

宇宙航空研究開発機構研究開発資料

JAXA Research and Development Memorandum

NEXST-1 形状を対象とした TRANAIR++ 空力解析検証

牧本 卓也,牧野 好和

2012年3月

宇宙航空研究開発機構

Japan Aerospace Exploration Agency

1. 記号	1
2. はじめに	2
3. TRANAIR++ ·····	2
3.1. TRANAIR 概要	2
3.2. 動作環境	2
3.3. 解析手順	2
3.4. ジョブスクリプトファイル (\$CASE.job)	4
3.5. 入出力選択ファイル(\$CASE.files)	4
3.6. 解析条件設定ファイル(\$CASE.i.inp)	4
3.7. 表面格子データファイル (\$CASE.poi)	5
3.8. 解析結果ファイル群	5
4. 検証解析	6
4.1. 解析対象 NEXST-1	6
4.2. 解析ケース	7
4.3. 表面格子	8
4.4. 計算制御·····	10
4.5. アダプティブ格子生成	10
5. 解析結果	13
5.1. アダプティブ計算格子	13
5.2. 縦3分力による UPACS との比較	13
5.2.1. Mach0.61 解析結果 ······	16
5.2.2. Mach0.81 解析結果 ······	18
5.2.3. Mach0.90 解析結果 ······	20
5.2.4. Mach0.95 解析結果 ······	22
5.2.5. Mach1.05 解析結果 ······	24
5.2.6. Mach1.10 解析結果 ······	26
5.2.7. Mach1.21 解析結果 ······	28
5.2.8. Mach1.44 解析結果 ······	30
5.2.9. Mach1.59 解析結果 ······	32
5.2.10. Mach1.79 解析結果 ······	34
5.3. 計算時間	36
6. まとめ	36
7. 謝辞	36
参考文献	36
Appendix A 空力解析の忠実度	37
Appendix B 入力ファイル	39

目 次

NEXST-1 形状を対象とした TRANAIR++ 空力解析検証*

牧本 卓也*1, 牧野 好和*2

Aerodynamic Analysis Validation of TRANAIR++ applied to NEXST-1 configuration*

Takuya MAKIMOTO^{*1} and Yoshikazu MAKINO^{*2}

Abstract

JAXA supersonic transport team has introduced the commercially available full potential aerodynamic solver TRANAIR++ since 2008 for aerodynamic design and aerodynamic characteristics evaluation of a supersonic research airplane. In order to check the accuracy and efficiency of the TRANAIR++, it is applied to the scaled supersonic experimental airplane NEXST-1 which was designed, built, and used for flight test in 2005 to demonstrate JAXA' s CFD-based inverse design technology and some supersonic low-drag design concepts. The aerodynamic characteristics from subsonic to supersonic speed regime of the NEXST-1 evaluated by the TRANAIR++ are compared to the CFD analysis results which are open to the public through the database named NEXST-DB.

Keywords: aerodynamic analysis, full potential equation, supersonic transport

概 要

JAXA 航空プログラムグループ超音速機チームでは,超音速研究機の空力設計及び空力特性評価に供するこ とを目的として,2008年に市販のフルポテンシャル空力解析ツール TRANAIR++を導入した.本報告では, その解析精度と解析効率の確認を目的として,JAXA が CFD 逆問題設計技術,及び空力抵抗低減設計コンセ プトを実証するために設計・製作し,2005年に飛行試験を実施した小型超音速実験機 NEXST-1形状に適用し た結果について報告する.TRANAIR++により解析された亜音速・遷音速・超音速領域における NEXST-1形 状の空力特性は,小型超音速実験機空力データベース (NEXST-DB) で公開されている CFD 解析結果と比較 を行い,その解析精度を検証した.

	1 = 7 - 7	C_{D_P}	圧力抗力
	1. 武巧	$C_{\rm L}$	揚力係数
AoA	迎角	См	ピッチングモーメント係数
CD	抗力係数	C_p	圧力係数

* 平成 24 年 1 月 13 日受付 (Received 13 January 2012)

*1 株式会社 菱友システムズ エンジニアリングソリューション事業部 (Engineering Solutions Division, Ryoyu Systems Co., Ltd.)

*2 航空プログラムグループ超音速機チーム (Supersonic Transport Team, Aviation Program Group, JAXA)

全エネルギー e L 機体長 マッハ数 М 圧力 Р Pr プラントル数 レイノルズ数 Re x 方向流速 u v方向流速 v z方向流速 W 内部エネルギー З 速度ポテンシャル Φ 擾乱速度ポテンシャル φ 比熱比 γ 粘性係数 Ц 密度 ρ 応力テンソル τ

2. はじめに

超音速研究機の設計においては、実験ミッションが達成 可能かどうかを判断するため、設計フェーズ毎に空力特性 評価が必要となるが、通常概念設計フェーズ、基本設計フ ェーズ、詳細設計フェーズ、と設計フェーズが進むにつれ て、CFD 解析等の空力特性評価ツールも高度化し、場合 によっては全機風洞試験等も併用しつつ開発が進められる。 もちろん初期設計フェーズから高精度 CFD 解析により空 力特性評価するに越したことはないが、設計過程で形状自 体が更新されていく中での空力特性評価には、精度と同時 に適時性(必要な空力データが設計フェーズに合わせて用 意されること)が求められるため、設計フェーズに合わせ た適切な Fidelity(忠実度)の解析ツールを使用すること が求められる。

また,空力形状設計においても,最適化手法等を利用す る場合には設計フェーズに合った,あるいは最適化手法(勾 配法ベース/遺伝的アルゴリズムベース,単目的/多目的, 直接評価/応答曲面評価,等)の種類に合った解析ツール を選択する必要があり,最近では複数のFidelityのツール を組み合わせた多忠実度(Multi-fidelity)最適設計の研究 開発も行われている.

以上の様な状況を踏まえ,JAXA 航空プログラムグルー プ超音速機チームでは,他分野統合・多目的最適設計技術 の研究において多忠実度最適設計の研究開発を進める中で, 線形パネル法と CFD 解析の Fidelity の差を埋める目的で, 2008 年 に 市 販 の フ ル ポ テ ン シ ャ ル 解 析 ツ ー ル TRANAIR++¹⁾を導入した.本報告では,その解析精度と 解析効率の確認を目的として,JAXA が CFD 逆問題設計 技術,及び空力抵抗低減設計コンセプトを実証するために 設計・製作し、2005年に飛行試験を実施した小型超音速 実験機 NEXST-1 形状²⁾³⁾に適用した結果について報告する. TRANAIR++により解析された亜音速・遷音速・超音速領 域における NEXST-1 形状の空力特性は、小型超音速実験 機空力データベース (NEXST-DB)⁴⁾ で公開されている CFD 解析結果と比較を行い、その解析精度を検証した.

3. TRANAIR++

3.1. TRANAIR 概要

TRANAIR++(以下,TRANAIR)の研究開発は,1984 年にNASA Ames で当時開発された直交格子による遷音速 流れの解析技術を用いて開始され,1987年からは Boeing 社の技術支援により Refinement 格子技術を発展させてい った.その後も TRANAIR の研究開発は進み,解適合格子 技術,境界層方程式とのカップリング機能や設計機能など の改良を行い,さらに,非定常流れ,空力弾性などの問題 も解けるように機能を拡張していった¹⁾.また, TRANAIR 以前に開発されたパネル法解析プログラム PANAIR のユーザーが,TRANAIR へ移行しやすいように PANAIR 入力ファイルがそのまま使える,もしくは若干の 修正で済むようになっている.

TRANAIR は、直交格子によるフルポテンシャル解析で あり、その大きな特徴は解析を行いながら自動的に格子が 細かく分割されるアダプティブ(解適合)格子機能である.

3.2. 動作環境

TRANAIR の動作環境は以下の通りである.

- 64-bit Linux (特に Red Hat Enterprise Linux V4 もしく は V5)
- Intel Fortran V11 以上

TRANAIR 単体では実行できず, Intel Fortran が必要である. これはコード自体が Fortran77 で書かれている部分があり, 配列確保のためにコンパイルをする必要があり, Intel コンパイラが必要なためである.

3.3. 解析手順

TRANAIR は、基本的にコマンドベースの実行環境になっており、解析を行うにあたり環境変数などの定義が必要になる.

- \$CASE 解析ケース名. TRANAIR 解析に関わるファイルの名 前として "\$CASE.extension" (extension:拡張子)の ように使用される.
- \$CASEPATH

TRANAIR 解析での入出力ファイルの保存先.

\$MODPATH

修正またはカスタマイズされた TRANAIR コードの置 かれている場所を指定する.

\$ALTPATH

解析を行う端末に十分なディスク容量が無い場合,容量の大きな出力ファイルなどの保存先として,ファイルサーバなどのパスを指定する.

上記の環境変数は,通常,TRANAIRの実行コマンドを 含めた解析ジョブスクリプトファイル(後述の \$CASE. job)内にて定義を行う.

次に TRANAIR の処理プログラムと入出力ファイルを図 3.1 に示す.

図 3.1 処理プログラムとファイル

TRANAIR は, Input Processor (fdinp), Flow Solver (fdsol), Output Processor (fdout) の3つの処理モジュールで構成さ れる. この Processor を挟む左右に書かれているのが入出 カファイル群である. 矢印の出発点にあるファイルが入力 ファイル, 到着点にあるファイルを出力ファイルとして記 している. 図3.1 に示す入出力ファイルの中から,実際の 解析作業で使用することが多いものを表 3.1 以降の表にま とめる.

表 3.1 処理モジュール

fdinp	入力データチェックモジュール	
fdsol	フルポテンシャル計算モジュール	
fdout	結果処理・データ出力モジュール	

表 3.2 共通入出力ファイル

\$CASE.job	解析ジョブスクリプトファイル
\$CASE.files	使用入出力選択ファイル

表 3.3 fdinp 入出力ファイル

\$CASE.i.inp	解析条件設定ファイル
\$CASE.poi	解析対象の表面格子データ
\$CASE.io	fdinp 出力結果
\$CASE.tp	7fdsol リスタート入力ファイル

表 3.4 fdsol 入出力ファイル

\$CASE.s.inp	fdsol 以降の解析処理設定ファイル
\$CASE.tp7r	fdsol のリスタートファイル
\$CASE.so	fdsol 結果ファイル
\$CASE.bn	ポスト処理ソフト用入力データ

表 3.5 fdout 入出力ファイル

\$CASE.o.inp fdout の解析処理設定ファイル	
\$CASE.tp8r	fdout のリスタートファイル
\$CASE.ggp	表面格子点ごとの解析結果
\$CASE.fm.ggp	表面格子の解析結果
\$CASE.fn.ggp	パネルごとの解析結果
\$CASE.p3dg	Plot3D 表面格子データ
\$CASE.p3dq	Plot3D Q データ

それぞれのモジュールについて入力,出力ファイルがあり,各処理モジュール単体で動かすことも可能である(リ スタート処理).

ユーザーが最低限用意しなければならないファイル(デ ータ)は、

- \$CASE.job:解析ジョブスクリプトファイル
- \$CASE.files:入出力選択ファイル
- \$CASE.i.inp: 解析条件設定ファイル

 \$CASE.poi: 解析対象表面格子データファイル 以上, 4つである.

3.4. ジョブスクリプトファイル (\$CASE.job)

ジョブスクリプトファイルは、\$CASE, \$CASEPATH, \$MODPATH, \$ALTPATH などの環境変数を設定し,解析 実行コマンドを記述したシェルスクリプトファイルである. 図 3.2 のジョブスクリプト例にある最後の 2 行前のコマン ド(Tranair \$CASE 3D -v prod)が TRANAIR 解析の実行コ マンドである. Tranair コマンドもシェルスクリプトであ り,その中では \$CASEPATH などの Tranair コマンド前で 設定した環境変数を使用するため,設定した環境変数 (\$CASEPATH, \$MODPATH, \$ALTPATH)は必ず export し なければならない.また, \$MODPATH は,通常使用する ことはあまりないため, \$CASEPATH と同じ値(Path)に している.

#! /bin/sh
define environment variables for the current case
CASE=wngbdy
CASEPATH=user@machine:/path/casedir
MODPATH=\$CASEPATH
ALTPATH=user@bigmachines:tranair/testcases
export CASEPATH MODPATH ALTPATH
run Tranair
Tranair \$CASE 3D -v prod
exit 0

図 3.2 \$CASE.job (サンプル)

3.5. 入出力選択ファイル (\$CASE.files)

TRANAIR 解析の際に使用する入出力ファイル名をこの ファイルに記述する(図 3.3). このファイルのフォーマッ トは、1行に1ファイルに関する拡張子と保存先を記述す る.例えば、入力ファイルの一種である \$CASE.i.inp が、 \$CASEPATH に保存してある場合, i.inp \$CASEPATH と 記述する.また、"#"は、それ以降の文字列はコメントと みなされる.そのため、無効にしたい入出力ファイル欄の 先頭に #を付けると、その入出力ファイルに関して処理は されない.

3.6. 解析条件設定ファイル (\$CASE.i.inp)

この解析条件設定ファイルは、その名の通り、解析にお ける条件を設定する入力ファイルである.このファイル内

<pre># INPUT FILES # i.inp \$CASEPATH</pre>
#
i.inp \$CASEPATH
· • • • • • • • • • • • • • • • • • • •
poi șcasepath
#
#mods \$CASEPATH
#
#
OUTPUT FILES
#
ggp \$ALTPATH
fm.ggp \$CASEPATH
fn.ggp \$ALTPATH
p3dg \$ALTPATH
p3dq \$ALTPATH

図 3.3 \$CASE.files (サンプル)

のフォーマットは厳格に決まっている. 解析条件は, デー タブロックというパラメータ群をまとめたもので定義する. このデータブロックは, "\$"と3文字のアルファベットか らなる識別子によってはじまり, 一部の条件のパラメータ を除き, 1つの値(数値, 文字)が10カラム区切り, 1 行が最大80カラム(8データ値)からなる. この10カラ ム単位を TRANAIR では Field と呼び, その複数の Field で なる1行を Card と呼ぶ. また, 行の先頭が"!"もしくは "="の場合は, その行はコメントとみなされデータ入力 されない.

\$xxx		
!2345678901234567890		 1234567890
aaa	bbb	 aaa

図 3.4 データブロックフォーマット

パラメータ(文字,数値)は、必ずしも Field の先頭か ら始める必要はなく、Field 内であればどの位置から記述 しても良い.また、数値は Field に収まれば、浮動小数点 形式も記述可能である。例として以下の記述方法がある. -0.123 -1.23E-1 -.123 -0.12300

1.

パラメータが整数の場合,上記例の一番下の表記方法の ように小数点が必須となる.小数点が無いと入力データ処 理モジュール(fdinp)でエラーとなる.また,前述の通り, 数値も Field 内であればどこからでも記述できるが,左右 どちらかの端に揃えると可読性が良く,後から編集もしや すい.特に後で述べる表面格子の格子点座標値を記述する データブロック \$POIでは,より多くの有効数字を得るた め,左端(Field の先頭)から記述することを推奨する.

それでは表 3.6 に,主に使用されるデータブロックの識 別子の一覧を示す.詳細な設定に関して次章の検証解析の ところで更に詳しく説明する.

基本設定	
\$TIT	解析の題名,ユーザー名
\$DAT	実行時にデータのチェック有無や方法
\$FIL	読込む外部ファイル名
\$END	入力データ終了
流れ条件	
\$SYM	対称性
\$MAC	マッハ数
\$ANG	迎角
\$SID	横滑り角
計算条件	
\$ITE	イタレーション
\$BOX	解析空間
\$TOL	改良格子のトレランス
\$LBO	改良格子領域設定
\$ADA	アダプティブ制御
格子&境界条件	
\$POI	解析対象格子点&境界条件
\$TRA	wake 格子
出力設定	
\$PRI	出力制御
\$REF	代表長さや面積などの参照値設定
\$FOR	出力する構成要素の設定
\$SUR	\$CASE.ggp への出力値設定

表 3.6 データブロック識別子

\$FIE \$CASE.bn の出力値設定

3.7. 表面格子データファイル (\$CASE.poi)

表面格子データファイルは,表3.6 にあるデータブロッ ク \$POI や \$TRA を \$CASE.i.inp ファイルから別ファイル にしたものである.別ファイルにすると少しの形状(格子) 変更の際, \$CASE.poi ファイルのみを変更すれば良く,効 率的に再解析などが行える.

ちなみにこの \$CASE.poi ファイルは、 \$POI や \$TRA だ けでなく,他のデータブロックを含むこともできる.つま り、 \$CASE.i.inp と同じファイル形式である.しかし, fdinp モジュールから解析を始める場合,使用入出力選択 ファイル (\$CASE.files) にある \$CASE.i.inp 欄が有効でな ければならない.そのため、 \$CASE.poi ファイルの内容を \$CASE.i.inp 内に含めてしまえば、 \$CASE.poi は必ずしも必 要ではない.

3.8. 解析結果ファイル群

TRANAIR から出力されるファイルの中で解析結果に用いるものは以下のファイルである.

\$CASE.bn

TRANAIR 付属のポスト処理ツール tgraf 用バイナリ ファイル.空間部分のコンター図や格子を見るときに 使用する.

\$CASE.fm.ggp

全表面格子の空力6分力データファイル. 解析対象の 積分された結果の値が分かる.

\$CASE.fn.ggp

ひとつひとつのパネルごとの空力6分力データファイル.パネルごとの積分値が分かる.

\$CASE.p3dg

Unformatted Plot3D 形式の表面格子データファイル. ポスト処理ツール Field View などで使用可能.

\$CASE.p3dq

Unformatted Plot3D 形式の表面格子 Q データファイル. Field View で \$CASE.p3dg と使用すると表面 Cp コン ター図などが得られる.

これら以外の出力ファイルについては、マニュアル¹⁾ を参照のこと.

6

4. 検証解析

ここから TRANAIR の検証をするために行った解析につ いて、入力ファイル \$CASE.inp や \$CASE.poiの実際に用 いたデータブロックとパラメータの設定を交えながら説明 する.また,詳細な設定方法などは TRANAIR のマニュアル ¹⁾を参照して頂きたい.

4.1. 解析対象 NEXST-1

まず超音速機チームが 2005 年にオーストラリアでの飛 行実験のため設計開発した小型超音速実験機 NEXST-1(図 4.1)を用いて検証解析を行った. 解析対象として NEXST-1を用いた理由は,以下の2つである.

- エンジンやそのナセルが無く、機体構成要素が単純な こと
- 機体形状,解析データなどがインターネットで公開されていること

(NEXST-DB:http://nexstdb.chofu.jaxa.jp/SPRESSO/index. jsp)

図 4.1 NEXST-1 空力 (AS) モデル

機体と座標軸の関係を図 4.2, 解析に必用な基準値を表 4.1 に示す.

図 4.2 NEXST-1 機体と座標軸

表 4.1 NEXST-1 基準値

基準 x 座標 [m]	5.245
基準 y 座標 [m]	0.0
基準 z 座標 [m]	0.0
代表長さ [m]	11.5
基準面積 [m ²]	10.1174
横基準長さ [m]	4.716
縦基準長さ [m]	2.754

この基準値を設定するにはデータブロック \$REF を用い る.今回, TRANAIR 解析上では機体長をすでに1とスケ ーリングし無次元化しているため,表4.1のすべての値を 機体長である11.5[m]で無次元化する必要がある.そうす ると図4.3の値となる.ここで \$REF の設定値のパラメー タ名と基準値との対応を表4.2 に示す.

図4.3 では、6行で示してあるが、1,3,5行目はデー タとして意味を持たないコメントである(行の先頭が= のため).これらの行は、パラメータが見やすいようにす るために付加したもので、1行目はカラム位置、3,5行 目はそれらの直下の行に記したパラメータの種別が分かる ように Field 名を示している.これ以降のデータブロック の設定を示した図では、このようなフォーマットを用いて 説明をしていく.また、80カラム以降に書かれた refl, ref2, ref3 は Card 名である.

=	1	2	3	4	-8
\$	REFerence	Lengths	and Areas	s	ref1
=	xref	yref	zref		ref2
4	.5609E-1	0.0	0.0		
=	sref	bref	cref	dref	ref3
	7.6502E-2	4.1009E-1	2.3948E-1	4.1009E-1	

図 4.3 \$REF 設定

表 4.2	\$REF	の基準値対応表
1.4	ψιτμι	

xref	基準 x 座標
yref	基準 y 座標
zref	基準z座標
sref	基準面積
bref	横基準長さ
cref	縦基準長さ
dref	横基準長さ

4.2. 解析ケース

設計での有効性を検証するため, 亜音速領域から超音速 領域まで幅広い速度域で, すでに UPACS で解析してある 表 4.3 に示す全 30 ケース(10 Mach × 3 迎角)の解析を実 施した.

表4.3 検証解析ケース

Mach[-]	AoA[deg]
0.61	
0.81	
0.90	
0.95	
1.05	-2.0
1.10	0.0 3.0
1.21	010
1.44	
1.59	
1.79	

Mach 数と迎角は、データブロック \$MAC と \$ANG の2 つで設定する. Mach 数を設定する \$MAC はデータブロッ ク識別子 (\$MAC) 1行とパラメータ値を設定する1行の 計2行からなるが、紙面の都合上、40カラム目で2つに 上下分断して示している (図 4.4). この \$MAC で設定す るパラメータは主に以下に示す3つである.

- amach: 主流マッハ数
- linr:線形フルポテンシャル方程式フラグ
- amfgas:仮想ガスマッハ数

amach は、解析する主流マッハ数を設定する. linr は、 解くべき方程式を通常の非線形のフルポテンシャル方程式 ではなく、線形理論により線形化されたポテンシャル方程 式に変更するパラメータである. 線形ポテンシャル方程式 を用いる場合は、1 (True)にする. amfgas は、計算中、 数値的に起きる物性値のエラー(密度が0など)を防ぐた めに、マッハ数による計算上の上限値を設定する. この値 は、amachの2倍の値にするよう推奨されている. 今回の 解析のように amfgas = 0 にすると自動的に推奨値が設定 される.

=1	2	3	4	
\$MAC				
= amach	linr	amfgas	fsvmi	
1.44	0.	0.	1.0	
5	6	7	8	
			1	mac1

fviscm	fvisco	rholim	mac2
1.	2.	-0.009	

図 4.4 \$MAC 設定

迎角を設定する \$ANG のパラメータは、1 つだけである.

■ alpha:迎角 [deg]

alpha は, 度数 (degree) で入力する. 迎角の基準 (alpha = 0.0) は常に +x 方向となり, ユーザーによる設定はできない.

=3	8	
\$ANG	angl	
= alpha	ang2	
3.0		
3.0		

図 4.5 \$ANG 設定

TRANAIR では, 絶対値 6.0[deg] 以上の迎角での解析は 収束しにくいが, すでに UPACS にて解析がなされている 迎角は, どれも 6.0[deg] 以下のため, 全く同じ迎角に合わ せて検証を行った.

次に解析における対称性を設定するデータブロック \$SYM について

- xzsym: xz 平面に対しての対称性
- xysym: xy 平面に対しての対称性

xz 平面に対して対称に解析を行う場合は, xzsym を 1 (True), その逆は 0 (False) に設定する. 同様に xysym は xy 平面に対して設定する. xy 平面対称 (xysym = 1) に解析するときは, xz 平面に対しても対称 (xzsym = 1) としなくてはならない. また, xz 平面対称 (xzsym = 1) の場合, 横風 (\$SID の beta パラメータ) は 0.0[deg] (beta = 0.0), 同じく xy 平面対称 (xysym = 1) の場合は, 迎角 0.0[deg] でなくてはならない.

図 4.6 \$SYM 設定

今回は横風を想定した解析を行わないため, \$SID は設 定しない (beta = 0.0). また, 機体も xz 平面を対称面とす る半機での解析を行う. そのため \$SYM にある xzsym を 1に設定する. 1は有効 (True), 0は無効 (False) を表 している. 今回の解析では xy 平面では対称ではないので 0 (False) にしている.

解析空間の設定は、データブロック \$BOX で設定する.

- \$BOX のパラメータは、以下の9つある.
- xi:解析空間の-x方向側 x 座標値(x下限値)
- xf:解析空間の+x方向側 x座標値(x上限値)
- nx:解析空間のx方向の分割点数
- yi:解析空間の-y方向側 y 座標値(y下限値)
- yf: 解析空間の +y 方向側 y 座標値(y 上限値)
- ny: 解析空間の y 方向の分割点数
- zi:解析空間の-z方向側 z座標値(z下限値)
- zf:解析空間の +z 方向側 z 座標値 (z 上限値)
- nz: 解析空間の z 方向の分割点数

TRANAIR は、直交格子による解析を行うため、解析空間も直方体の形となるよう定義される.また各方向で分割されてできる要素の辺の長さ(dx, dy, dz)は以下の式に示す等間隔のものとなる.

dx = (xf - xi)/(nx - 1) dy = (yf - yi)/(ny - 1)dz = (zf - zi)/(nz - 1)(4-1)

解析空間は、図4.7 のように流れ方向(x 軸)に機体長 の2倍(2L)、スパン方向(y 軸)と高さ方向(z 軸)に は機体長(L)の領域を定義し、その空間の6面体要素の 辺の長さは、同じになるように設定した.また、今回の解 析では機体長で無次元化を行い、L=1としている.その ため、解析空間を定義するデータブロック \$BOX は、図 4.8 のようになる.1辺の長さは、0.05 にした.

図 4.7 解析空間

=	1	2	3	8
\$в	ох			box1
=	xi	xf	nx	box2
	-0.5	1.5	41.	
=	yi	yf	ny	box3
	0.0	1.0	21.	
=	zi	zf	nz	box4
	-0.5	0.5	21.	
1				

図 4.8 \$BOX 設定

4.3. 表面格子

表面格子は構造格子で,行方向(nm)と列方向(nm) を持つ(図4.9).また,格子面の向きは列方向から行方向 へ回転させたときの右ネジの進行方向と定義されている. この構造格子面を TRANAIR ではネットワークと呼ぶ.し かし,本稿では TRANAIR の姉妹ツールであるパネル法解 析ツール PANAIR での呼び名に合わせ,ネットワークの ことをパネルと記述することにする.

NEXST-1 は主翼, 胴体, 尾翼の単純な形状をしており, また, 表面格子のみを作成すれば良いので格子生成ソフト を用いれば, 比較的簡単に構造格子の表面格子データを作 成できる(図4.10). 複数のパネルで表面格子を構成する ことができるので, エンジンナセルやさまざまなデバイス などの付いた複雑な形状も表現可能. 今回の形状において は, 胴体 11 パネル, 主翼 3 パネル, 水平尾翼 3 パネル,

図 4.10 表面格子

垂直尾翼2パネル, 翼後縁などから出ている wake (図 4.10 の紫色格子) 6パネルからなる.

表 4.4 表面格子情報

点数	49383
セル数(矩形)	46513
最小格子幅(機体長1)	4.2E-4

今回,表面格子生成には Gridgen と呼ばれる CFD 用格 子生成によく使われるソフトウェアを使用した. Gridgen から直接 TRANAIR 用の格子データファイル (\$CASE.poi) への出力ができないため,一旦, Plot3D 形式に吐き出し 自前で開発した変換ツールを用いて poi ファイルを作成し た.

解析対象の表面格子データは、データブロック \$POI に て設定を行う.この \$POI は、格子点座標値以外に境界条 件も設定する.図 4.11 は、\$POI の設定についてだが、格 子点の数が多く、すべてを記述することは難しいので、パ ラメータ名で簡易的に示している.まず、Card poi2 にあ るパラメータ

■ kn:パネル数

■ inprec:座標値有効桁数拡張フラグ

kn は, このデータブロックが持つパネル数を記述する. 後で出てくる境界条件番号(kt)ごとに, \$POIを記述し なければならず,異なる境界条件が5つあるなら,最低5 つの \$POIを記述することになる.また,逆にひとつひと つのパネルを \$POI に分けて記述しても良い.inprec は, バージョン vI00 より新しく追加されたもので,格子点座 標値において 10 カラムから 24 カラムに拡張された.しか し,今回の検証解析には使用していない.

Card poi3 については, 4 つあるうちの重要なパラメー タ kt のみ説明をする.

■ kt:境界条件番号

kt はパネルの境界条件を設定する.主に使用される境界 条件について kt(番号)との対応を表 4.5 に示す.

表 4.5 境界条件

kt	境界条件
1	壁面
2	薄い面
5	ベース面
6	サンプル面
18	Wake
20	Carry Over Wake

kt = 1の壁面は、物体表面の境界条件に用いる.kt = 2は、 厚さが無い薄い板などの境界条件.kt = 5は、流れ方向に 対して垂直なベース面.kt = 6は、解析結果のデータがほ しい位置に設置した格子面に用いる.このkt = 6サンプ ル面は流れには一切影響を及ぼさない仮想的な格子となる. kt = 18は、翼後縁などの分岐していた流れが合流すると ころの淵から後流方向に作られる格子面に用いる.kt = 20 は、主翼後縁から出ているkt = 18の wake パネルとkt = 1 の胴体との隙間に用いるパネルに設定する一種の wake 境 界条件である.他のパラメータ lrhsc, mnsw, dnsm はデフ ォルト値以外で使用することはほとんどないため、説明を 省略する.

poi4 以降は、ひとつひとつのパネルごとのデータを設定 する。

- nm:パネルの行数
- nn:パネルの列数
- ntnm:パネル名

3つのパラメータ nm, nn, ntnm は, 1つのパネルにお ける行数, 列数, パネル名である. そして, そのパネルの 格子点座標値を poi5 に記述していく. このデータの並び が, パネル数 (kn) 分続く.

poi5 は格子点の xyz 座標値を記述していくが,そのフォ ーマットは行番号が増加する順に記述していき,行数 nm 個に達したら次の列(列番号 +1)の先頭から記述していく. プログラミング言語 Fortran 風に記述すると,各格子点座 標値 x, y, zを行要素,列要素の2次元配列で表現したと き

x(1,1) y(1,1) z(1,1) x(2,1) y(2,1) z(2,1)... ...x(nm,1) y(nm,1) z(nm,1)

x(1,2) y(1,2) z(1,2) x(2,2) y(2,2) z(2,2)... ...x(nm,2) y(nm,2) z(nm,2)

x(1,nn) y(1,nn) z(1,nn) x(2,nn) y(2,nn)

.....

z(2,nn)... ...x(nm,nn) y(nm,nn) z(nm,nn)

の順番になる.また,データは1行に2点分の格子点座標 値を含めることができる.

=1	2	3	4	
\$POI				
kn	inprec			
=1	2	3	4	
kt			lrhsc	
=1	2	3	4	
nm	nn			
x(1,1)	y(1,1)	z(1,1)	x(2,1)	
x(3,1)	y(3,1)	z(3,1)		
x(1,2)	y(1,2)	z(1,2)	x(2,2)	
x(3,2)	y(3,2)	z(3,2)		
5	6	7		8
				poil
				poi2
5	6	7		8
mnsw	dnsm			poi3
5	6	7		8
ntnm	poi4			
y(2,1)	z(2,1)			poi5
y(2,2)	z(2,2)			poi5

図 4.11 \$POI 設定

4.4. 計算制御

解析時の計算の制御を設定するデータブロックには \$ITE を用いる.

- niter: イタレーション回数
- tol: 収束残差値の桁(10-tol)
- ncdamp: 収束性を改善する人口粘性減衰値

niterは、後述のアダプティブ格子機能で生成される格 子ごとに計算を行う際の最大イタレーション回数である. 収束するような解析においては、1000 ぐらいでも問題な い. tol は、収束したかどうかを判定する際の残差の桁の 絶対値である.大きな値(10以上)を取ると収束しにくく、 アダプティブ計算の途中で解析が中断される可能性がある. ncdamp は、人口粘性に関するパラメータで値が大きいほ ど、人口粘性の効果が大きくなる.この値も大き過ぎると 収束しないため、2~5ぐらいの値を用いると良い.

図 4.12 \$ITE 設定

残差値の桁 tol は,最小空間格子サイズが 10-3 (\$ADP で設定) であるため,デフォルト値の5ではなく8を設定 した. それ以外のパラメータはデフォルトの値を使用した.

4.5. アダプティブ格子生成

TRANAIR には解析中に要素を分割するアダプティブ格 子生成機能がある.このTRANAIRのアダプティブは,要 素間の速度変化率によって定義された局所的誤差(local errors)をある値以下にするようにアダプティング(要素 分割)してゆく.このアダプティブは解析空間全体に対し て行えるが,ある領域に対してアダプティブすることも可 能である.アダプティブしたいところに6面体(8端点) の領域で指定する.領域内の要素は,アダプティブ回数が 進むごとにパラメータで設定された最小格子サイズになる ように1/8 ずつ分割されていく.そのため,精度よく数値 を求めたいところには細かいサイズを指定し,逆に精度よ りも処理時間を優先したいときは,細かさのサイズ指定あ るいは領域自体の設定を行わない.このアダプティブ格子 生成について設定するデータブロックは主に \$LBO, \$TOL, \$ADA である.

最初にアダプティブをかける領域を設定する \$LBO について説明する. \$LBO で設定する領域のことを local box(以下, LBO) と呼ぶ. それではまず, Card lbo2 にある5つのパラメータについて,

- adpfac:領域内誤差のスケール値(重み)
- panfac:領域内のアダプティブ適用範囲
- dxmin:最小要素サイズの x 方向長さ
- dxmax:最大要素サイズのx方向長さ
- lbnam:LBO 領域の名称

lbnam を除く数値パラメータは、LBO 領域内での初期格 子(アダプティブ0回目)生成の際に用いる.そのため、 初期格子以降のアダプティブ格子生成時にはこれらの数値 パラメータは使用されず、\$ADA の値が使用される. adpfacは、アダプティブの際に格子分割する要素の判定条 件となる局所的誤差(ローカルエラー値)の重みである. adpfac の値が大きいほど格子分割が積極的に行われる. panfac は, 値が正のとき表面格子付近, 負のとき領域全体 に格子分割が適用される. 通常, 同じ領域を指定し, panfac の値が正負で異なる \$LBO を設定する. こうするこ とで物体表面付近, 領域内にバランスよく要素が分割され ていく. 領域が小さい場合は, panfac が負のみの \$LBO だ けで問題ない. dxmin, dxmax は, 領域内における最小要 素サイズの x 方向の長さと最大要素サイズの x 方向の長さ である. lbnam は領域の名称で, 後述の \$ADA のパラメー タとして用いられる.

Card Ibo3 から Ibo10 は 6 面体の領域を指定するための 4 パラメータで,領域の端点 8 点分のデータが並ぶ. reldx の値は,その点の dxmin, dxmax を reldx 倍する.しかし, 通常,1.0 以外の数値を使用することはめったにない.また, 領域端点 8 つのデータは,図 4.13 に示す番号 1,2, ... 8 の順に記述する.

今回は, 胴体2つ, 主翼4つ, 水平尾翼2つ, 垂直尾翼4つ, 胴体先端1つ, 主翼前縁2つの全部で15の \$LBO を設定した. 機体先端と主翼前縁にもっとも細かい格子サイズを設定した. また, 胴体先端と主翼前縁は, 領域が小さいため panfac が負の \$LBO のみ(他 \$LBO は panfac 正 負領域, 両方有り)にしてある. 図4.14 は, 主翼の一部(内 側)の \$LBO 設定値である.

次に \$TOL について説明する. \$LBO では局所的な領域 の設定であったが, \$TOL は計算空間全体(\$BOX 領域) についての設定である. 図 4.15 は, \$TOL の設定値である. \$LBO と同じパラメータ adpfac, panfac, dxmin, dxmax が あり, LBO 領域が解析空間全体に広がったものと考えて よい. そのため, dxmin と dxmax は \$BOX より計算でき る要素の x 方向の辺の長さ(0.05)を挟む値になっている. epsf, noptgg に関しては, epsf=1.51, noptgg=1 以外の数値は, あまり使用しないため, 説明を省略する. また, \$LBO 同様, ここでのパラメータ値は, 初期格子生成時のみ有効でアダ

=1	2	3	4	
\$LBO				
=adpfac	panfac	dxmin	dxmax	
1.0	1.0	6.2498E-3	1.2502E-2	
= x	v	z	reldx	
0.21	0 0	-0 15	1 0	
0.64	0.0	-0.15	1.0	
0.04	0.0	-0.15	1.0	
0.4	0.002	-0.15	1.0	
0.64	0.082	-0.15	1.0	
0.21	0.0	0.15	1.0	
0.64	0.0	0.15	1.0	
0.4	0.082	0.15	1.0	
0.64	0.082	0.15	1.0	
=1	2	3	4	
\$LBO				
=adpfac	panfac	dxmin	dxmax	
1.0	-100.0	6.2498E-3	2.5002E-2	
= x	У	z	reldx	
0.21	0.0	-0.15	1.0	
0.64	0.0	-0.15	1.0	
0.4	0.082	-0.15	1.0	
0.64	0.082	-0.15	1.0	
0.21	0.0	0.15	1.0	
0 64	0 0	0 15	1 0	
0.4	0 082	0.15	1 0	
0.4	0.002	0.15	1.0	
0.04	0.002	7	1.0	
5	0	,		he1
1			-	
1bram			L	LDOZ
IDOIWNGS				
			-	1003-10
5	6	7	8	
			1	bo1
lbnam			I	bo2
lboIWnaV			-	
			1	bo3-10
			-	
1				

図 4.14 \$LBO 設定值 (一部)

プティブ格子生成時には反映されない.

=1	2	3	4	
\$TOL				
=adpfac	panfac	dxmin	dxmax	
1.0	-1.0	0.04498	0.05002	
5	6	7	8	
			toll	
epsf	noptgg		tol2	
1.51	1.			

図 4.15 \$TOL 設定値

最後に \$ADA について説明する. \$ADA は、アダプティブ格子生成時に要素分割を制御するパラメータを提供する. このアダプティブ格子生成は、初期格子(\$LBO や \$TOL のパラメータ制御) での解析以降に行われる要素分 割処理のことを指す. TRANAIR ではアダプティブ格子生 成の制御方法に、Box Limit Method (BLM) と Error Limit Method (ELM) の2種類が実装されている. BLM は、ア ダプティブによる要素分割で増加してゆく要素の数に上限 を設けて制御する方法. ELM は、局所的誤差を基準に制 御を行う方法である. 今回は、BLM の方法を選択したの で ELM の詳細な説明は省略する. これにより \$ADA の Card ada4 と ada5 が不要になる(記述しない). それでは まず. Card ada2 のパラメータについて

- ncycle:アダプティブ回数
- nbxsur:物体表面近距離值

ncycle は、アダプティブする回数を指定するパラメータ である.後述の Card ada3, ada6(必要に応じて ada7)を 1つのグループとして、この ncycle で指定した数だけ設 定を行う.nbxsur は、\$LBO と \$TOL の panfac が正,つまり、 表面格子付近の要素を分割する際の領域を定義するための 表面格子からの要素距離である.

次に Card ada3 であるが、下記の nbxtgt 以外のパラメー タは、通常、デフォルトもしくは推奨された値を用いるた め、説明を省略する。

■ nbxtgt:目標要素数

nbxtgt は, BLM 法による制御の上限要素数の基準値と なる. そして, nbxtgt は, 前のアダプティブサイクルの nbxtgt の値を 0.5 ~ 0.7 で割った値にすると, 指定通りの 要素数となるように要素分割が行われ, 設定値の約 95% 前後の要素数になる.

Card ada6 以降は、アダプティブ格子生成における \$LBO で指定した領域の取り扱いに関するパラメータ群となる. Card ada6 のパラメータについて

numlbo:アダプティブする LBO の数
 numlbo は、アダプティブの際に積極的に格子分割を行

いたい LBO の数を設定する. ここで設定した値の数だけ, Card ada7 で LBO の設定を行う. もちろん, numlbo = 0 の 場合は Card ada7 は記述しない. Card ada7 におけるパラメ ータは, これまで出てきたもの (adpfac, panfac, dxmin, dxmax, lbnam) と同じであるため, 説明を省く.

=1	2	3	4	
\$ADAptiv	ve Grid F	Refinement		
=ncycle	nbxsur			
5.	1.0			
=maxgrd	nbxtgt	ratio1	ratio2	
1.	52000.	. 4	. 8	
=numlbo				
0.				
=maxgrd	nbxtgt	ratio1	ratio2	
1.	104000.	. 4	. 8	
=numlbo				
9.				
=adpfac	panfac	dxmin	dxmax	
1.0	1.0	7.8123E-4	6.2502E-3	
1.0	1.0	7.8123E-4	6.2502E-3	
1.0	1.0	7.8123E-4	6.2502E-3	
1.0	1.0	1.5623E-3	3.1252E-3	
1.0	-100.0	1.5623E-3	2.5002E-2	
1.0	1.0	1.5623E-3	3.1252E-3	
1.0	-100.0	1.5623E-3	2.5002E-2	
1.0	1.0	3.1248E-3	1.2502E-2	
1.0	-1.0	3.1248E-3	2.5002E-2	
=maxgrd	nbxtgt	ratio1	ratio2	
1.	173000.	. 4	. 8	
=numlbo				
0.				
=maxgrd	nbxtgt	ratio1	ratio2	
1.	346000.	. 4	. 8	
=numlbo				
6.				
=adpfac	panfac	dxmin	dxmax	
1.0	1.0	1.5623E-3	3.1252E-3	
1.0	-100.0	1.5623E-3	1.2502E-2	
1.0	1.0	1.5623E-3	3.1252E-3	
1.0	-100.0	1.5623E-3	1.2502E-2	
1.0	1.0	1.5623E-3	3.1252E-3	
1.0	-100.0	1.5623E-3	1.2502E-2	
=maxgrd	nbxtgt	ratio1	ratio2	
1.	576000.	. 4	.8.	
=numlbo				
0				
5	6	7	8	
				ada1
				ada2

fracrf	fracdf	ada3
. 2	. 4	
		ada6
fracrf	fracdf	ada3
. 2	. 4	
		ada6
lbnam		ada7
lboNoseS		
lboILES		
lboOLES		
lboIWngS		
lboIWngV		
lboOWngS		
lboOWngV		
lboBdyS		
lboBdyV		
fracrf	fracdf	ada3
. 2	. 4	
		ada6
fracrf	fracdf	ada3
. 2	. 4	
		ada6
lbnam		ada7
lboVTRS		
lboVTRV		
lboVTS		
lboVTV		
lboHTS		
lboHTV		
fracrf	fracdf	ada3
. 2	. 4	
		ada6

図 4.16 \$ADA 設定値

今回の解析では、アダプティブを5回にし、2回目に翼 胴部分のLBO(9個)の要素分割、4回目に尾翼のLBO(6 個)の要素分割の設定を行った.目標要素数は、LBOを 設定している回では、前アダプティブ回の目標要素数に 0.5を割った値にし、それ以外は前目標要素数に約0.6を 割った値にしている.また、アダプティブに関しても前述 の\$LBOと同様に、胴体先端、主翼前縁の格子サイズを他 のLBOよりも最も小さい値に設定している.この最小の 格子サイズ (dxmin)は、\$BOX で設定した初期格子サイ ズ (0.05)の6段階分割したサイズ (7.8125E-4)にすると 計算コストも抑えられ、効率的な解析が行える.そして、 アダプティブ奇数回ではLBOは設定せず (numlbo=0)、 偶数回でLBOを設定する.最も細かい格子サイズにする LBOをアダプティブ回数の序盤に設定すると良い.それ は1回ごとのアダプティブではせいぜい2段階(1/4)小 さい要素分割までしか行わないため,終盤に設定すると目 的の格子サイズに達することなく計算が終わる,もしくは, 衝撃波付近での格子サイズが大きく計算精度が落ちる可能 性が高いためである.

5. 解析結果

5.1. アダプティブ計算格子

各速度域, 亜音速(Mach0.61~0.81), 遷音速 (Mach0.90~1.10), 超音速 (Mach1.21~1.79) での解析計算中でのアダプティ ブ格子変化とそれによる Cp コンターの比較を図 5.1~5.3 に示す. TRANAIR では, 解析対象の表面付近では, \$LBO で設定した最小格子サイズになるように細かくなっていく. また, 遷音速, 超音速域では発生した衝撃波による速度変 化の大きいところに要素が細かく分割され, 計算が行われ ている. そのため, Cp コンターでの衝撃波の色分けがア ダプティブ機能により鮮明になっている.

5.2. 縦3分力による UPACS との比較

今回の検証解析の比較対象として,JAXAが開発した UPACSによる解析結果を用いた.表5.1にUPACSと TRANAIRの解析手法に関する違いを簡単に示す.

表 5.1 UPACS と TRANAIR

	UPACS	TRANAIR
方程式	NS	Full Potential
解析手法	有限体積法	有限要素法
格子	構造	直交
粘性	0	×
圧縮性	0	0

ここでは、揚力係数(CL)、抗力係数(CD)、ピッチン グモーメント係数(CM)、ポーラカーブ、それぞれのグ ラフで UPACS の結果と比較を行った(表 5.2~5.31,図 5.4~5.43). ここで UPACS の抗力係数に関して、UPACS は NS 解析であるため、今回の非粘性解析の TRANAIR と の比較は、圧力抗力(CDp)の値を用いた.

(d) 最終格子 Cp コンター (アダプティブ5回)

図 5.1 亜音速時のアダプティブ格子生成

(c) 初期格子 Cp コンター

(d) 最終格子 Cp コンター(アダプティブ5回)

(a) 初期格子

(b) 最終格子(アダプティブ5回)

(a) 初期格子

(b) 最終格子 (アダプティブ5回)

図 5.2 遷音速時のアダプティブ格子生成

(a) 初期格子

(c) 初期格子 Cp コンター

(d) 最終格子 Cp コンター(アダプティブ5回)

(b) 最終格子(アダプティブ5回)

図 5.3 超音速時のアダプティブ格子生成

QCP 0.1000

-0.100

5.2.1. Mach0.61 解析結果

表 5.2 縦 3 分力比較(Mach=0.61 AoA=-2.0[deg])

Mach=0.61 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-5.311E-02	-5.090E-02
CD (CDp)	9.282E-04	1.354E-03
СМ	1.855E-02	1.751E-02

図 5.4 Cp 比較 (Mach=0.61 AoA=-2.0[deg])

表 5.3 縦 3 分力比較(Mach=0.61 AoA=0.0[deg])

Mach=0.61 AoA=0.0[deg]	UPACS	TRANAIR
CL	3.571E-02	3.744E-02
CD (CDp)	5.423E-04	6.916E-04
СМ	-1.040E-03	-1.387E-03

図 5.5 Cp 比較 (Mach=0.61 AoA=0.0[deg])

表 5.4 縦 3 分力比較(Mach=0.61 AoA=3.0[deg])

Mach=0.61 AoA=3.0[deg]	UPACS	TRANAIR
CL	1.785E-01	1.707E-01
CD (CDp)	7.861E-03	8.187E-03
СМ	-3.392E-02	-2.970E-02

図 5.6 Cp 比較 (Mach=0.61 AoA=3.0[deg])

図 5.7 Mach0.61 縦 3 分力比較(グラフ)

5.2.2. Mach0.81 解析結果

表 5.5 縦 3 分力比較(Mach=0.81 AoA=-2.0[deg])

Mach=0.81 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-5.691E-02	-5.484E-02
CD (CDp)	1.070E-03	1.417E-03
СМ	2.038E-02	1.964E-02

図 5.8 Cp 比較 (Mach=0.81 AoA=-2.0[deg])

表 5.6 縦 3 分力比較(Mach=0.81 AoA=0.0[deg])

Mach=0.81 AoA=0.0[deg]	UPACS	TRANAIR
CL	3.808E-02	4.021E-02
CD (CDp)	6.332E-04	7.383E-04
СМ	-2.032E-03	-2.315E-03

表 5.7 縦 3 分力比較(Mach=0.81 AoA=3.0[deg])

Mach=0.81 AoA=3.0[deg]	UPACS	TRANAIR
CL	1.928E-01	1.847E-01
CD (CDp)	9.364E-03	8.928E-03
СМ	-4.007E-02	-3.532E-02

図 5.10 Cp 比較 (Mach=0.81 AoA=3.0[deg])

図 5.11 Mach0.81 縦 3 分力比較(グラフ)

UPACS

5.2.3. Mach0.90 解析結果

表 5.8 縦 3 分力比較(Mach=0.81 AoA=-2.0[deg])

Mach=0.90 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-6.035E-02	-5.832E-02
CD (CDp)	1.254E-03	1.471E-03
СМ	2.195E-02	2.153E-02

Mach=0.90 AoA=0.0[deg]	UPACS	TRANAIR
CL	3.982E-02	4.273E-02
CD (CDp)	7.332E-04	7.830E-04
СМ	-2.921E-03	-3.296E-03

図 5.12 Cp 比較 (Mach=0.90 AoA=-2.0[deg])

図 5.13 Cp 比較(Mach=0.90 AoA=0.0[deg])

表 5.10 縦 3 分力比較(Mach=0.90 AoA=3.0[deg])

Mach=0.90 AoA=3.0[deg]	UPACS	TRANAIR
CL	2.042E-01	1.976E-01
CD (CDp)	1.033E-02	9.808E-03
СМ	-4.578E-02	-4.087E-02

図 5.14 Cp 比較 (Mach=0.90 AoA=3.0[deg])

図 5.15 Mach0.90 縦3分力比較(グラフ)

5.2.4. Mach0.95 解析結果

表 5.11 縦 3 分力比較(Mach=0.95 AoA=-2.0[deg])

Mach=0.95 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-6.470E-02	-6.253E-02
CD (CDp)	1.358E-03	1.607E-03
СМ	2.382E-02	2.377E-02

Mach=0.95 AoA=0.0[deg]	UPACS	TRANAIR
CL	4.268E-02	4.570E-02
CD (CDp)	1.003E-03	9.076E-04
СМ	-4.990E-03	-4.687E-03

図 5.17 Cp 比較 (Mach=0.95 AoA=0.0[deg])

図 5.16 Cp 比較 (Mach=0.95 AoA=-2.0[deg])

表 5.13 縦 3 分力比較(Mach=0.95 AoA=3.0[deg])

Mach=0.95 AoA=3.0[deg]	UPACS	TRANAIR
CL	2.172E-01	2.225E-01
CD (CDp)	1.193E-02	1.211E-02
СМ	-5.489E-02	-5.462E-02

図 5.18 Cp 比較 (Mach=0.95 AoA=3.0[deg])

図 5.19 Mach0.95 縦 3 分力比較(グラフ)

Cp [PLOT3D]

5.2.5. Mach1.05 解析結果

表 5.14 縦 3 分力比較(Mach=1.05 AoA=-2.0[deg])

Mach=1.05 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-6.483E-02	-6.454E-02
CD (CDp)	6.294E-03	7.259E-03
СМ	2.918E-02	2.880E-02

Mach=1.05 AoA=0.0[deg]	UPACS	TRANAIR
CL	4.529E-02	4.821E-02
CD (CDp)	5.543E-03	6.336E-03
СМ	-7.672E-03	-8.939E-03

図 5.20 Cp 比較 (Mach=1.05 AoA=-2.0[deg])

図 5.21 Cp 比較 (Mach=1.05 AoA=0.0[deg])

表 5.16 縦 3 分力比較(Mach=1.05 AoA=3.0[deg])

Mach=1.05 AoA=3.0[deg]	UPACS	TRANAIR
CL	2.170E-01	2.226E-01
CD (CDp)	1.628E-02	1.758E-02
СМ	-6.415E-02	-6.812E-02

図 5.22 Cp 比較 (Mach=1.05 AoA=3.0[deg])

図 5.23 Mach1.05 縦 3 分力比較(グラフ)

5.2.6. Mach1.10 解析結果

表 5.17 縦 3 分力比較(Mach=1.10 AoA=-2.0[deg])

Mach=1.10 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-6.413E-02	-6.335E-02
CD (CDp)	6.359E-03	7.144E-03
СМ	3.048E-02	2.949E-02

図 5.24 Cp 比較 (Mach=1.10 AoA=-2.0[deg])

表 5.18 縦 3 分力比較(Mach=1.10 AoA=0.0[deg])

Mach=1.10 AoA=0.0[deg]	UPACS	TRANAIR
CL	4.376E-02	4.536E-02
CD (CDp)	5.580E-03	6.171E-03
СМ	-6.355E-03	-7.230E-03

図 5.25 Cp 比較 (Mach=1.10 AoA=0.0[deg])

表 5.19 縦 3 分力比較(Mach=1.10 AoA=3.0[deg])		
Mach=1.10	LIDACS	
AoA=3.0[deg]	UPACS	IKANAIK
CL	2.115E-01	2.126E-01
CD (CDp)	1.599E-02	1.686E-02
СМ	-6.247E-02	-6.358E-02

図 5.26 Cp 比較 (Mach=1.10 AoA=3.0[deg])

図 5.27 Mach1.10 縦 3 分力比較(グラフ)

Cp [PLOT3D]

0.1

-0.1

5.2.7. Mach1.21 解析結果

Mach = 1.21AoA = -2.0 [deg]

UPACS

TRANAIR

表 5.20 縦 3 分力比較(Mach=1.21 AoA=-2.0[deg])

Mach=1.21 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-6.026E-02	-5.871E-02
CD (CDp)	5.971E-03	6.521E-03
СМ	2.989E-02	2.810E-02

Mach=1.21 AoA=0.0[deg]	UPACS	TRANAIR
CL	4.173E-02	4.316E-02
CD (CDp)	5.288E-03	5.666E-03
СМ	-5.034E-03	-5.851E-03

図 5.28 Cp 比較 (Mach=1.21 AoA=0.0[deg])

図 5.29 Cp 比較 (Mach=1.21 AoA=0.0[deg])

表 5.22 縦 3 分力比較(Mach=1.21 AoA=3.0[deg])

Mach=1.21 AoA=3.0[deg]	UPACS	TRANAIR
CL	2.008E-01	2.013E-01
CD (CDp)	1.514E-02	1.592E-02
СМ	-5.948E-02	-5.949E-02

図 5.30 Cp 比較 (Mach=1.21 AoA=3.0[deg])

図 5.31 Mach1.21 縦 3 分力比較(グラフ)

5.2.8. Mach1.44 解析結果

表 5.23 縦 3 分力比較(Mach=1.44 AoA=-2.0[deg])

Mach=1.44 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-5.291E-02	-5.118E-02
CD (CDp)	5.384E-03	5.847E-03
СМ	2.689E-02	2.498E-02

図 5.32 Cp 比較 (Mach=1.44 AoA=-2.0[deg])

表 5.24 縦 3 分力比較(Mach=1.44 AoA=0.0[deg])

Mach=1.44 AoA=0.0[deg]	UPACS	TRANAIR
CL	4.046E-02	4.146E-02
CD (CDp)	4.776E-03	5.071E-03
СМ	-5.737E-03	-6.568E-03

表 5.25 縦 3 分力比較(Mach=1.44 AoA=3.0[deg])

Mach=1.44 AoA=3.0[deg]	UPACS	TRANAIR
CL	1.856E-01	1.857E-01
CD (CDp)	1.392E-02	1.486E-02
СМ	-5.667E-02	-5.664E-02

図 5.34 Cp 比較 (Mach=1.44 AoA=3.0[deg])

図 5.35 Mach1.44 縦 3 分力比較(グラフ)

5.2.9. Mach1.59 解析結果

表 5.26 縦 3 分力比較(Mach=1.59 AoA=-2.0[deg])

Mach=1.59 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-4.875E-02	-4.709E-02
CD (CDp)	5.076E-03	5.481E-03
СМ	2.454E-02	2.271E-02

表 5.27 縦 3 分力比較(Mach=1.59 AoA=0.0[deg])

Mach=1.59 AoA=0.0[deg]	UPACS	TRANAIR
CL	3.968E-02	4.046E-02
CD (CDp)	4.519E-03	4.759E-03
СМ	-6.591E-03	-7.384E-03

図 5.36 Cp 比較 (Mach=1.59 AoA=-2.0[deg])

図 5.37 Cp 比較 (Mach=1.59 AoA=0.0[deg])

表 5.28 縦 3 分力比較(Mach=1.59 AoA=3.0[deg])

Mach=1.59 AoA=3.0[deg]	UPACS	TRANAIR
CL	1.764E-01	1.760E-01
CD (CDp)	1.352E-02	1.425E-02
СМ	-5.498E-02	-5.476E-02

図 5.39 Mach1.59 縦 3 分力比較(グラフ)

Cp [PLOT3D]

5.2.10. Mach1.79 解析結果

表 5.29 縦 3 分力比較(Mach=1.79 AoA=-2.0[deg])

Mach=1.79 AoA=-2.0[deg]	UPACS	TRANAIR
CL	-4.432E-02	-4.279E-02
CD (CDp)	4.797E-03	5.197E-03
СМ	2.162E-02	2.004E-02

Mach=1.79 AoA=0.0[deg]	UPACS	TRANAIR
CL	3.840E-02	3.903E-02
CD (CDp)	4.303E-03	4.550E-03
СМ	-7.870E-03	-8.441E-03

図 5.40 Cp 比較 (Mach=1.79 AoA=-2.0[deg])

表 5.31 縦 3 分力比較(Mach=1.79 AoA=3.0[deg])		
Mach=1.79 AoA=3.0[deg]	UPACS	TRANAIR
CL	1.633E-01	1.627E-01
CD (CDp)	1.301E-02	1.358E-02
СМ	-5.176E-02	-5.129E-02

図 5.42 Cp 比較 (Mach=1.79 AoA=3.0[deg])

図 5.43 Macg1.79 縦 3 分力比較(グラフ)

5.3. 計算時間

今回の検証解析に用いた端末の性能を表 5.32,各速度域 での1ケースあたりの平均計算時間を表 5.33 に示す.

表	5.32	計算端末性能

OS	RHEL V5
СРИ	Intel Xeon X5680
Memory	12[GB] DDR3 RDIMM
FLOPS (理論値)	79.992[GFLOPS]

表 5.33 TRANAIR 計算時間

	平均計算時間 [sec]
亜音速	205
遷音速	417
超音速	333

6. まとめ

フルポテンシャル解析ツール TRANAIR の解析精度と解 析効率の確認を目的として,小型超音速実験機 NEXST-1 形状に適用し,亜音速/遷音速/超音速において CFD 解 析結果との比較を行った.結果として TRANAIR の結果は, UPACS による CFD 解析結果と全体的に良く一致した.特 に超音速域での結果は良好であった.また,1ケース当た りの計算時間も10分以内であった.そのため,様々な形 状を検討する超音速機の概念設計フェーズにおいて,精度, 計算時間ともに有用な解析ツールであることが確認された.

ただし今回の結果において,遷音速以下の結果は,超音 速での結果に比べ誤差(TRANAIR と UPACS との差)が 比較的大きく,超音速の結果においてもポーラカーブでは, TRANAIR が UPACS よりも CD 増の方向に平行移動する 傾向が見られた.これらの原因としては、フルポテンシャ ル解析における衝撃波の取り扱いの違い(等エントロピー 衝撃波)や粘性による排除厚効果の影響等が考えられる⁵⁾. 前述の通り,TRANAIR には、粘性効果を考慮するための 境界層方程式カップリング機能が実装されており、この機 能を用いれば粘性効果による差異は小さくなると考えられ る.また、本検証解析では検討されていないエンジンナセ ルを有する形状に対する解析精度については、フロースル ーナセル解析や、TRANAIR が有する流入/流出条件の適 用など、超音速機設計に必要な解析精度について今後検証 することが求められる.

7. 謝辞

本稿執筆にあたり、NEXST-1の研究開発時に UPACS 解 析を担当された三向ソフト 石川敬掲氏には、非粘性解析 と粘性解析の空力効果の違いについてご教授頂くとともに、 TRANAIR との比較用に UPACS 解析の結果の編集をして 頂いた、この場をかりて感謝したい.

参考文献

- F.T.Johnson, et al., "TranAir: A full-potential, solutionadaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. User' s manual", NASA-CR-4349, 1992.
- 堀之内茂,他,「小型超音速実験機(ロケット実験機: NEXST-1)の基本設計結果について」JAXA-RR-05-044,2006.
- 大貫武,他,「小型超音速実験機(ロケット実験機; NEXST-1)第2回飛行実験」JAXA-RR-06-049,2007.
- 4) 郭東潤,他,「超音速機空力設計データベース (NEXST-DB)の構築」JAXA-RM-11-009,2011. http://nexstdb.chofu.jaxa.jp/SPRESSO/index.jsp
- 5) I.Ishikawa, Y.Makino, K.Ohira "Sonic-Boom Prediction of a Scaled Low-Boom Demonstration Aircraft Considering Viscosity Effects" AIAA2011

Appendix A 空力解析の忠実度

A.1 Navier-Stokes 方程式

流体力学において基本となる支配方程式は圧縮性 Navier-Stokes(NS) 方程式であり、下記の様に記述される.

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$

$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^{2} + p)}{\partial x} + \frac{\partial (\rho uv)}{\partial y} + \frac{\partial (\rho uw)}{\partial z} = \frac{1}{Re} \left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \right)$$

$$\frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho vu)}{\partial x} + \frac{\partial (\rho v^{2} + p)}{\partial y} + \frac{\partial (\rho w^{2} + p)}{\partial z} = \frac{1}{Re} \left(\frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right)$$

$$\frac{\partial (\rho w)}{\partial t} + \frac{\partial (\rho wu)}{\partial x} + \frac{\partial (\rho wv)}{\partial y} + \frac{\partial (\rho w^{2} + p)}{\partial z} = \frac{1}{Re} \left(\frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right)$$

$$\frac{\partial e}{\partial t} + \frac{\partial \{(e + p)u\}}{\partial x} + \frac{\partial \{(e + p)v\}}{\partial y} + \frac{\partial \{(e + p)w\}}{\partial z} = \frac{1}{Re} \left(\frac{\partial R}{\partial x} + \frac{\partial S}{\partial y} + \frac{\partial T}{\partial z} \right)$$

$$R = \left(\tau_{xx}u + \tau_{yx}v + \tau_{zx}w \right) + \frac{\gamma \mu}{Pr} \frac{\partial \epsilon}{\partial x}$$

$$S = \left(\tau_{xy}u + \tau_{yy}v + \tau_{zy}w \right) + \frac{\gamma \mu}{Pr} \frac{\partial \epsilon}{\partial y}$$

NS 方程式の右辺は粘性項と呼ばれ、摩擦と熱伝導の効果が考慮されている.この粘性項により NS 方程式は、物体表面 の境界層や剥離、衝撃波厚みを扱うことができ、原理的には乱流をも表現することができる.(実際には乱流を解くには非 常に細かい計算格子が必要となるため、工学上は NS 方程式を時間平均したレイノルズ平均 NS 方程式を導いた上でレイノ ルズ応力項に渦粘性モデルを導入した数値解法に頼らざるを得ない.)

A.2 Euler 方程式

NS 方程式の粘性項を除いたものが圧縮性 Euler 方程式であり、下記の様に記述される.

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$
$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} + \frac{\partial (\rho uv)}{\partial y} + \frac{\partial (\rho uw)}{\partial z} = 0$$
$$\frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho vu)}{\partial x} + \frac{\partial (\rho v^2 + p)}{\partial y} + \frac{\partial (\rho vw)}{\partial z} = 0$$
$$\frac{\partial (\rho w)}{\partial t} + \frac{\partial (\rho wu)}{\partial x} + \frac{\partial (\rho wv)}{\partial y} + \frac{\partial (\rho w^2 + p)}{\partial z} = 0$$
$$\frac{\partial e}{\partial t} + \frac{\partial \{(e + p)u\}}{\partial x} + \frac{\partial \{(e + p)v\}}{\partial y} + \frac{\partial \{(e + p)w\}}{\partial z} = 0$$

粘性項が無いため Euler 方程式においては,境界層が考慮できず物体表面は滑り壁の条件で解くことになる.また当然剥離も解析できず常に物体に沿う流れ場となる.衝撃波には物理的な厚みが無く,不連続面として数値的に扱われることになる.

A.3 フルポテンシャル方程式

Euler 方程式に速度ポテンシャルを導入(すなわち渦無し流れを仮定)し、エネルギー式の代わりに等エントロピー関係 式を用いる(一様等エントロピーを仮定する)ことでフルポテンシャル方程式が得られる. 定常流を仮定し、 $(x,y,z) = (x_1,x_2,x_3)$ 及び $(u,v,w) = (u_1,u_2,u_3)$ の表記を用いると、上記 Euler 方程式の連続の式と、3つの運動量の 式の和は、それぞれ下記の様に記述される.

$$\frac{\partial(\rho u_i)}{\partial x_i} = \rho \frac{\partial u_i}{\partial x_i} + u_i \frac{\partial \rho}{\partial x_i} = 0$$
$$\frac{\partial(\rho u_i u_j)}{\partial x_j} = \rho u_j \frac{\partial u_i}{\partial x_j} + u_i \frac{\partial(\rho u_j)}{\partial x_j} = \rho u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i}$$

運動量式の変形には連続の式を用いている.運動量式の両辺に u_i を掛けて一様等エントロピー条件から音速 $a^2 = \left(\frac{\partial p}{\partial \rho}\right)_s$ を導入すると、

$$u_{i}u_{j}\frac{\partial u_{i}}{\partial x_{i}} = -\frac{u_{i}}{\rho}\frac{\partial p}{\partial x_{i}} = -\frac{a^{2}}{\rho}u_{i}\frac{\partial \rho}{\partial x_{i}} = \frac{a^{2}}{\rho}\rho\frac{\partial u_{i}}{\partial x_{i}} = a^{2}\frac{\partial u_{i}}{\partial x_{i}}$$

となり、更に速度ポテンシャルを導入すると、

$$\frac{\partial \Phi}{\partial x_i} \frac{\partial \Phi}{\partial x_j} \frac{\partial^2 \Phi}{\partial x_i \partial x_j} = a^2 \frac{\partial^2 \Phi}{\partial x_i \partial x_i}$$

となる.これが定常フルポテンシャル方程式である.フルポテンシャル方程式は一様等エントロピーを仮定しているため, 衝撃波は等エントロピー衝撃波として取り扱われる.(衝撃波によるエントロピー変化は圧力変化の3次のオーダーと小さいため,衝撃波が著しく強い場合を除き,エントロピー変化を無視した等エントロピー衝撃波を仮定したフルポテンシャル 方程式による解析を行うことは十分な妥当性をもつとされる.)

A.4 線形ポテンシャル方程式

フルポテンシャル方程式を微小擾乱法により展開し,非線形項を落とすことにより下記の線形ポテンシャル方程式が得られる.

$$(1 - M^2)\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

線形ポテンシャル方程式は、パネル法に代表される解析手法を用いて解かれるが、線形方程式であるため衝撃波を解析す ることはできず、衝撃波はマッハ波として取り扱われる.

Appendix B 入力ファイル

本検証解析に使用したジョブスクリプトファイル (nexst-1.job),使用入出力選択ファイル (nexst-1.files),解析条件設定 ファイル (nexst-1.i.inp)を下記に示す.また,表面格子データファイル (nexst-1.poi)はデータが多いため記載しなかった.

```
#!/bin/sh
CASE= "nexst-1"
CASEPATH=`pwd`
ALTPATH= "${CASEPATH}"
MODPATH= "${CASEPATH}"
export CASEPATH MODPATH ALTPATH
# run Tranair
```

```
Tranair $CASE 3D -v prod
```

exit 0

```
スクリプトファイル nexst-1.job
```

```
# This is the TRANAIR.files named : 'nexst-1.files'
# Run type: Solution - Analysis mode
# -----
# INPUT FILES
# -----
i.inp $CASEPATH # input for the input processor (fdinp)
poi $CASEPATH # input geometry (no )
#
#mods $CASEPATH # list of program update modification files
#
#s.inp $CASEPATH # input for solver
#o.inp $CASEPATH # input for output processor
#n.inp $CASEPATH # input for TNOGRAF
#c.inp $CASEPATH # input for binary converter
#des $CASEPATH # Pointwise design inputs
#
#tp4r $ALTPATH
#tp7r $ALTPATH # restart solver file
#tp8r $ALTPATH # restart output file
#tp9r $ALTPATH # restart unsteady output file
#
# OUTPUT FILES
# -----
#msp $CASEPATH # geometry after abutment processing
#io $ALTPATH # output file from input processor
so $ALTPATH # output file from solver
```

```
#oo $ALTPATH # output file from output processor
#co $ALTPATH # output file from binary converter
bn $ALTPATH # tgraf binary file (IRIS)
#dvdl $ALTPATH # Design sensitivity file
#
ggp $ALTPATH # surface properties
dg.ggp $ALTPATH # design geometry file
dg.msp $ALTPATH # design geometry file-R23 format for AGPS
bl.ggp $ALTPATH # boundary layer file
pd.ggp $ALTPATH # profile drag ggp file
fl.qqp $ALTPATH # sectional forces and moments
sp.ggp $ALTPATH # section properties
st.ggp $ALTPATH # structures aeroelastics file
fm.ggp $ALTPATH # forces and moments
fn.ggp $ALTPATH # forces and moments-network summary
tp.ggp $ALTPATH # trefftz plane ggp file
u.ggp $ALTPATH # unsteady processor ggp file
usp.ggp $ALTPATH # unsteady sectional pressures
ufl.ggp $ALTPATH # unsteady sectional forces
ufm.ggp $ALTPATH # unsteady forces and moments
ufn.ggp $ALTPATH # unsteady forces and moments-network summary
genfor $ALTPATH # generalized forces
#fc.ggp $ALTPATH # forces and moments-network column summary
wtw $ALTPATH # wind tunnel wall influence
lft $ALTPATH # re-lofted plume
#
tp4 $ALTPATH # graphical output file to create `bn' files
tp7 $ALTPATH # binary transition file from input processor to solver
tp8 $ALTPATH # binary transition file from solver to output processor
#tp9 $ALTPATH # binary transition file from solver to unsteady output
#oct $ALTPATH # oct tree
#
p3dg $ALTPATH # PLOT3D geometry'file (CRAY)
#g $ALTPATH # PLOT3D geometry'file (IRIS)
p3dq $ALTPATH # PLOT3D properties'file (CRAY)
     $ALTPATH # PLOT3D properties'file (IRIS)
#q
#
# LISTING AND ERROR FILES
# ------
#ie $CASEPATH # standard error file from 'fdinp'
#se $CASEPATH # standard error file from 'fdsol'
#ce $CASEPATH # standard error file from 'fdcic'
#oe $ALTPATH # standard error file from 'fdout'
#1st $ALTPATH # listing of compiled code for this TRANAIR case
#
# EXAMPLES OF ADDITIONAL files.file COMMANDS
# ------
```

40

#literalin user@machine:pathname/filename localname # get file
#localname is optional
#literalout localname user@machine:pathname/filename # save file
#filename is optional
#literalin \$ALTPATH/../\${CASE}.mach.inp
#literalin \$ALTPATH/\${CASE}.alp.inp

使用入出力選択ファイル nexst-1.files

\$TITle	tit1
=Title	tit2
DEFAULT TITLE	
=user	tit3
DEFAULT NAME	
=5678	3
\$DATacheck	dat1
=ndtchk igeom ipcut ngstop nbstop	dat2
0. 1. 0. 0. 0.	
=5678	3
\$BOX	box1
= xi xf nx	box2
-0.5 1.5 41.	
= yi yf ny	box3
0.0 1.0 21.	
= zi zf nz	box4
-0.5 0.5 21.	
=	3
\$FILe-Insert a file (May be placed where required)	fill
=fnam	fil3
\${CASE}.poi	
=	3
\$SYMmetry	sym1
= xzsym xysym	sym2
1. 0.	
=	3
\$ANGle of Attack (in degrees)	angl
= alpha	ang2
3.0	
=	3
\$MACh Number	mac1
= amach linr amfgas fsvmi fviscm fvisco rholim	mac2
1.79 0. 0. 1.0 1. 10.009	
=	3
\$ITErations	ite1
= niter tol ncdamp dropt nsrch njac	ite2
1500. 8. 3. 5.0E-4 60. 5.	

=567	8
\$TOLerance for Global Grid Refinement tol	1
=adpfac panfac dxmin dxmax epsf noptgg tol	2
1.0 -1.0 0.04498 0.05002 1.51 1.	
=567	8
\$LBO Grid Refinement for Special Region	lbo1
=adpfacpanfac dxmin dxmax lbnam	lbo2
1.0 1.0 3.1248E-3 6.2502E-3 lboNoseS	
= x y z reldx	1bo3-10
-0.02 0.0 -0.02 1.0	
0.025 0.0 -0.02 1.0	
-0.02 0.015 -0.02 1.0	
0.025 0.015 -0.02 1.0	
-0.02 0.0 0.02 1.0	
0.025 0.0 0.02 1.0	
-0.02 0.015 0.02 1.0	
0.025 0.015 0.02 1.0	
=567	8
\$LBO Grid Refinement for Special Region	lbo1
=adpfacpanfac dxmin dxmax lbnam	lbo2
1.0 1.0 3.1248E-3 6.2502E-3 lboILES	
= x y z reldx	lbo3-10
0.22 0.0 -0.02 1.0	
0.25 0.0 -0.02 1.0	
0.41 0.082 -0.01 1.0	
0.44 0.082 -0.01 1.0	
0.22 0.0 0.005 1.0	
0.25 0.0 0.005 1.0	
0.41 0.082 0.0 1.0	
0.44 0.082 0.0 1.0	
=	8
\$LBO Grid Refinement for Special Region	lbo1
=adpfac panfac dxmin dxmax lbnam	lbo2
1.0 1.0 3.1248E-3 6.2502E-3 lboOLES	
= x y z reldx	1bo3-10
0.41 0.082 -0.01 1.0	
0.44 0.082 -0.01 1.0	
0.66 0.21 -0.01 1.0	
0.69 0.21 -0.01 1.0	
0.41 0.082 0.0 1.0	
0.44 0.082 0.0 1.0	
0.66 0.21 0.0 1.0	
0.69 0.21 0.0 1.0	
=	8
\$LBO Grid Refinement for Special Region	lbo1
=adpfac panfac dxmin dxmax lbnam	lbo2
1.0 1.0 6.2498E-3 1.2502E-2 lbolWngS	

= x	У	Z	reldx		1bo3-10
0.21	0.0	-0.15	1.0		
0.64	0.0	-0.15	1.0		
0.4	0.082	-0.15	1.0		
0.64	0.082	-0.15	1.0		
0.21	0.0	0.15	1.0		
0.64	0.0	0.15	1.0		
0.4	0.082	0.15	1.0		
0.64	0.082	0.15	1.0		
=1	2	3	4-	567	8
\$LBO Gr	id Refin	ement f	or Spe	cial Region	lbo1
=adpfac	panfac	dxmin	dxmax	lbnam	lbo2
1.0	-100.0	6.2498E-3	2.5002E-2	lboIWngV	
= x	У	Z	reldx		1bo3-10
0.21	0.0	-0.15	1.0		
0.64	0.0	-0.15	1.0		
0.4	0.082	-0.15	1.0		
0.64	0.082	-0.15	1.0		
0.21	0.0	0.15	1.0		
0.64	0.0	0.15	1.0		
0.4	0.082	0.15	1.0		
0.64	0.082	0.15	1.0		•
=1	2·	3	4-		8
STRO GL	ia kenn	ement I	or spe	cial Region	1001
	n onfo <i>c</i>	dumin	dumou	lbnom	1bo2
=adpfac	panfac	dxmin	dxmax	lbnam	lbo2
=adpfac 1.0	panfac 1.0	dxmin 6.2498E-3	dxmax 1.2502E-2	lbnam lbo0WngS	1bo2
=adpfac 1.0 = x	panfac 1.0 Y 0.082	dxmin 6.2498E-3 z	dxmax 1.2502E-2 reldx 1 0	lbnam lbo0WngS	lbo2 1bo3-10
=adpfac 1.0 = x 0.4	panfac 1.0 y 0.082 0.082	dxmin 6.2498E-3 z -0.15 -0.15	dxmax 1.2502E-2 reldx 1.0 1.0	lbnam lbo0WngS	1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64	panfac 1.0 y 0.082 0.082 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15	dxmax 1.2502E-2 reldx 1.0 1.0	lbnam lbo0WngS	1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715	panfac 1.0 y 0.082 0.082 0.21 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 -0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0	lbnam lbo0WngS	1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4	panfac 1.0 Y 0.082 0.082 0.21 0.21 0.082	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 -0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0	lbnam lbo0WngS	1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64	<pre>panfac 1.0</pre>	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 -0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lbo0WngS	1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65	panfac 1.0 Y 0.082 0.082 0.21 0.21 0.082 0.082 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lbo0WngS	1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65 0.715	<pre>panfac 1.0</pre>	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lbo0WngS	1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65 0.715 =1	panfac 1.0 Y 0.082 0.21 0.21 0.082 0.082 0.21 0.21 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1bnam 1bo0WngS	1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65 0.715 =1 \$LBO Gr	panfac 1.0 y 0.082 0.21 0.21 0.082 0.082 0.21 0.21 0.21 0.21 0.21 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5or Spec	lbnam lbo0WngS 567 cial Region	1bo2 1bo3-10 8 1bo1
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65 0.715 =1 \$LBO Gr =adpfac	panfac 1.0 y 0.082 0.21 0.21 0.082 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam	1bo2 1bo3-10 8 1bo1 1bo2
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.65 0.715 =1 \$LBO Gr =adpfac 1.0	panfac 1.0 Y 0.082 0.21 0.21 0.082 0.082 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam lboOWngV	1bo2 1bo3-10 8 1bo1 1bo2
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.65 0.715 =1 \$LBO Gr =adpfac 1.0 = x	panfac 1.0 y 0.082 0.21 0.21 0.082 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.082 0.21 0.	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam lboOWngV	1bo2 1bo3-10 8 1bo1 1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65 0.715 =1 \$LBO Gr =adpfac 1.0 = x 0.4	panfac 1.0 Y 0.082 0.21 0.21 0.082 0.082 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.21 0.22	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam lboOWngV	1bo2 1bo3-10 8 1bo1 1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65 0.715 =1 \$LBO Gr =adpfac 1.0 = x 0.4 0.65	panfac 1.0 y 0.082 0.21 0.21 0.082 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.21 0.21 0.22 0.21 0.22 0.22 0.21 0.22	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 cement f dxmin 6.2498E-3 z -0.15 -0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam lboOWngV	<pre>1bo2 1bo3-10 8 1bo1 1bo2 1bo3-10</pre>
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65 0.715 =1 \$LBO Gr =adpfac 1.0 = x 0.4 0.64 0.64 0.65	panfac 1.0 Y 0.082 0.21 0.21 0.082 0.22 0.21 0.21 id Refin panfac -100.0 Y 0.082 0.082 0.082 0.082 0.082 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5002E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam lboOWngV	1bo2 1bo3-10 8 1bo1 1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.65 0.715 =1 \$LBO Gr =adpfac 1.0 = x 0.4 0.65 0.715 1	panfac 1.0 y 0.082 0.21 0.21 0.22 0.082 0.21 0.21 0.21 id Refin panfac -100.0 y 0.082 0.082 0.21 0.21 0.21	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 0.15 c.15 c.2498E-3 z -0.15 -0.15 -0.15 -0.15 -0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam lboOWngV	1bo2 1bo3-10 8 1bo1 1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.64 0.65 0.715 =1 \$LBO Gr =adpfac 1.0 = x 0.4 0.64 0.65 0.715 	panfac 1.0 Y 0.082 0.21 0.21 0.22 0.21 0.21 0.21 0.21 id Refin panfac -100.0 Y 0.082 0.082 0.082 0.21 0.22	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 0.15 cement f dxmin 6.2498E-3 z -0.15 -0.15 -0.15 -0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5002E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam lboOWngV	1bo2 1bo3-10 8 1bo1 1bo2 1bo3-10
=adpfac 1.0 = x 0.4 0.64 0.65 0.715 0.4 0.65 0.715 =1 \$LBO Gr =adpfac 1.0 = x 0.4 0.65 0.715 0.715 0.4 0.65 0.715 0.4 0.64 0.65	panfac 1.0 y 0.082 0.21 0.21 0.22 0.082 0.21 0.22 0.082 0.082 0.082 0.082 0.21 0.082 0.22 0.082 0.22 0.082 0.22 0.082 0.22 0.22 0.082 0.221 0.082 0.21 0.22 0.082 0.21 0.22 0.082 0.082 0.082	dxmin 6.2498E-3 z -0.15 -0.15 -0.15 0.15 0.15 0.15 0.15 0.15 c.15 c.2498E-3 z -0.15 -0.15 -0.15 -0.15 -0.15 0.15 0.15	dxmax 1.2502E-2 reldx 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lbnam lboOWngS 567 cial Region lbnam lboOWngV	<pre>8 8 1bo1 1bo2 1bo3-10</pre>

0.715 0.21 0.15 1.0		
=		
\$LBO Grid Refinement for Spe	cial Region	lbo1
=adpfac panfac dxmin dxmax	lbnam	lbo2
1.0 1.0 6.2498E-3 1.2502E-2	lboVTRS	
= x y z reldx		1bo3-10
0.60 0.0 0.01 1.0		
0.825 0.0 0.01 1.0		
0.60 0.035 0.01 1.0		
0.825 0.035 0.01 1.0		
0.665 0.00.0326 1.0		
0.82 0.0 0.0326 1.0		
0.665 0.035 0.0326 1.0		
0.82 0.035 0.0326 1.0		
=34-	5678	
\$LBO Grid Refinement for Spe	cial Region	lbo1
=adpfac panfac dxmin dxmax	lbnam	lbo2
1.0-100.0 6.2498E-3 2.5002E-2	lboVTRV	
= x y z reldx		1bo3-10
0.60 0.0 0.01 1.0		
0.825 0.0 0.01 1.0		
0.60 0.035 0.01 1.0		
0.825 0.035 0.01 1.0		
0.665 0.0 0.0326 1.0		
0.82 0.0 0.0326 1.0		
0.665 0.035 0.0326 1.0		
0.82 0.035 0.0326 1.0		
=34-	5678	
\$LBO Grid Refinement for Spe	cial Region	lbo1
=adpfac panfac dxmin dxmax	lbnam	lbo2
1.0 1.0 6.2498E-3 1.2502E-2	lboVTS	
= x y z reldx		1bo3-10
0.665 0.0 0.0326 1.0		
0.82 0.0 0.0326 1.0		
0.665 0.035 0.0326 1.0		
0.82 0.035 0.0326 1.0		
0.72 0.0 0.087 1.0		
0.807 0.0 0.087 1.0		
0.72 0.035 0.087 1.0		
0.807 0.035 0.087 1.0	.	
=	78	
SLBO Grid Refinement for Spe	cial Region	1bol
=acprac panrac dxmin dxmax		TDOT
	TROATA	1602 10
		10-2001
0.02 0.00000000 1.0		

0.665	0.035	0.0326	1.0		
0.82	0.035	0.0326	1.0		
0.72	0.0	0.087	1.0		
0.807	0.0	0.087	1.0		
0.72	0.035	0.087	1.0		
0.807	0.035	0.087	1.0		
=1	2-	3-	4		8
\$LBO Gri	.d Refin	ement f	for Spec	cial Region	lbo1
=adpfac	panfac	dxmin	dxmax	lbnam	lbo2
1.0	1.0	6.2498E-3	1.2502E-2	lboHTS	
= x	У	z	reldx		1bo3-10
0.64	0.0	-0.045	1.0		
0.825	0.0	-0.045	1.0		
0.75	0.069	-0.045	1.0		
0.839	0.069	-0.045	1.0		
0.64	0.0	0.04	1.0		
0.825	0.0	0.04	1.0		
0.75	0.069	0.04	1.0		
0.839	0.069	0.04	1.0		
=1	2-	3-	4	567	8
\$LBO Gri	.d Refin	ement f	for Spec	cial Region	lbo1
=adpfac	panfac	dxmin	dxmax	lbnam	1bo2
1.0	-100.0	6.2498E-3	2.5002E-2	lboHTV	
= x	У	z	reldx		1bo3-10
0.64	0.0	-0.045	1.0		
0.825	0.0	-0.045	1.0		
0.75	0.069	-0.045	1.0		
0.839	0.069	-0.045	1.0		
0.64	0.0	0.04	1.0		
0.825	0.0	0.04	1.0		
0.75	0.069	0.04	1.0		
0.839	0.069	0.04	1.0		
=1	2-	3-	4		8
ŞLBO Gri	.d Refin	ement f	or Spec	cial Region	lbol
=adpfac	panfac	dxmin	dxmax	lbnam	1602
1.0	1.0	1.2498E-2	1.2502E-2	LDoBdyS	
= x	У	z	reldx		1603-10
-0.035	0.0	-0.15	1.0		
1.02	0.0	-0.15	1.0		
-0.035	0.05	-0.15	1.0		
1.02	0.05	-0.15	1.0		
-0.035	0.0	0.15	1.0		
1.02	0.0	0.15	1.0		
-0.035	0.05	0.15	1.0		
1.02	0.05	0.15	1.0		
=1	2-	3-	4		8
əLBO Gri	.a Refin	ement f	or Spec	cial Region	TOOT

=adpfac	panfac	dxmin	dxmax	lbnam			1bo2
1.0	-1.0	1.2498E-2	2.5002E-2	lboBdyV			
= x	У	z	reldx				1bo3-10
-0.035	0.0	-0.15	1.0				
1.02	0.0	-0.15	1.0				
-0.035	0.05	-0.15	1.0				
1.02	0.05	-0.15	1.0				
-0.035	0.0	0.15	1.0				
1.02	0.0	0.15	1.0				
-0.035	0.05	0.15	1.0				
1.02	0.05	0.15	1.0				
=1-	2-	3-	4-	5-	6	8	
\$ADAptiv	ve Grid	Refinen	nent				ada1
=ncycle	nbxsur						ada2
5.	1.0						
=maxgrd	nbxtgt	ratio1	ratio2	fracrf	fracdf		ada3
1.	52000.	. 4	. 8	. 2	. 4		
=numlbo							ada6
0.							
=maxgrd	nbxtgt	ratio1	ratio2	fracrf	fracdf		ada3
1.	104000.	. 4	. 8	.2	. 4		
=numlbo							ada6
9.							
=adpfac	panfac	dxmin	dxmax	lbnam			ada7
1.0	1.0	7.8123E-4	6.2502E-3	lboNoseS			
1.0	1.0	7.8123E-4	6.2502E-3	lboILES			
1.0	1.0	7.8123E-4	6.2502E-3	lboOLES			
1.0	1.0	1.5623E-3	3.1252E-3	lboIWngS			
1.0	-100.0	1.5623E-3	2.5002E-2	lboIWngV			
1.0	1.0	1.5623E-3	3.1252E-3	lboOWngS			
1.0	-100.0	1.5623E-3	2.5002E-2	lboOWngV			
1.0	1.0	3.1248E-3	1.2502E-2	lboBdyS			
1.0	-1.0	3.1248E-3	2.5002E-2	lboBdyV			
=maxgrd	nbxtgt	ratio1	ratio2	fracrf	fracdf		ada3
1.1	L73000.	. 4	. 8	.2	. 4		
=numlbo							ada6
0.							
= maxgrd	nbxtgt	ratio1	ratio2	fracrf	fracdf		ada3
1.	346000.	. 4	. 8	.2	. 4		
=numlbo							ada6
6.							
=adpfac	panfac	dxmin	dxmax	lbnam			ada7
1.0	1.0	1.5623E-3	3.1252E-3	lboVTRS			
1.0	-100.0	1.5623E-3	1.2502E-2	lboVTRV			
1.0	1.0	1.5623E-3	3.1252E-3	lboVTS			
1.0	-100.0	1.5623E-3	1.2502E-2	lboVTV			
1.0	1.0	1.5623E-3	3.1252E-3	lboHTS			

1.0	-100.0	1.5623E-3	1.2502E-2	lboHTV			
=maxgrd	nbxtgt	ratio1	ratio2	fracrf	fracdf		ada3
1.	576000.	. 4	. 8	.2	. 4		
=numlbo							ada6
0.							
=1-	2-	3-	4-	5-	6-	7	8
\$PRInto	it Cont	rol					pri1
=iprpan							pri2
3.							
=iprmus		iprcrn					pri3
0.		1.					
=1-	2-	3-	4-	5-	6-	7	8
\$REFere	nce Len	gths ar	d Area	s			refl
= xref	yref	zref					ref2
4.5609E-1	0.0	0.0					
= sref	bref	cref	dref				ref3
7.6502E-2	4.1009E-1	2.3948E-1	4.1009E-1				
7.6502E-2 =1-	4.1009E-1	2.3948E-1 3-	4.1009E-1 4 -	5-	6-	7	8
7.6502E-2 =1- \$SURface	4.1009E-1 2- e prope	2.3948E-1 3- rties f	4.1009E-1 4- ile-\$CA:	5- SE . ggp	6-	7	8 sur1
7.6502E-2 =1- \$SURface = ipggp	4.1009E-1 2- e prope lvlout	2.3948E-1 3- rties f	4.1009E-1 4- ile-\$CA:	5- SE . ggp	6-	7	8 sur1 sur2
7.6502E-2 =1- \$SURface = ipggp 4.	4.1009E-1 2- e prope lvlout 0.	2.3948E-1 3- rties f	4.1009E-1 4- ile-\$CA:	5- SE . ggp	6-	7	8 sur1 sur2
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl	4.1009E-1 2- e prope lvlout 0.	2.3948E-1 3- rties f	4.1009E-1 4- ile-\$CA:	5 SE . ggp	6-	7	sur1 sur2 sur3
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg	4.1009E-1 2- prope lvlout 0. c netend	2.3948E-1 3- rties f isurf	4.1009E-1 4- ile-\$CA:	5- SE . ggp	6-	7	8 sur1 sur2 sur3 sur4
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg 1.	4.1009E-1 2- > prope lvlout 0. c netend 19.	2.3948E-1 3- rties f isurf 0.	4.1009E-1 4- ile-\$CA:	5- SE . ggp	6	7	8 sur1 sur2 sur3 sur4
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg 1. *PARame	4.1009E-1 2- e prope lvlout 0. c netend 19. ter, flo	2.3948E-1 3- rties f isurf 0. w prope	4.1009E-1 4- ile-\$CA:	5- SE . ggp	6-	7	8 sur1 sur2 sur3 sur4 sur5
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg 1. *PARamen =iparam	4.1009E-1 2- 2 prope 1vlout 0. 0. 19. ter, flo 1-6Fie	2.3948E-1 3- rties f isurf 0. w prope ld	4.1009E-1 4- ile-\$CA:	5 SE . ggp	6	7	8 sur1 sur2 sur3 sur4 sur5 sur6
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg 1. *PARame =iparam P3DQ	4.1009E-1 2- prope lvlout 0. c netend 19. ter, flo 1-6Fie	2.3948E-1 3- rties f isurf 0. w prope ld	4.1009E-1 4- ile-\$CA:	5- SE . ggp	6-	7	8 sur1 sur2 sur3 sur4 sur5 sur6
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg 1. *PARamen =iparam P3DQ =1-	4.1009E-1 2- 2 prope 1vlout 0. 0. 19. ter, flo 1-6Fie	2.3948E-1 3- rties f isurf 0. w prope ld	4.1009E-1 4- ile-\$CA: erties	5- SE . ggp	6	7	8 sur1 sur2 sur3 sur4 sur5 sur6
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg 1. *PARame =iparam P3DQ =1- \$FIELd p	4.1009E-1 2- e prope lvlout 0. c netend 19. ter, flo 1-6Fie	2.3948E-1 3- rties f 0. w prope ld 3- ies file	4.1009E-1 4- ile-\$CA: erties 4-	5 SE . ggp	6	7	8 sur1 sur2 sur3 sur4 sur5 sur6 8 fie1
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg 1. *PARamen =iparam P3DQ =1- \$FIEld p = npbnp	4.1009E-1 2- prope lvlout 0. c netend 19. ter, flo 1-6Fie 2- propert npbnm	2.3948E-1 3- rties f 0. w prope ld 3- ies file npbnr	4.1009E-1 4- ile-\$CA: erties 4- npbnv	5- SE . ggp 5- npbne	6 npbnq	7 1stbng	8 sur1 sur2 sur3 sur4 sur5 sur6 8 fie1 fie2
7.6502E-2 =1- \$SURface = ipggp 4. *NETworl = netbeg 1. *PARamen =iparam P3DQ =1- \$FIELd p = npbnp 0.	4.1009E-1 2- prope lvlout 0. c netend 19. ter, flo 1-6Fie 2- propert npbnm 0.	2.3948E-1 3- rties f 0. w prope ld 3- ies file npbnr 0.	4.1009E-1 4- ile-\$CA: erties 4- npbnv 0.	5 SE.ggp 5 npbne 0.	6 npbnq 1.	7 1stbng 0.	8 sur1 sur2 sur3 sur4 sur5 sur6 8 fie1 fie2

解析条件設定ファイル nexst-1.i.inp