

宇宙航空研究開発機構研究開発資料 JAXA Research and Development Memorandum

プロペラにおける風車状態の空力特性

奥山 政広, 小林 宙, 西沢 啓

2015年3月

Japan Aerospace Exploration Agency

プロペラにおける風車状態の空力特性

奥山政広*1,小林宙*1,西沢啓*1

Aerodynamic Characteristics of Windmilling on Propeller

Masahiro OKUYAMA^{*1}, Hiroshi KOBAYASHI^{*1} and Akira NISHIZAWA^{*1}

Abstract

Regenerative brake is derived from the windmilling of propeller on the electric propulsion. In the paper, the aerodynamic characteristics on the windmilling of propeller are grasped for the considering the regenerative brake.

Keywords: Windmilling, Propeller, Aerodynamic Characteristics, Electric propulsion, Regenerative Brake

概要

電動モータを用いたプロペラ駆動では、プロペラの風車状態において、負トルクが生じ動力回生が可能 となる.ここでは、プロペラによる動力回生を検討するため、風車状態の空力特性を把握する.そのなか で空力特性は、プロペラ風洞試験の干渉修正にまで及んでいる.

^{*} 平成 26 年 12 月 19 日受付 (Received 19 December, 2014)

^{*1} 航空本部 航空技術実証研究開発室 (Aviation Program Group, Unmanned and Innovative Aircraft Team, Institute of Aeronautical Technology)

	○・プロペラトルク
a, a : ノロヘフの軸方向および回転方向の十渉係数	
B:プロペラのブレード数	r:フレードの半径位置
c:ブレードのrでの翼弦長	R : プロペラ半径
C:風洞断面積	Re:レイノルズ数
\overline{C} · \overline{N} · \overline{N}	s:翼素剛率(ソリディティ)
	S:主翼基準面積,プロペラ回転円板面積
Cd: 同川九刀徐毅	T:プロペラ推力
C _D : 机刀係数	U:一様流速度
c_l : 向所場刀係数	V:合成速度,一様流速度
C_L : 揚力條数	w·季道速度
C _P :パワー係数	w. 仰舟 五接比
C _T : 推力係数	
- プロペラのはカ核粉	β:フロペフビッチ角
$U_{\rm T}$. $\mathcal{I}_{\rm T}$. I	- γ :降下角
D:抗刀、ノロヘフ固栓	n:推進効率
g:重力加速度	
J:プロペラの進行率	η _P :風車状態でのフロペラの効率
L: 揚力	- θ : 負の縦姿勢角
m:機体の質量	ρ:飛行高度の大気密度
n:プロペラ回転数	τ:回転円板推力係数

主な記号

0. はじめに

P:プロペラパワー

プロペラ航空機において作動するプロペラは、プロペラ・ブレードに対する相対速度の迎角により作動状態 が異なる.プロペラが推力を発生する推進状態以外で、特に、プロペラに作用する負推力から負トルクが生じ る風車状態は、レシプロ・エンジン駆動の飛行機において、急降下時にプロペラが受ける空力状態である.プ ロペラ軸の危険な過回転を防止するために、風車状態の空力特性が過去に検討されている¹⁾.

一方,プロペラの駆動に電動モータを用いる場合,プロペラの風車状態において,負トルクが生じ動力回生 が可能となる.航空機用電動推進システム技術の飛行実証(FEATHER)では,プロペラの風車状態による動力 回生を,要素技術の1つとして着目している²⁾.

ここでは、プロペラによる動力回生を検討するため、プロペラにおける風車状態の空力特性を古典的な手法 により把握する.そのなかで空力特性は、プロペラ風洞試験の干渉修正にまで及んでいる.

1. プロペラ機の滑空飛行

プロペラ推力を止めた飛行機が、定常な滑空状態にある場合、力の釣り合い式は、図 1-1 のように機体の質量 m,降下角 γ ,負の縦姿勢角 θ ,迎角 α ,揚力 L,および抗力 D,プロペラの抗力 D_P,一様流より速度が遅くなるプロペラ後流による機体抗力の減少分 ΔD_W ,および干渉を含んだプロペラの抗力 D_P',ならびに重力

(1-1)

加速度 g として $D_P' = D_P - \Delta D_W$ $L - D_P' \sin \alpha = mg \cos \overline{\gamma}$

 $D + D_P' \cos \alpha = mg \sin \overline{\gamma}$

$$\overline{\gamma} = \theta + \alpha$$

になる. プロペラは, その作用力線が機体軸に一 致するように設置されているとする. また, 式(1-1) から $\tan \gamma$ が

$$\tan \bar{\gamma} = \frac{D + D_{p}' \cos \alpha}{L - D_{p}' \sin \alpha}$$
$$= \frac{1 + \frac{D_{p}'}{D} \cos \alpha}{\frac{C_{L}}{C_{D}} - \frac{D_{p}'}{D} \sin \alpha}$$
(1-2)

図 1-1 プロペラ機の定常滑空の釣り合い

This document is provided by JAXA.

$$C_{L} = \frac{L}{\frac{1}{2}\rho U^{2}S}$$

$$C_{D} = \frac{D}{\frac{1}{2}\rho U^{2}S}$$
(1-3)

である.

T

対気速度の関係は、図 1-1 のように滑空速度 U,水平速度 U_H,および鉛直速度 U_V,ならびにプロペラ軸方向の一様流成分 U_P,機体による一様速度の干渉係数 k (1≧k),およびプロペラ面が受ける 一様速度 U_P'から

$$U_{H} = U \cos \bar{\gamma}$$

$$U_{V} = U \sin \bar{\gamma}$$

$$U_{P} = U \cos \alpha$$

$$U_{P} = kU_{P} = kU \cos \alpha$$
である、そこで、式(1-4)に式(1-1)を代入すると
$$U_{H} = \frac{L - D_{P}' \sin \alpha}{mg} U$$

$$U_{V} = \frac{D + D_{P}' \cos \alpha}{mg} U$$
を得る、対気速度は、式(1-3)および式(1-1)より
$$U = \sqrt{\frac{2(mg \cos \bar{\gamma} + D_{P}' \sin \alpha)}{\rho SC_{L}}}$$
(1-6)

になる. あらためて降下率 Cを導入すれば, 式(1-5)および式(1-4)から

$$\overline{C} = U_V = \frac{DU + D_P U \cos \alpha}{mg} = \frac{DU + D_P U_P}{mg}$$
(1-7)

である. さらに、プロペラが風車状態において入力として $D_p U_p$ を与え、出力として軸パワー P_s が発生しているときのプロペラの効率 $\frac{1}{\eta_P}$ を

$$\overline{\eta}_P \equiv \frac{P_S}{D_P U_P},\tag{1-8}$$

と定めれば、式(1-7)は式(1-9)のようにプロペラ特性と結び付けて表される.

$$\overline{C} = \frac{DU + \frac{P_s}{k\overline{\eta}_p} - \Delta D_W U_p}{mg}$$
(1-9)

プロペラの抗力 Dpは、負の推力 Tであるため、プロペラの抗力係数 CTを

$$\overline{C}_T = \frac{T}{\rho n^2 (2R)^4} \tag{1-10}$$

として導入する. ここで, n はプロペラ回転数[rps], R はプロペラ半径とする. また, プロペラの進行率 J は

$$J = \frac{U_P'}{n(2R)} \tag{1-11}$$

とする. これらから, D_Pの係数は

$$\frac{D_P}{\frac{1}{2}\rho U^2 S} = \frac{2(2R)^2}{S} \frac{\overline{C}_T}{J^2} k^2 \cos^2 \alpha$$
(1-12)

で示せる. それゆえ, $\tan \gamma$, Uおよび Cは, それぞれ式(1-13), 式(1-14), および(1-15)を得る. $2(2R)^2 \overline{C} k^2 \cos^3 \alpha C$

$$\tan \bar{\gamma} = \frac{1 + \frac{2(2R)}{S} \frac{C_T}{C_D} \frac{k^2 \cos \alpha}{J^2} - \frac{C_{\Delta DW}}{C_D} \cos \alpha}{\frac{C_L}{C_D} - \frac{2(2R)^2}{S} \frac{\overline{C}_T}{C_D} \frac{k^2 \cos^2 \alpha \sin \alpha}{J^2} + \frac{C_{DW}}{C_D} \sin \alpha}, \quad C_{\Delta DW} = \frac{\Delta D_W}{\frac{1}{2} \rho U^2 S}$$

$$U = \sqrt{\frac{2(mg \cos \bar{\gamma} + \rho n^2 (2R)^4 \overline{C}_T \sin \alpha - \Delta D_W \sin \alpha)}{\rho S C_L}}$$
(1-13)

$$C = \cos \bar{\gamma} \tan \bar{\gamma} U$$

$$= \cos \bar{\gamma} \frac{1 + \frac{2(2R)^2}{S} \frac{\overline{C}_T}{C_D} \frac{k^2 \cos^3 \alpha}{J^2} - \frac{C_{DW}}{C_D} \cos \alpha}{\frac{C_L}{C_D} - \frac{2(2R)^2}{S} \frac{\overline{C}_T}{C_D} \frac{k^2 \cos^2 \alpha \sin \alpha}{J^2} + \frac{C_{DW}}{C_D} \sin \alpha}{\sqrt{\frac{2(mg \cos \bar{\gamma} + \rho n^2 (2R)^4 \overline{C}_T \sin \alpha - \Delta D_W \sin \alpha)}{\rho SC_L}}$$
(1-15)

機体の迎角が小さければ, sina α および cosa 1, ならびに α の掛かかる項を他項と比較して無視 することにより,式(1-13),式(1-14),および式(1-15)は,それぞれ式(1-16),式(1-17),および式(1-18) へ簡略化される.なお,空気がプロペラ回転面へ直角に流入しなくなると,空力不つりあいが発生す るため,αの大きさに従いプロペラの空力不つりあいは大きくなると考え得る.

$$\tan \bar{\gamma} \approx \frac{1 + \frac{2(2R)^2}{S} \frac{\overline{C}_T k^2}{J^2 C_D} - \frac{C_{\Delta DW}}{C_D}}{\frac{C_L}{C_D}}$$
(1-16)
$$U \approx \sqrt{\frac{2mg \cos \bar{\gamma}}{\rho S C_L}}$$
(1-17)
$$\overline{C} \approx \cos \bar{\gamma} \left(1 + \frac{2(2R)^2}{S} \frac{\overline{C}_T k^2}{J^2 C_D} - \frac{C_{\Delta DW}}{C_D}\right) \sqrt{\frac{2mg \cos \bar{\gamma}}{\rho S} \frac{C_D^2}{C_L^3}}$$
(1-18)

浅い滑空であれば, cos y~1 から, さらに簡略でき, 式(1-17)および(1-18)は, 式(1-19)および式(1-20) になる.

$$U \sim \sqrt{\frac{2mg}{\rho SC_L}} \tag{1-19}$$

$$\overline{C} \sim \left(1 + \frac{2(2R)^2}{S} \frac{\overline{C}_T k^2}{J^2 C_D} - \frac{C_{\Delta DW}}{C_D}\right) \sqrt{\frac{2mg}{\rho S} \frac{C_D^2}{C_L^3}}$$
(1-20)

2. プロペラの風車状態特性

プロペラ半径 R でブレード 数Bを持つプロペラにおいて, 図 2-1 で示されるように, r 位 置における微小半径長さ dr 当 たりの翼素に作用する、 プロ ペラ軸後方への抗力 dDp およ び回転による発生トルク dQ は,単位半径長さ当たりの揚 力 L'および抗力 D', ならびに 合成流の流入角 φ,および誘 導迎角 α_iから,式(2-1)および (2-2)で表される. 速度ベクト ルの関係は,対気速度の一様 流 Up とプロペラ回転数を n[rps]とするブレードの周速度 2πnr から成る合成速度 V が,

図 2-1 翼素における速度ベクトルとカベクトル

プロペラ回転面から流入角 φ をとり、ブレードから流れ出る自由渦によりVへ直角に誘導速度wが α_i の角度で誘起され、その合成された速度 V_R が生じる.

$$dD_P = B\{L'\cos(\varphi - \alpha_i) + D'\sin(\varphi - \alpha_i)\}$$
(2-1)

$$dQ = B\{L'\sin(\varphi - \alpha_i) - D'\cos(\varphi - \alpha_i)\}r$$
(2-2)

また,局所揚力係数 c_l,局所抗力係数 c_d,および r 位置での翼弦長 c から

$$L' = \rho V_R \Gamma = \frac{1}{2} \rho V_R^2 c_l c(1) dr = \frac{1}{2} \rho \frac{V^2}{\cos^2 \alpha_i} c_l c(1) dr$$
(2-3)

$$D' = \frac{1}{2} \rho V_R^2 c_d c(1) dr = \frac{1}{2} \rho \frac{V^2}{\cos^2 \alpha_i} c_d c(1) dr$$
(2-4)

が与えられる.ここで、 ρ は対気密度、および Γ は翼素まわりの循環になる.そこで、翼素の抗力係数 dC_DP、および発生のパワー係数 dC_Pを次式で定める.

$$dC_{DP} = \frac{dD_P}{\rho n^2 (2R)^4}$$
(2-5)

$$dC_P = \frac{2\lambda n a Q}{\rho n^3 (2R)^5} \tag{2-6}$$

式(2-5)および(2-6)のnは、図2-1の速度関係で

$$n = \frac{V \cos \varphi}{2\pi r} \tag{2-7}$$

になるため、以上から式に代入して整理すると、局所無次元半径当たりの抗力係数および発生するパ ワー係数は

$$\frac{dC_{DP}}{dr'} = \frac{\pi^3 r'^3 sc_d \cos(\varphi - \alpha_i)}{4\cos^2 \phi \cos^2 \alpha_i} \left\{ \frac{c_l}{c_d} + \tan(\varphi - \alpha_i) \right\}$$
(2-8)
$$\frac{dC_P}{dr'} = \frac{\pi^4 r'^4 sc_d \sin(\varphi - \alpha_i)}{4\cos^2 \phi \cos^2 \alpha_i} \left\{ \frac{c_l}{c_d} - \frac{1}{\tan(\varphi - \alpha_i)} \right\}$$
(2-9)

と c_d および c_l/c_d に関して得られる.ここで、次式で定められるように、s は $Bc/(2\pi r)$ で定義した翼素 剛率 (ソリディティ)で、r'および c'はそれぞれ r および c を R で割った無次元半径および翼弦長と する.

$$r' = \frac{r}{R}$$

$$c' = \frac{c}{R}$$

$$s \equiv \frac{Bc}{2\pi r} = \frac{Bc'}{2\pi r'}$$
(2-10)

図 2-1 のように,誘導速度により生じる速度の干渉係数を導入して,プロペラの軸方向および回転 方向の干渉係数を,それぞれ a および a'にとれば,誘導迎角および流入角から

$$a = \frac{\tan \alpha_i}{\tan \varphi}$$
(2-11)
 $a' = \tan \varphi \tan \alpha_i$
で表される.また、次の関係がある.

$$\tan \varphi = \frac{\sigma}{\pi r'}$$

$$\tan(\varphi - \alpha_i) = \frac{J}{\pi r'} \frac{1 - a}{1 + a'}$$

$$\frac{\cos(\varphi - \alpha_i)}{\cos \varphi \cos \alpha_i} = 1 + a'$$

$$\frac{\sin(\varphi - \alpha_i)}{\cos \varphi \cos \alpha_i} = \frac{J}{\pi r'} (1 - a)$$
式(2-8)および(2-9)を、これらで置き換えれば

$$\frac{dC_{DP}}{dr'} = \frac{\pi^3 r'^3 sc_d}{4} \frac{(1+a')^2}{\cos(\varphi - \alpha_i)} \left\{ \frac{c_l}{c_d} + \frac{J}{\pi r'} \frac{1-a}{1+a'} \right\}$$
(2-13)
$$\frac{dC_P}{dr'} = \frac{\pi^2 r'^2 J^2 sc_d}{4} \frac{(1-a)^2}{\sin(\varphi - \alpha_i)} \left\{ \frac{c_l}{c_d} - \frac{\pi r'}{J} \frac{1+a'}{1-a} \right\}$$
(2-14)

になる.

式(2-13)の抗力係数および式(2-14)のパワー係数を、局所抗力と発生する局所パワーに変換する. そこで、 $\varphi-\alpha_i$ は

$$\varphi - \alpha_i = \tan^{-1} \left(\frac{J}{\pi r'} \frac{1 - a}{1 + a'} \right)$$
(2-15)

であるから、置き換えて

$$\frac{dD_{P}}{dr'} = \rho n^{2} (2R)^{4} \frac{dC_{DP}}{dr'} = \frac{\rho U_{P}^{2} R^{2} \pi^{3} s}{J^{2}} r'^{3} c_{d} \frac{(1+a')^{2}}{\cos\left\{\tan^{-1}\left(\frac{J}{\pi r'}\frac{1-a}{1+a'}\right)\right\}} \left\{\frac{c_{l}}{c_{d}} + \frac{J}{\pi r'}\frac{1-a}{1+a'}\right\}$$
(2-16)
$$\frac{dP_{S}}{dr'} = \rho n^{3} (2R)^{5} \frac{dC_{P}}{dr'} = \frac{\rho U_{P}^{3} R^{2} \pi^{2} s}{J} r'^{2} c_{d} \frac{(1-a)^{2}}{\sin\left\{\tan^{-1}\left(\frac{J}{\pi r'}\frac{1-a}{1+a'}\right)\right\}} \left\{\frac{c_{l}}{c_{d}} - \frac{\pi r'}{J}\frac{1+a'}{1-a}\right\}$$
(2-17)

となる. これらの式で c_d , および c_l/c_d は, 式(2-18)の内訳をとる負の有効迎角 α_e の関数になる.

$$\alpha_e = -\beta + \varphi - \alpha_i = -\beta + \tan^{-1} \left(\frac{J}{\pi r'} \frac{1 - a}{1 + a'} \right)$$
(2-18)

式(2-17)で、 $(c_l/c_d)(\alpha_e)$ は負側でも局大値 $(cl/cd)_{max}(\alpha_{e,max})$ を持ち、式中の他の項より大きい値になり、 $c_d(\alpha_e)$ は正側から負側の $(c_l/c_d)(\alpha_e)$ 局大値にかけて、変化がほぼ一定と考える.それゆえ、 dP_s/dr 'の局大 値は、 $\alpha_{e,max}$ の近傍で実現すると考える.また、 $\alpha_{e,max}$ において、βとJは、式(2-19)の関係であり、β を小さくして負に移行させるに連れて、Jが小さく、つまり速度が一定な場合、(c_l/c_d)($\alpha_{e,max}$)になる n が大きくなると考える.さらに、式(2-17)では、係数 1/Jが掛かっているので、βに対する dP_s/dr'の局 大値は、Jが小さくなれば大きくなると考える.

$$\frac{J}{\pi r'} \frac{1-a}{1+a'} = \tan\left(\alpha_{e,\max} + \beta\right)$$
(2-19)

プロペラの風車状態において、与えたパワー $U_{P}dD_{P}$ から軸パワー dP_{S} が出力されるため、局所効率 $dP_{S}/(U_{P}dD_{P})$ が定まり、式(2-16)と式(2-17)から

$$\frac{dP_{S}}{U_{P}dD_{P}} = \frac{1-a}{1+a'}\frac{\frac{c_{l}}{c_{d}} - \frac{\pi r'}{J}\frac{1+a'}{1-a}}{\frac{c_{l}}{c_{d}} + \frac{J}{\pi r'}\frac{1-a}{1+a'}} = \frac{dC_{P}}{JdC_{DP}}$$
(2-20)

と c_l/c_dに関する簡潔な式を得る.

誘導迎角あるいは干渉係数が求められたとして、プロペラ全体の特性は、ブレード位置 r'の局所特性を、ハブの位置 rh'から先端の位置 1 まで積分(和分)して得られる.ただし、おおよその特性を把握する場合には、位置 r'=0.75 辺りの特性で代表させることができると考える.

また,別定義の軸パワーの局所パワー係数 dPcは,式(1-11)と式(2-17)を使い式(2-21)で示される. なおこのパワー係数は,地上が Dpを吸収する風車での効率になる.

$$\frac{dP_{c}}{dr'} = \frac{dP_{s}/dr'}{\frac{1}{2}\rho U_{p}^{3}\pi R^{2}} = \frac{2\pi s}{J}r'^{2}c_{d}\frac{(1-a)^{2}}{\sin\left\{\tan^{-1}\left(\frac{J}{\pi r'}\frac{1-a}{1+a'}\right)\right\}}\left\{\frac{c_{l}}{c_{d}} - \frac{\pi r'}{J}\frac{1+a'}{1-a}\right\}$$
(2-21)

3. プロペラ・ブレードの翼型特性例

ブレードの翼型の特性として、NACA4412³⁾を取り上げる. NACA4412 翼型は翼弦長に対して、キャンバーの最大高さ 4%、その位置 40%、および厚み 12%を持つ.また、キャンバーの最大高さの影響 を受ける無揚力迎角 α_0 は、 -4° になる.この特性の Reynolds 数 Re は、Re = 3.0×10^6 の値であり、図 3-1 のように、揚力特性は、正および負の迎角別々に近似式を求める.ここに示される迎角 α は、以上に述べた α_e の一 α_e に相当する.

図 3-1 NACA4412の揚抗力特性(参考文献3のデータに基づく)

図 3-2 には, 揚抗比特性を示す. 正の最大揚抗比が迎角約 5°において約 120 なのに対し, 風車状態で使用する負の最大揚抗比は迎角約-12°において約-60 になる. c_l/c_d~c_dでは, それぞれの変化の関係が分かる.

翼厚が同じ対称翼型 NACA0012³⁾の揚抗比特性が,図 3-3 である.最大揚抗比は,正負ともに約 \pm 9° 近傍において約 90 を取っている. $c_l/c_d \sim c_d$ の特性は,正負で対称を示している.

プロペラの翼型は,推進状態で大きな正の揚抗比を得るため,正のキャンバーが付いている.プロペラで風車状態の範囲では,対称翼型と比べ,揚抗比が小さくなる.なお風車では,翼型が逆キャンバーになっており,負の揚抗比が大きく取れる.

図 3-2 NACA4412の揚抗比特性(参考文献3のデータに基づく)

図 3-3 NACA0012 の揚抗比特性(参考文献 3 のデータに基づく)

4. プロペラの作動状態

可変ピッチプロペラの作動状態は,表4-1のように分けられる.これら以外には,回転を止めるフェ ザー状態がある.なお,対称翼型を持つプロペラでは,ブレーキ状態は無い.また,反転ブレードに した逆回転作動は,順回転作動からの連続的な設定はできない.反転ブレードの逆回転において,設 定翼素では風車と同じ通常状態を実現できる.しかし,逆回転なのでブレードのピッチ角分布が逆に なるため,ブレード全体では空力特性が悪化する.

電動モータによるプロペラ駆動では,順回転作動の推進状態からブレーキ状態を経て風車状態に移 行すれば、トルクが負となり発電に転じる.

種類		ピッチ角	a_e (有効迎角) $-a_0$ (無揚力迎角)	推力	トルク
			およびベクトル関係図		
旧石	推進状態	正	\mathbb{E} $\frac{dT}{dQ/r}$ $\frac{dT}{2\pi n(1-a')r}$ $U(1+a)$	正	王
顺回転作動	ブレーキ状態	正, 負小	0 · 負小 dQ/r dT 2πn r	負	正
	風車状態	正, 負小・中	負中 ^α e ^d U(1-a) dT ^d U(1-a)	負	<u>負</u>
	リバース状態	負中・大(リ バースピッ チ)	負大 dQ/r dT dT	負	正
逆回転作動	反転ブレード		$(IE) U(1-a) 2\pi n (1+a')r dQ/r dT$	負	(<u>負</u>)

表 4-1 プロペラの作動状態

5. プロペラ・ブレードのピッチ角分布

プロペラの中心からの距離 r, 半径 R および直径 2R とし, 幾何ピッチ Pitch およびピッチ角(羽根角) β から

Pitch =
$$2\pi r \tan \beta$$
 (5-1)
であり、ピッチ比 PitchRatio は
Pitch

PitchRatio =
$$\frac{1}{2R} = \pi r' \tan \beta$$
 (
と示せる.ここで、r'=r/R とする.式(5-2)から、B について次式で表せる.

$$\beta = \tan^{-1} \left(\frac{PitchRatio}{\pi r'} \right)$$
(5-3)

なお, r'の代表として一般に r'=3/4=0.75 が取られる. 一様流速度 II を持つとき、プロペラへの流入角 ω と回転数 n[rms]との関係は

$$\tan \varphi = \frac{U}{2\pi n r} = \frac{\frac{U}{\pi n(2R)}}{r'} = \frac{J}{\pi r'}, \quad J = \frac{U}{n(2R)}$$
(5-4)

である.ここで,進行率 J=U/(n(2R))を導入している.これから

$$\varphi = \tan^{-1} \left(\frac{J}{\pi r'} \right) \tag{5-5}$$

として φ が求まる.式(5-3)と式(5-5)とは、 β と φ 、および PitchRatio と J とがそれぞれ対応をしていて、同じ式になっている. 迎角 α_P とすれば

 $\varphi = \beta - \alpha_p$ (5-6) の関係がある. ただし、実際にはブレードからの自由渦による誘導速度で誘導迎角 α_i が生じる.

回転するプロペラにおいて,ブレード半径方向の ap を一定にするには, βの半径方向分布を

$$\beta = \tan^{-1} \left(\frac{0.75}{r'} \tan \beta_{0.75} \right)$$

とする. ここで $\beta_{0.75}$ は, r'=0.75 位置を基準にしたときの設定ピッチ角で, このとき *PitchRatio*_{0.75} = $0.75\pi \tan \beta_{0.75}$ (5-8)

 $Pitch_{0.75} = 2\pi 0.75R \tan \beta_{0.75}$

の関係がある.図 5-1 には、ブレードのピッチ角分 布例を示す.実際のブレードは、図 5-1 のピッチ角 分布の曲線そのままではなく、特に根の部分が正さ れる.

可変ピッチに対応するには、可変ピッチ角± β_V か らピッチ角 β_P は、式(5-10)になる.

$$\beta_P = \beta + \beta_V \tag{5-10}$$

(5-7)

(5-9)

6. プロペラ風洞試験の特性データ処理

6. 1 風洞干渉修正^{4), 5)}

測定部が固定壁の風洞内でプロペラを作 動させると、図 6-1 のように、風洞壁の存 在により拘束されたプロペラ後流外側の流 速 *u*₁,は、風洞の一様流速度 *V*よりも小さく なる. それゆえ、プロペラを同一角速度で 回転させ同一推力およびトルクを生じる V に相当する一様流速度 V'を決定する必要が ある.相当一様流速度は、風洞固定壁内と 同一の回転面通過速度 u と推力 Tを与える 自由気流での相当する一様流速度である.

一様流速度に対する相当一様流速度比 V'/Vは、運動量理論により、プロペラを回 転円板として扱い、後述で導くように式(6-1) から得られる.

$$\frac{V'}{V} = 1 - \frac{S}{C} \frac{\tau}{2\sqrt{1+2\tau}}$$

$$\tau = \frac{T}{\rho S V^2}$$
(6-1)
$$p_0$$
(b) In free air
Cこで,
$$V : - 様流速度 [m/s]$$

$$V' : 相当 - 様流速度 [m/s]$$

$$V'/V : - - 様流速度 [m/s]$$

$$S : \tau^2 p \sim 70 \text{ 回転円板面積 } [m^2] (\tau^2 p \sim 70 \text{ 直径 } D \text{ から } S = \pi D^2)$$

: プロペラの回転円板面積 $[m^2]$ (プロペラ直径 D から $S = \pi D^2/4$) C:風洞断面積 [m²] $T (= -F_X)$: プロペラ推力 [N] :回転円板推力係数 τ

とする.

は

式(6-1)から,面積比 S/Cをパラメータにして,回転円板推力係数 $\tau = T/\rho SV^2$ を横軸に V'/Vを縦軸 として描いたグラフが,図 6-2 になる.プロペラが負推力をとる状態では, T/ o SV² > - 0.5 の条件で 式(6-1)が成り立つ.

一様流速度の修正係数 V'/Vにより, 一様流速度 Vおよびプロペラの進行率J= V/(nD)(回転数n [Hz])

として、修正一様流速度 V_C および修正進行率 J_C へ修 正される.

風洞断面積に比してプロペラ回転円板面積がかなり 小さければ, S/C ≈0 で V'/V ≈1 となり, 一様流速度 を修正する必要がない.また,風洞測定部が固定壁で はなく大気に開放される自由壁ならば、プロペラ周囲 の静圧は同じであるため、一様流速度を修正しなくて も済む. 修正式(6-1)は, S/C が小さい場合の近似式で あり,大きい場合には,後述のように漸近近似の方法 をとる. なお, 一般的な風洞試験では, S/C=0.15 付 近にあるといわれている⁵⁾.

壁内(a)および自由気流 (b)でのプロペラ 後流による速度関係

 p_0

Wall

 $u_{12} < V$

6.2 特性データの無次元係数と有次元値

有次元で取得したプロペラ特性値を無次元にする係数化の式は、プロペラの発生推力 T, 駆動トル \mathcal{O}_{Q} , および吸収パワーP, ならびに大気密度 ρ , プロペラ回転数 n [rps], およびプロペラ直径 D から

$$C_{T} = \frac{T}{\rho n^{2} D^{4}}, \quad C_{\varrho} = \frac{Q}{\rho n^{2} D^{5}}$$

$$C_{P} = \frac{P}{\rho n^{3} D^{5}}, \quad C_{P} = 2\pi C_{\varrho}$$

$$\eta = \frac{VT}{2\pi n Q} = J \frac{C_{T}}{2\pi C_{\varrho}} = J \frac{C_{T}}{C_{P}}, \quad J = \frac{V}{n D}$$
(6-3)

である.ここで、 C_T 、 C_Q 、および C_P は、それぞれ推力係数、トルク係数、およびパワー係数、ならびに η は推進効率になる.

式(6-3)で密度は、湿度の影響を受けるため湿潤大気密度 $\rho(p, t, U)$ とし、大気条件である気圧 p、気 温 t、および相対湿度 Uを与えて

$$\rho = \frac{100 p}{RT} = \frac{100 p}{R_d T_v}$$

$$T_v = \frac{p}{p - 0.37802 e_s U / 100} (t + 273.15)$$
(6-4)
$$e_s = \exp\left(19.482 - \frac{4303.4}{100}\right)$$
(6-5)

$$e_s = \exp\left(19.482 - \frac{4303.4}{t + 243.5}\right) \tag{6-6}$$

から求める⁶⁾.記号と定数は次のとおり.

湿潤大気密度: ρ [kg/m³] 大気圧: p [hPa] 大気温度: t [℃], T [K]

湿潤空気の気体定数: $R[m^2/(s^2K)]$

乾燥空気の気体定数: $R_d = 287.053 \text{ m}^2/(\text{s}^2\text{K})$

仮温度: $T_V[K]$

相対湿度: U[%]

飽和水蒸気圧: e_s [hPa]

プロペラ特性値を有次元数値で用いる場合には、他と比較するために密度を基準密度へ換算した値を用いる.基準密度は、標準大気の平均海面での密度 ρ_0 にとれば、気圧 1013.25 hPa、気温 15℃、および相対湿度 0%なので、このとき

 $\rho_0 = 1.225 \text{ kg/m}^3$

の値になる.有次元数値の換算式は、標準状態での推力、トルク、およびパワーを T_0 、 Q_0 、および P_0 として

(6-7)

$$\begin{split} T_0 &= C_T \rho_0 n^2 D^4 = \frac{\rho_0}{\rho} T \\ Q_0 &= \frac{\rho_0}{\rho} Q \\ P_0 &= \frac{\rho_0}{\rho} P \\ i \subset \downarrow 0 得られる. \end{split}$$

6.3 一様流速度修正式の導出

Glauert^{5,7)}に従って、一様流速度修正係数の漸近近似方法および近似式(6-1)を表す. 記号は、プロペラ後流の断面積 *S*₁として、さらに図 6-1 に示される表記を用いる. 連続の条件から

$$u_{11} = \frac{uS}{S_1}$$

$$u_{12} = \frac{VC - uS}{C - S_1}$$
(6-8)

が得られる. ベルヌーイの方程式を使って $T/S = (p_1+(1/2) \rho u_{11}^2) - (p_0+(1/2) \rho V^2) \ge p_0+(1/2) \rho V^2 = p_1+(1/2) \rho u_{12}^2$ から

$$T = \frac{1}{2} S \rho \left(u_{11}^2 - u_{12}^2 \right)$$
(6-9)

が導かれる.軸方向の運動量の式は

$$T - (p_1 - p_0)C = S_1 \rho u_{11}(u_{11} - V) - (C - S_1)\rho u_{12}(V - u_{12})$$
 (6-10)
で、後流の圧力増加は

$$p_1 - p_0 = \frac{1}{2} \rho \left(V^2 - u_{12}^2 \right) \tag{6-11}$$

になる. 円板推力係数 τ

$$\tau = \frac{I}{\rho S V^2} \tag{6-12}$$

を用い、式(6-8)により式(6-9)の
$$u_{11}$$
および u_{12} を消去すれば

$$2\tau V^2 S_1^2 (C-S_1)^2 = u^2 S^2 (C-S_1)^2 - (VC-uS)^2 S_1^2$$

$$= 2uS(uS-VS_1)C(C-S_1) - (uS-VS_1)^2 C^2$$
(6-13)

となる. 同様に、式(6-8)を用い式(6-10)の u₁₁および u₁₂を消去すれば $2\tau V^2 SS_1 (C-S_1)^2 = 2uS(uS-VS_1)(C-S_1)^2$ $-2(VC-uS)(uS-VS_1)S_1(C-S_1)$ $+ \left[V^2 (C-S_1)^2 - (VC-uS)^2\right]CS_1$ (6-14)

$$= 2uS(uS - VS_1)C(C - S_1) - (uS - VS_1)^2 CS$$

が得られる.これから,次式が求まる.

$$2\tau V^{2}S_{1}(S - S_{1})(C - S_{1}) = (uS - VS_{1})^{2}C$$

$$\tau V^{2}S_{1}(CS - S_{1}^{2}) = uS(uS - VS_{1})C$$

(6-15)

相当一様流速度 V'は,同じ u および T を与える自由気流における一様流速度であるから,推力との関係は

$$T = 2\rho Su(u - V') \tag{6-16}$$

または

$$(2u-V')^{2} = \frac{2T}{\rho S} + V'^{2}$$

$$= 2\tau V^{2} + V'^{2}$$
で示される. いま
 $V = nV'$
 $x^{2} = 1 + 2\tau n^{2}$
と置けば (記号 n は回転数の記号と重なっている),自由気流状態で u は
 $(x+1)V$
(6.10)

$$u = \frac{(x+1)^{r}}{2n} \tag{6-19}$$

となる.

さらに, 面積比として

$$S = \alpha C$$
(6-20)
$$S_{1} = \sigma S$$
(6-20)

を導入し、式(6-18)および(6-19)を用いると、風洞内では式(6-15)が次式で関係づけられる.
$$4(x^{2}-1)\sigma(1-\sigma)(1-\alpha\sigma) = (x+1-2n\sigma)^{2}$$
(6-21)
$$2(x-1)\sigma(1-\alpha\sigma^{2}) = (x+1-2n\sigma)$$
(6-22)

最終的に、式(6-21)および(6-22)から n を消去した式により、 \alpha および σ の関数として x を定め
$$\frac{x-1}{x+1} = \frac{(1-\sigma)(1-\alpha\sigma)}{\sigma(1-\alpha\sigma^{2})^{2}}$$
(6-23)

とし、式(6-22)から

$$n = 1 + (x - 1)\alpha\sigma^{2} - \frac{(2\sigma - 1)x - 1}{2\sigma}$$
(6-24)

のように n が求まり,式(6-18)から τ が次式で得られる.

$$\tau = \frac{x^2 - 1}{2n^2}$$

そこで,相当一様流速度*V*を求める問題は, 次の操作に帰着する. $\tau = T/(\rho SV^2)$ を設定し ておき, $\alpha = S/C$ および適当な σ (= S_1/S)の 値を式(6-23)に与え,式(6-24)からn (= V/V') をもとめる.さらに式(6-25)に代入して得られ る τ と設定した値とが一致するように σ を変 えて漸近近似させ,漸近値 n を求める.この n値の逆数に *V*を掛けると *V*が得られる.こ のようして,はさみうち法で計算した *V'/V*の グラフが図 6-3 であり,図には,図 6-1 に示 した S/C = 0.25 の近似式値を加えてある. なお,自由気流では, σ が次式から計算でき る.

$$x^2 = 1 + 2x$$

$$\sigma = \frac{x+1}{2x} = \frac{\sqrt{1+2\tau}+1}{2\sqrt{1+2\tau}}$$
(6-26)

一般的に, αが小さいので, その場合に式 (6-23)は近似式

(6-25)

図 6-3 漸近近似させた収束値の速度修正係数 V/V

(6-27)	
(6-28)	
(6-29)	

(6-30)

とすれば, 最終的に

あ

$$n-1 = \frac{\alpha}{2} \frac{\tau}{\sqrt{1+2\tau}}$$
るいは、陽に

$$\frac{V'}{V} \approx 1 - \frac{\alpha}{2} \frac{\tau}{\sqrt{1 + 2\tau}}$$

と式(6-1)が示され、修正近似式が得られる.

6. 4 供試体プロペラサイズの許容限界

プロペラ作動により上流の一様流と下流の後 流へ影響する範囲を運動量理論で計算すれば, 風洞サイズに対する供試体プロペラサイズの許 容限界が示せると考える.

プロペラの直径 d および回転円板面積 S,上 流の一様流が影響を受け大気圧にもどる位置の 一様流直径 d₀ および断面積 S₀,ならびに下流 の後流が大気圧に戻る位置の後流直径 d₁および 断面積 S₁から,運動量理論により

$$\frac{d_0}{d} = \sqrt{\frac{1}{2} \left(1 + \sqrt{1 + 2\tau} \right)}$$

$$\frac{d_1}{d} = \sqrt{\frac{1}{\sqrt{1 + 2\tau}}}$$

$$\tau = \frac{T}{\rho SV^2}$$
(6-32)

(6-31)

図 6-4 影響直径比

が求まる. ここでτは, 式(6-1)の回転円板推力

係数である. 図 6-4 には, τに対する直径比 d₀/d および d₁/d を,負推力の場合を含めて示す. この グラフは,プロペラ直径に対して流れに影響を与える直径の比を表す.

また,直径比の逆数 d/d₀および d/d₁は,風洞直径に対して許容できるプロペラ直径の比になるので,図 6-5 に示す. さらに,許容できる面積比は,直径比を2乗して

$$\frac{S}{S_0} = \frac{2}{1 + \sqrt{1 + 2\tau}}$$

$$\frac{S}{S_1} = \sqrt{1 + 2\tau}$$
(6-33)

となり、図 6-6 に表す(式の導出では、面積を求めてから円面積として直径を得る). 図 6-5 で、風 洞前方直径に対するプロペラ直径の比を d/d₀曲線に与えれば、許容される τの限界値が得られる.

図 6-5 許容限界面積比

図 6-6 許容限界直径比

7. まとめ

プロペラの風車状態における空力特性を概観するため,滑空飛行でのプロペラ効率を定めた.さら に、プロペラの翼素理論を用いて局所効率の表現を示した.また、ブレードの翼型として、文献から 翼型の空力特性をグラフで表した.

つづいて,プロペラ作動状態での風車状態を位置づけるため,作動の種類を一覧表に示した.また, 風車状態での風洞試験での風洞干渉修正を運動量理論により検討を加えた.

参考文献

- 1) Hartman, Edwin P.: Negative thrust and torque characteristics of an adjustable-pitch metal propeller, NACA TR 464, 1933.
- 2) 小林宙,西沢啓,岡井敬一:「航空機用電動推進系の動向と課題」,第49回飛行機シンポジウム講演集, 1C6(2011)
- 3) Abbott and Doenhoff, Theory of Wing Sections, Dover, 1958.
- 4) Rae, Jr., William H., and Pope, Alan: Low-speed wind tunnel testing, pp.433-434, 1984.
- 5) Glauert, H.: The elements of aerofoil and airscrew theory, Cambridge University Press, pp.221-226, 1947.
- 6) 阿保敏弘:高層気象観測業務の解説(改定版),財団法人 気象業務支援センター,2006.
- 7) Glauert, H.: Aerodynamic theory Vol. IV, Springer, pp.296-301, 1934.

付録

A. プロペラの相似則

A. 1 相似則

相似則では,幾何学的形状が相似な2物体の運動を相似にさせるには,支配的な同種の物理量の比であるパイナンバー^{A1)}を合わせることが,必要である.

プロペラが相似とは、それらの形状が相似であり、パイナンバーとして、ニュートン数、レイノルズ数、およびマッハ数(条件)が合い、さらに、プロペラのブレードと気流との迎角が一致することである. プロペラである発生推力、トルク、および吸収パワーに関するパイナンバーは、(ニュートン数) = (外力) / (慣性力)であり、また、(レイノルズ数) = (慣性力) / (粘性力)、および(マッハ数) = (慣性力) / (圧縮力)として導出する.

A. 2 特性係数と進行率

ニュートン数は、外力 F, 慣性力 F_i , 密度 ρ , 長さ l, 速度 v とすれば、 $F/F_i = F/(\rho l^2 v^2)$ である. プロペラの直径 D, 回転数 n [Hz], 大気密度 ρ , および外力としての推力 T から、ニュートン数である 推力係数 C_T は、F = T, l = D, および v = nD なので

$$C_T = \frac{T}{\rho n^2 D^4}$$

となる.また、プロペラの吸収トルクQやパワーPの係数は、ニュートン数の一種でF = Q/D、およびF = P/(nD)から、トルク係数 C_Q 、およびパワー係数 C_P が

$$C_{\varrho} = \frac{Q}{\rho n^2 D^5}$$

$$C_{P} = \frac{P}{\rho n^3 D^5}$$
(A-2)

から得られる.

図 A-1 のブレード断面において、ブレードの迎角 α は、ピッチ角(羽根角) β から流入角 ϕ を引いた 角度

$$\alpha = \beta - \phi \tag{A-3}$$

である. β はプロペラ形状で決まるため, α の程度 は ϕ で表せる. ブレード半径 r 位置で周速度が 2π nr だから ϕ は

$$\phi = \tan^{-1} \frac{V}{2\pi nr} \tag{A-4}$$

となり、その程度が $V/(2 \pi nr)$ の速度比で表される. それゆえ、迎角の程度は、飛行速度と半径 r = R に代 表させたブレード端における周速度との比に π を掛 けて

$$\frac{V}{nD} = J \tag{A-5}$$

(A-1)

図 A-1 ブレード半径 r 位置の断面における速度お よび角度関係

の進行率(前進率)Jで示すことができる.なお、プロペラの推進効率 η は、次式で示される.

$$\eta = J \frac{C_T}{C_P}$$

(A-6)

A. 3 合成速度とレイノルズ数

図A-1のように半径r位置におけるブレード断面では、プロペラ回転数nで周速度が $2\pi nr$ となり、 Vとの合成速度 V_R は

$$V_{R} = \sqrt{V^{2} + (2\pi nr)^{2}}$$
$$= V \sqrt{1 + \left(\frac{2r}{D}\frac{\pi}{J}\right)^{2}}$$
(A-7)

となる.

レイノルズ数 Re は、ブレード半径 r 位置にお ける翼弦長 c を基準長とし、ここでの合成速度 V_R を基準速度にとる、それゆえ、動粘性係数 v とし て Re は、式(A-7)を用い

$$\operatorname{Re} = \frac{cV_R}{v} = \frac{c}{v}\sqrt{V^2 + (2\pi nr)^2}$$
$$= \frac{cV}{v}\sqrt{1 + \left(\frac{2r}{D}\frac{\pi}{J}\right)^2}$$
$$= \frac{cnDJ}{v}\sqrt{1 + \left(\frac{2r}{D}\frac{\pi}{J}\right)^2}$$
(A-8)

で表される. ある 1 つのプロペラで, *V* あるいは *n* をパラメータに J = V/(nD)を変えると, 図 A-2 の計算例のように *Re* は変化する. しかし, プロ ペラ特性である *J* に対する特性値 *C_T*, *C_P*, および *n* は, 近似曲線に載る特性曲線を持つ. ただし, 低レイノルズ数域のある Re 数以下では, その特 性曲線に載らず,特に *C_T* と*n*が悪化する特性値 が出てくる ^{A2)}. この Re を臨界レイノルズ Re_{cri}. と呼べば, 扱うプロペラ特性での Re に, 式(A-9) の条件が与えられる.

$$\operatorname{Re} > \operatorname{Re}_{cri.}$$
 (A-9)

A. 4 マッハ数

図 A-2 24"プロペラ^{A2)}のレイノルズ数 Re 計算例 (赤点線は試験結果から得た Re_{ct})

マッハ数では、最大速度になるブレード端r = R位置において、大気の音速aで合成速度 $V_{R,tip}$ に対する合成マッハ数 $M_{R,tip} = V_{R,tip}/a$ 、また飛行速度Vに対するマッハ数M = V/aとし、式(A-7)から

$$M_{R,tip} = \frac{V_{R,tip}}{a} = \sqrt{\left(\frac{V}{a}\right)^2 + \left(\frac{\pi nD}{a}\right)^2}$$
$$= M\sqrt{1 + \left(\frac{\pi}{J}\right)^2}$$

(A-10)

が得られる. 亜音速範囲で用いるブレードでのマッハ数は, ブレード端合成速度が高亜音速に近づか ないように, おおよそ 0.6 以下と仮定して

$$M_{R tin} < 0.6$$

(A-11)

の条件を満たすようにすれば、圧縮性の影響を無視できるため、相似則でマッハ数を合わせる必要は ない.

A. 5 相似則の適用

幾何学的に相似な2つのプロペラ1および2があり、両方での大気条件が同一として、2つのプロペラ特性が同じであるための相似条件を出す.プロペラ直径 D とブレード翼型の翼弦長 c から、スケール比を k とすれば

$$\frac{D_2}{D_1} = \frac{c_2}{c_1} = k \tag{A-12}$$

になる.ここで,記号には対応するプロペラの添え字1あるいは2を付けるもとする. まず,進行率を合わせるには,想定実機プロペラ1の特性を風洞試験用模型プロペラ2から求めるとして, $J_1 = J_2$ からプロペラ回転数nの関係

$$n_{2} = \frac{D_{1}}{D_{2}} \frac{V_{2}}{V_{1}} n_{1}$$

$$= \frac{1}{k} \frac{V_{2}}{V_{1}} n_{1}$$
(A-13)

を得る.風洞風速が実機風速と同程度な速度を出せるならば

$$n_2 = \frac{n_1}{k}, \qquad V_2 = V_1$$
 (A-14)

となる.一般的には D₂の方が D₁より小さいので,小さい模型プロペラを,スケール比の逆数倍大き く回転させるのは理にかなっている.

つぎに、レイノルズ数を合わせない場合では、 c_2 が小さくので臨界レイノルズ数以上になる速度 V_2 は、翼弦長位置をブレードの75%位置として式(A-9)と(A-8)から

$$V_{2} > \frac{\nu \operatorname{Re}_{cri.}}{c_{2}} \frac{1}{\sqrt{1 + \left(0.75\frac{\pi}{J}\right)^{2}}}$$
(A-15)

の条件を得る. Re_{cri.}は、分かっているものとする. レイノルズ数を合わせる場合には、式(A-8)により

$$\frac{c_1 V_1}{v_1} \sqrt{1 + \left(0.75 \frac{\pi}{J_1}\right)^2} = \frac{c_2 V_2}{v_2} \sqrt{1 + \left(0.75 \frac{\pi}{J_2}\right)^2}$$

となり、ここから、前進率および大気条件が同じとしているので、速度関係は

$$V_2 = \frac{c_1}{c_2} V_1 = \frac{1}{k} V_1 \tag{A-16}$$

になる.回転数関係は、式(A-14)ではなく、式(A-13)から

$$n_2 = \frac{1}{k^2} n_1 \tag{A-17}$$

が適用される.式(A-11)および(A-10)から、V2に対するマッハ数の条件は

$$V_2 < 0.6 \frac{a}{\sqrt{1 + \left(\frac{\pi}{J}\right)^2}} \tag{A-18}$$

が導ける.

これらの条件で、模型の風洞試験が成立するかを検討する必要がある.条件を設定して実施した風 洞試験から得られ、必要に応じて風洞壁干渉補正を施したプロペラ特性係数データは、相似則を満た しているので、想定実機のプロペラ特性係数データとして与えられる.

A. 参考文献

A1) 江守一郎:模型実験の理論と応用 第2版,技報堂出版,1994年.

A2) 奥山政広,中舘正顯,河野敬,木村善行,近藤夏樹:大型模型用プロペラ特性の取得と利用, 第49回飛行機シンポジウム 3G3,2011年.

本印刷物は、グリーン購入法に基づく基本方針の判断基準を満たす紙を使用しています。