 76,800 95,680 80.27% - -
39 Altix 13,824 66,567 82,944 80.26% 1,478,736 9.00
4 Blue Gene 212,992 478,200 596,378 80.18% 2,456,063 5.74
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Figure 12: Segmentation of L panel for data transfer 

 
Communication latency hiding 

In HPL, communication is overlapped such that, while 
updating the C part, the L panel required for the next 
iteration can be transferred in the column direction. In the 
original HPL, the L panel communication between a 
sender and a receiver is synchronized because the L panel 
is large. Then, the sender must wait until the update of 
the C part is finished and the receiver is ready. To solve 
this problem, we modified the HPL such that the wait 
time of the sender is reduced by the following process: 1) 
update of the C part is divided into small sub-blocks 
(Figure 12); 2) the receiver confirms whether the sender 
is ready to send at the end of each sub-block; 3) the send-
receive action is completed after the negotiation; 4) all 
small sub-blocks are updated until the right edge; and 5) 
the rest of the C part (the greater part of C in Figure 12) 
is updated simultaneously. As a result, we can obtain a 
1% HPL performance improvement. In addition, we 
reduced the number of processes that send and receive 
messages with IMPACT parallelization. As a result, the 
communication overhead was relieved on up to 12,032 
cores. 

Large problem size based on high hardware reliability 
It is well known that the performance of HPL can be 
improved by the increasing problem size. The 
performance variation (peak performance ratio versus 
problem size) using 512 nodes on the FX1 cluster is 
shown in Figure 13. In HPL, the number of arithmetic 
operations is proportional to the cube of the problem 
size; thus, increasing the problem size will cause a 
dramatic increase in the execution time. Typically, a 
problem size with such an extended execution time (e.g., 
several hours) is selected because extended execution at 
over 90% load will  

 
Figure 13: HPL performance and data size 

 

involve a considerable reliability risk. In this 
measurement, under the conditions of maximum problem 
size (  = 3,308,800) inside the memory capacity and 
no restricted execution time, we eventually achieved 
91.19% average sustained performance for an extended 
execution time (60 h 40 min). As a result, a 2% 
performance improvement can be obtained as compared 
to the case in which the problem size is half. In Table 5, 
the execution time for the systems (except FX1) is less 
than 10 h, demonstrating that the FX1 cluster is highly 
reliable, even for scientific computations. 

5. JAXA PARALLEL APPLICATIONS 
5.1 Overview of the applications 
The performance of five typical applications used at JAXA 
(JAXA Benchmark Programs: JBP [1115צ]) were measured 
on the FX1 cluster. An overview, typical computational 
results, and characteristics are listed in Table 6, Figure 14, 
and Figure 15, respectively. In Figure 15, the vertical and 
horizontal axes show the data communication ratio and the 
memory access ratio to the total CPU time, respectively. 

Table 6: JBP list 

Code Application in 
aerospace Numerical Method Parallel 

Strategy 

P1 Combustion FDM + Chemistry MPI + IMPACT 

P2 Aeronautics FVM (Structured) MPI + IMPACT 

P3 Turbulence FDM + FFT XPF + IMPACT 

P4 Space Plasma PIC MPI + IMPACT 

P5 Aeronautics FVM 
(unstructured) MPI + IMPACT 

FDM: Finite Difference Method, FVM: Finite Volume Method, 
PIC: Particle in Cell 
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Figure 14: Typical JBP results 

 

 
Figure 15: JBP characteristics 

 

5.2 Single-node performance 
Table 7 shows a comparison of the execution time for JPB 
between the FX1 and the HX600. Here, one FX1 node and 
one HX600 socket, each having four cores, were used. The 
average thread scalability of the FX1 is superior to that of 
the HX600, showing the effectiveness of IMPACT. Here, 
the Fujitsu automatic parallelism compiler without 
IMPACT features was used with the HX600. 

P5 is a list access program, and its performance is 
limited by the memory bandwidth. Note that the FX1 and 
the HX600 have different L2 cache replacement algorithms. 

The FX1 has a conventional inclusive cache with an L2 
cache of 6MB; the HX600 has an 8MB victim cache (6MB 
L2 cache, 2MB L1 cache). The cache increment of the 
HX600 improves the thread scalability of P5. 

P3 is parallelized using XPFortran, and demonstrates a 
great deal of data communication between nodes as 
compared to other programs. Thus, the thread scalability of 
P3 is relatively lower than that of other programs. 

5.3 Multi-node performance 
Table 8 lists the results for the JBP scale-up problem, 
showing the execution time on a single node and on 
multiple nodes. Single-node execution is a single process 
execution with thread parallelization by IMPACT. The 
multi-node execution is multi-process execution, whose 
problem size is enlarged according to the number of 
processes.  

Table 7: Single-node execution results 

Code 
FX1 HX600 shanghai 2.5GHz 

1 Core 
[sec] 

4 Core 
[sec] 

Scale 
ratio 

1 Core 
[sec] 

4 Core 
[sec] 

Scale 
ratio 

P1 515.6 149.2 3.46 559.2 216.5 2.58 

P2 242.5 80.6 3.01 238.9 93.6 2.55 

P3 211.3 93.5 2.26 201.1 146.7 1.37 

P4 619.0 172.6 3.59 560.8 171.9 3.26 

P5 320.9 134.2 2.39 346.9 127.7 2.72 

Ave. - 2.94 - 2.50 
 

Table 8: Multi-node execution results 

Code 

Execution on  
single- node 

Execution on  
multi-node 

# of grids 
Exec 
time 
[sec] 

# of grids # of 
nodes 

Exec 
time 
[sec] 

P1 1,728,000 131.0 1,285,632,000 744 143.3 

P2 512,000 71.0 384,000,000 750 91.5 

P3 1,572,864 346.8 805,306,368 512 491.7 

P4 65,536 164.0 49,152,000 750 193.0 

P5 4,173 142.0 2,492,921 750 181.6 
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Figure 16: Scalability 

 

Figure 16 shows the scale-up effect calculated using the 
results listed in Table 6. The average value of five JBPs is 
approximately 77.4%, ranging from 512 processes (2,048 
cores) to 750 processes (3,000 cores). P3 and P4, which are 
data transfer intensive programs, show good efficiency, i.e., 
70.5% and 85.0%, respectively. Thus, the good parallel 
scalability of the FX1 cluster can be identified in actual 
applications. 

Figure 17 shows the advantage of the high-speed barrier 
network for JBP. Performance with and without the high-
speed barrier network was measured and compared. Note 
that there is no difference in the performance for P1 and P2 
because these applications have low barrier synchronization 
and a small number of reduction operations. The use of the 
high-speed barrier network improves performance of P3, 
P4, and P5. This is due to the significant usage of barrier 
synchronization for P3 and P5, and the significant use of 
reduction operations for P4. The high-speed barrier 
network works well for applications with relatively high 
barrier synchronization and a large number of reduction 
operations.  

Table 9 shows a JBP performance comparison between 
the FX1 cluster and the CeNSS [3], which was the previous 
system used at JAXA. The average speed-up ratio of JBP is 
approximately 11.36. This ratio is greater than 7.75, which 
is expected by the hardware enhancement, thereby showing 
the good execution efficiency of the FX1 cluster. 

 

 
Figure 17: Effects of high-speed barrier network 

 

Table 9: Comparison between FX1 and CeNSS 

Code # of 
sockets 

CeNSS  
[sec] 

FX1  
[sec] 

Performance 
ratio 

P1 744 1380.4 143.3 9.63 

P2 750 1468.6 91.5 16.05 

P3 512 3517.0 491.7 7.15 

P4 750 3061.7 193.0 15.86 

P5 750 1447.2 181.6 8.13 

Ave. - 11.36 
 

 

6. CONCLUSION 
To keep up with the trends of multicore processing and 
increased parallelism, we have installed the JSS, which 
uses the Fujitsu FX1 multicore-based scalable parallel 
cluster with IMPACT and high-speed barrier technologies. 
In this work, through performance measurements of HPL 
and JAXA’s real applications on the M system, which is 
comprised primarily of the FX1, we were able to confirm 
the following: 1) effective utilization of the multicore CPU 
with IMPACT, and 2) high parallel-scalability with the 
high-speed barrier network.  

In future, we will continue to evaluate and enhance the 
automatic compiler parallelization technology and expand 
the use of IMPACT to newly developed applications. In 
addition, we plan to investigate a suitable parallel 
programming model for petascale scientific applications. 
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