

宇宙航空研究開発機構研究開発資料 JAXA Research and Development Memorandum

空中ソニックブーム計測システム確認飛行試験(その2) 第1報

中 右介, 牧野 好和, 進藤 重美, 川上 浩樹, 原田 賢哉

2011年10月

Japan Aerospace Exploration Agency

目	次		
---	---	--	--

1.	はじめに	2
2.	試験計画	3
	2.1 試験場所	3
	2.2 試験期間	3
	2.3 試験体制	3
	2.4 試験内容	4
	2.5 計測システム	5
	2.5.1 空中計測システム	5
	2.5.2 地上計測システム	6
	2.6 システム安全	7
	2.7 サクセスクライテリア	8
3.	試験結果	8
	3.1 飛行データ	8
	3.1.1 地上追尾データ ······	8
	3.1.2 オンボードデータ	21
	3.2 大気データ	30
	3.2.1 観測気球データ	30
	3.2.2 係留気球データ	30
	3.2.3 地上データ	30
	3.3 ソニックブームデータ	32
	3.3.1 空中計測データ	32
	3.3.2 地上計測データ ······	32
4.	試験結果解析	41
	4.1 ソニックブーム強度推算	41
	4.2 ソニックブーム伝播解析	42
5.	まとめ	47
6.	謝辞	47
参表	考文献	47
付銷	录 写真集	48

空中ソニックブーム計測システム確認飛行試験(その2) 第1報*

中 右介*1,牧野 好和*1,進藤 重美*1,川上 浩樹*1,原田 賢哉*2

Flight Test for Airborne Blimp Boom Acquisition (ABBA) System Check (ABBA Test #2), First Report*

Yusuke NAKA*1, Yoshikazu MAKINO*1, Shigemi SHINDO*1, Hiroki KAWAKAMI*1 and Kenya HARADA*2

Abstract

Flight test using an actual supersonic aircraft was conducted as a part of JAXA's low-sonic-boom concept demonstration project (D-SEND Project) in order to check JAXA's Boom Measurement System (BMS) including the Airborne Blimp Boom Acquisition (ABBA) system and to verify the possibility of demonstrating low-sonic-boom concepts by dive maneuver of the D-SEND#2 airplane. Although the ABBA system was not available during the flight test due to blimp trouble, an accurate sonic-boom concept demonstration by dive maneuver was investigated from the measured data and the possibility of low-sonic-boom concept demonstration by dive maneuver was confirmed by the ground boom measurement. Sonic-boom focusing caused by the dive maneuver was observed in the measured sonic-boom pressure signatures and the data can be used as validation data for prediction tools of focus booms.

Keywords: supersonic flight, sonic-boom measurement, focus boom

概要

低ソニックブーム設計概念の実証と空中ソニックブーム計測技術の獲得を目的とする低ソニックブーム設計概念実 証(D-SEND)プロジェクトにおいて,JAXAが開発した空中ソニックブーム計測システム(ABBA システム)を含 むソニックブーム計測システム(BMS)の確認,及びD-SEND#2飛行試験におけるダイブ飛行による低ブーム設計概 念実証の可能性確認のため,実機を用いた飛行試験(通称 ABBA Test #2)を実施した.係留気球の破損により ABBA システムによる空中計測はできなかったが,地上ソニックブーム計測を通してダイブ飛行による低ブーム設計概念実証 の可能性を確認するとともに,地上において正確にソニックブーム波形を計測する手法を確立した.また,ダイブ飛行 特有の現象であるソニックブームのフォーカシング現象が観測され,フォーカスブーム推算技術の検証データが得られ た.

^{*} 平成 23 年 8 月 25 日受付 (Received 25 August 2011)

^{*1} 航空プログラムグループ 超音速機チーム (Supersonic Transport Team, Aviation Program Group)

^{*2} 航空プログラムグループ 無人機・未来型航空機チーム (Unmanned and Innovative Aircraft Team, Aviation Program Group)

1. はじめに

宇宙航空研究開発機構 航空プログラムグループ 超音 速機チームでは,環境適合性に優れた超音速旅客機の設 計技術を確立することを目的とした静粛超音速機技術の 研究開発プログラム¹⁾を推進している.この研究開発プ ログラムにおいては,低ソニックブーム設計コンセプト の実証を第一の目的とする低ソニックブーム設計概念実 証プロジェクト (D-SEND プロジェクト)²⁾を進めてお り,低ソニックブーム設計コンセプト実証研究機の開発 を行っている.

D-SENDプロジェクトは2つの試験フェーズからなる.
 第1フェーズ (D-SEND#1) では、図1(a)に示す一般的な N型波形のソニックブームを発生する軸対称形状

(NWM:N-Wave Model)と、同じ最大断面積で低ソニ ックブーム設計された断面積分布を有する低ブーム軸対 称形状(LBM:Low-Boom Model)の2種類の供試体を 図 1(b)に示す様に成層圏気球から連続して落下させ、そ れぞれが発生するソニックブームを地表から係留気球で 地上 1000m 程度まで持ち上げた空中ソニックブーム計 測(ABBA:Airborne Blimp Boom Acquisition)システ ムによって計測することで、「空中ブーム計測技術の確 立」と「低ブーム波形計測可能性の確認」を行うもので ある.D-SEND#1に続いて計画されている第2フェーズ

(D-SEND#2)では、図2(a)に示す3次元機体形状供試体(S3CM:Silent SuperSonic Concept Model)を図2(b) に示す様に成層圏気球から落下し、自律制御飛行により 計測地点まで誘導した上でブーム計測システム(BMS: Boom Measurement System)上空をダイブ飛行させ、 供試体が発生するソニックブームをABBAシステムを含む BMS により観測し、S3CM に適用された JAXA 独自 の低ソニックブーム設計コンセプトを確認する試験である。

JAXA 超音速機チームでは ABBA システムの確認を主 目的として実機を用いたソニックブーム計測試験 (ABBA Test#1)を2009年9月にスウェーデンで実施 し,ABBA システムの健全性を確認している³⁾.本論文 では,JAXA が2010年9月に同じくスウェーデンで実 施した,実機を用いたソニックブーム計測試験(ABBA Test#2)の結果を報告する.ABBA Test#2 では, D-SEND#2 飛行試験における供試体設定ダイブ角(降下 経路角)と同じ飛行条件を超音速機で実現し,この時の ソニックブームを水平定常飛行時のソニックブームと比 較することでダイブ飛行による低ブーム設計概念実証の 可能性を確認することを主目的とする.また,地上屋外 ブーム計測法の確立を目的として,様々な方法でマイク を設置するとともに,ソニックブーム受容性評価手法の 検討のため,人が実際に聞き,また体で感じるソニック ブームのデータを音響計測用マネキンを用いて取得する. さらに,ソニックブーム推算手法の検証データ取得を目 的として,機体下面の付加物の有無によるソニックブー ム波形の差異の確認を行う.

なお, ABBA Test#2 では D-SEND 用に改修した ABBA システムの検証も目的の1つとしていたが,準備 中に係留気球が破損したために空中ブーム計測は実施で きなかった. ABBA システムの検証は2011年5月に追 加飛行試験にて実施する予定であり,その結果について は第2報で報告することとする.

(a) 供試体

(b) 飛行試験概要図 1. D-SEND#1 試験

(b) 飛行試験概要図 2. D-SEND#2 試験

2. 試験計画 4)

2.1. 試験場所

飛行試験はスウェーデン王国の NEAT (North European Aerospace Test range) 試験場の中の Vidsel Test Range にて実施した. (図 3)

図 3. 試験場所

2.2. 試験期間

試験は, NEAT Vidsel Test Range における地上及び上 空の天候が穏やかな時期とし、下記の通り実施した.

(1) 現地準備期間

2010年9月6日~7日

- (2)計測日
 2010年9月8日(ABBAシステム破損)
 2010年9月9日(地上計測実施)
- (3)総括・撤収2010年9月10日

2.3. 試験体制

試験の実施体制を図4に示す.JAXA 超音速機チーム 及び人材育成公募により採択された大学院生(東北大学), 支援契約先であるスウェーデン宇宙公社(Swedish Space Corporation: SSC),試験場運営機関(RFN),及 びスウェーデン空軍(RSAF)とで実施した.それぞれ の組織が果たした役割は下記の通り.

①JAXA:試験計画立案,SSC との調整,契約,空中 計測・地上計測の主体的な実施
②東北大学:試験法・計測技術の体験・習得
③RFN:計測地点・ブームハウスの提供
④SSC:契約,係留気球の運用等の試験支援
⑤RSAF:超音速機の運用,飛行データ・気象データの提供等

JAXA team

Leader of JAXA team^① Boom measurement of the ground^{①②} Boom measurement of the blimp^{①②} Risk management officer^① (①: JAXA, ②: Tohoku University)

NEAT team

Technical manager⁽³⁾ Contractual manager⁽⁴⁾ Technical co-manager⁽³⁾ Blimp team⁽⁴⁾ Pilot⁽⁵⁾ Meteorology⁽⁵⁾ Air Traffic Control(ATC)⁽³⁾ ((3): RFN, (4): SSC, (5): RSAF)

図 4. 試験体制

2.4. 試験内容

本試験において使用した超音速機,実施した飛行ケー ス及び計測項目は下記の通り.

(1) 使用した超音速機

Swedish JAS 39 Gripen (図 5) が最寄りの Vidsel 空 港より離陸し, 計測ケースのフライオーバーを実施する. 主な仕様:

- ・全長:14.1 m
- ・全幅:8.4 m
- ・全高:4.5 m
- · 翼面積:30 m²
- ・空虚重量:6,620 kg
- ・全備重量:8,720 kg
- ・最大離陸重量:14,000 kg
- ・エンジン:1× Volvo Aero RM12 (GE F404)
- ・最大推力: 80 kN with afterburner
- ・乗員:1名

主な性能:

- ・最大速度:Mach 2
- •航続距離:約800km
- ・実用上昇限度:15,000m
- ・翼面荷重:341 kg/m²
- ・推力重量比:0.94

(http://www.saabgroup.com) ⊠ 5. Swedish JAS 39 Gripen

(2) 飛行ケース

本飛行試験で実施した飛行ケース(全6フライオーバー)の概要を図6に示す.

Run#(Time):ケース番号:飛行条件 Run#1(10:05):ケースA:M=1.36,H=8.9km ダイブ飛行,増槽無し Run#2(10:13):ケースA:M=1.41,H=8.2km ダイブ飛行,増槽無し Run#3(10:42):ケースC:M=1.33,H=6.8km 水平定常飛行,増槽無し Run#4(10:49):ケースC:M=1.33,H=6.9km 水平定常飛行,増槽無し Run#5(12:52):ケースB:M=1.39,H=8.2km ダイブ飛行,増槽有り Run#6(13:00):ケースB:M=1.38,H=8.0km ダイブ飛行,増槽有り

ケースAはD-SEND#2飛行試験におけるS3CMのダ イブ飛行を模擬した飛行であり、ケースBはケースAで 発生するソニックブームと同じブームを発生すると考え られる水平定常飛行、ケースCはケースAと同じ飛行で 機体下面に増槽(燃料タンク)を取り付けることにより 形状変更効果を確認するためのケースである.試験は全 ケースとも9月9日に実施した.Run#4の終了時に試験 航空機は形状変更(増槽搭載)及び給油のため一旦空港 に戻っており、離陸回数としては2回の飛行(2 sorties) を実施した.それぞれの飛行のミッション番号は、

Sortie#01001(Run#1/Run#2/Run#3/Run#4)

Sortie#01003(Run#5/Run#6)

となっている.

図 6. 飛行ケースの概要

4

(3) 計測項目

試験実施エリアの地図を図7に示す.地上計測は飛行 経路直下付近と,飛行経路から約1.6km離れた湖対岸の 2地点で行った.各地点での主な計測項目は以下の通り. ①空中計測(ABBA システム)

係留気球破損により計測を実施しなかったため省略 ②飛行経路直下

ソニックブームデータ8点

(フラッシュマウント, 逆さ置き, 横置き, 高さ 1.5m)

(マネキン左耳, 右耳, 前面, 背面)

反射板加速度データ

時刻同期用 PPS (Pulse Per Second) 信号

③飛行経路の約 1.6km 側方(湖の対岸)

ソニックブームデータ2点

(逆さ置き,横置き)

時刻同期用 PPS (Pulse Per Second) 信号

(http://maps.google.co.jp)

図 7. 試験実施エリアマップ

2.5. 計測システム

2.5.1. 空中計測システム

本試験では図8に示す空中計測システム(ABBAシス テム)を準備していたが,係留気球の破損により計測を 実施しなかったため,その詳細については省略する.

図 8. 空中計測システムの概要

2.5.2. 地上計測システム

本試験で用いた地上計測システムは以下の構成から成 り立つ.

(1) 音響計測系

飛行経路直下と飛行経路から約1.6km 側方である湖の 対岸の2地点に,合計10チャンネルのマイクを設置して 地上屋外計測を実施した.地上での音響計測に使用した 機器を表1に示す.

飛行経路直下の計測地点では、図9に示す通り、25m 離れた2箇所にそれぞれ4チャンネルのマイクを配置し た.2箇所のうちの一方には1m×1m,厚さ4mmのア ウミニウムの反射板に、3つのマイクをそれぞれフラッ シュマウント、横置き、逆さ置きという異なる方法で設 置し、更にその上方1.5mの点にもマイクを1つ配置し た.(図9および付録参照.)反射板の下には砂を敷き詰 め、反射板の振動を抑制した.これは反射板に固定され たマイクがソニックブームにより振動して、その振動に 応じてマイクから信号が出力されることにより音響計測 精度が低下することを防ぐためである. ABBA Test#1の 際にも地上計測には反射板を使用していたが,その防振 が十分でなかった可能性もあったため,今回の ABBA Test#2 においては防振性を向上させる設置法とした. 併 せて加速度計を反射板に設置し,実際にソニックブーム により励起された反射板の振動を記録した.

飛行経路直下計測地点のもう1箇所ではGRAS社製の 音響計測用のマネキン KEMAR Manikin Type 45BA を 用いて計測を行った.マネキンの左右の耳に加え,マネ キン胴体の前面と背面にもマイクを設置した.マネキン は耳の高さが地面から1.5 m となるように設置した.

湖対岸の計測地点では,当初は空中計測用に使用予定 であった機器を使用して2 チャンネルの音響計測を行っ た.飛行経路直下と同様に反射板の上に横置きと逆さ置 きでマイクを設置した.(付録参照.)反射板の材質は飛 行経路直下の地点とは異なり,木製の合板を用いた.大 きさは飛行経路直下と同じく1m×1mである.

計測地点	設置場所·方法	マイク	アンプ	AD 変換器	AD 変換器 カップリング
	フラッシュマウント	B&K 4193	_	B&K LAN-XI 3052	DC
飛行経路直下	逆さ置き	B&K 4193	—	B&K LAN-XI 3052	DC
(反射板)	横置き	B&K 4193	—	B&K LAN-XI 3052	DC
	高さ 1.5m	GRAS 40AZ	—	B&K LAN-XI 3050	AC
	マネキン左耳	B&K 4193	B&K 2690	NI USB-4431	DC
飛行経路直下	マネキン右耳	B&K 4193	B&K 2690	NI USB-4431	DC
(マネキン)	マネキン前面	GRAS 40AN	B&K 2690	NI USB-4431	DC
	マネキン背面	B&K 4949B	—	B&K LAN-XI 3050	AC
飛行経路側方	逆さ置き	GRAS 40AZ-S1	—	NI 9234B	AC
(湖対岸)	横置き	GRAS 40AZ-S1	_	NI 9234B	AC

表 1. 地上音響計測機器

図 9. 飛行経路直下付近のセンサ配置

(2) 計測制御・記録系

飛行経路直下のマネキンの両耳と胴体前面および湖対 岸の反射板上に設置された 2 チャンネルのマイクは National Instruments (NI)社製の AD 変換器に接続し, 計測の制御・監視・記録には NI 社製ソフトウェア LabVIEW を用いて作成したプログラムを用いた.デー タは同プログラムがインストールされたノート PC に保 存した.計測に使用した AD 変換器を表 1 に示す.使用 した NI 社製の AD 変換器は 2 種類あるが,いずれも 24 ビットの量子化分解能を有している.サンプリング周波 数は 51,200 Hz とした.また,湖対岸に設置したマイク

(GRAS 40AZ-S1) への IEPE 電流の供給はこのマイク が接続された AD 変換器 NI 9234B から行った.

飛行経路直下の計測地点に設置されたマイクのうち, 反射板上(3チャンネル),その上方1.5mの点,および マネキン背面の合計5 チャンネルのマイクと反射板に設 置した加速度計は, Brüel & Kjær (B&K)社製の LAN-XI システムを用いてデータの制御・記録を行った.2 つの LAN-XI 入力モジュール使用し、これらをハブを介して LAN ケーブルでノート PC に接続した.計測の制御・記 録にはノートPCにインストールしたB&K社製ソフトウ ェア PULSE Time Data Recorder を用い, データはノー ト PC に記録した. サンプリング周波数は 131,072 Hz とした.反射板上に設置した3チャンネルのマイク(B&K Type 4193) には、入力モジュール B&K LAN-XI 3052 から 200 V の偏極電圧を供給した. また, B&K LAN-XI 3050 に接続された2 種類のマイク(GRAS 40AZ, B&K 4949B) および加速度計 (Endevco 61C12) には LAN-XI 3050 より IEPE 電流の供給を行った.

(3) 同期信号系

飛行データ、空中計測データとの同期を行うため、各 記録器には GPS 信号に基づいて生成された PPS 信号を 入力・記録した. PPS 信号の発生には古野電気社製 GT-80 を用いた.

(4) 地上気象観測系

地上計測の気象観測系として,試験中の気温,湿度, 気圧,風向,風速をAOR社のVantage Pro2を用いて観 測した.なお,データログ機能を設けておらず,記録は 筆記による.

2.6. システム安全

試験実施におけるシステム安全の考えとしては,前回 2009年のABBA Test#1 試験と同様に実績のある超音速 航空機を使用するため,計測・支援要員及び計測システ ムの安全は確保されており,また,飛行制限区域,立入 り制限区域内での飛行管制(最寄りの Vidsel 空港から) された飛行により,第三者への損害も極めてまれである と考えられた.

飛行試験計画段階で推定されたソニックブームの最大 強度も前回同様にコンコルドと同等のレベルであったた め、計測・支援要員への聴力障害,窓等の損害は起こら ないと考えられたが,NEAT 側の安全対策に従い,パイ ロットからのカウントダウンによる要員への周知を実施 した.また安全解析として空中ブーム計測機器の落下を 想定した FTA を実施し、これらの結果をチーム内(安全 確認会)で確認した.なお,前回の試験(ABBA Test#1) では関係者の聴力障害,窓等の破壊も起こっていない. 安全性向上のため,試験に当たっては,以下を実施した.

- 準備手順については、空中計測システムのロープ等の傷の有無をチェックし、複数の人間で作業をチェックする.
- (2) 要員への安全教育と毎朝のブリーフィングにおける 危険予知トレーニング(KYT:危険の周知等)等を実 施する.
- (3) 試験中は図10に示す定常風を考慮した立入制限区域 を設定し、必要な試験要員以外の立入を制限する.ただし、計測棟、ブームハウス等の屋内を除く.

(http://maps.google.co.jp) 図 10. 試験中の立入制限区域(屋内を除く)

2.7. サクセスクライテリア

本飛行試験におけるサクセスクライテリアを下記の通 り定義した.

・ミニマムサクセス:地上計測システムによるソニック ブーム(地上反射板,高さ 1.5m 点,マネキン)データ の取得.(地上ブーム計測法の確立)

・フルサクセス:空中計測システムによるソニックブームデータの取得.(空中計測システム冗長化の検証)
D-SEND#2 飛行パターンでのソニックブームデータの取得.(D-SEND#2 低ブーム設計概念実証可能性の確認)
・エクストラサクセス:増槽タンクの有無による機体下面形状の差異を示すソニックブーム波形データの取得.(ソニックブーム推算手法検証データの取得)

3. 試験結果

3.1. 飛行データ

3.1.1. 地上追尾データ

試験飛行中の機体の位置を地上からレーダーで追尾し て計測したデータが NEAT 側より提供された.提供され たデータ項目は,時刻(それぞれの Run 毎に機体が設定 速度に到達した時刻を 0 秒とする),ブームハウスを原点 として北から時計回りで 124°の方向を X 軸とする機体 位置(X,Y,Z:座標系を図 11 に示す. なお参考文献 3 で 同様の図を示しているが Y 軸の向きの定義が逆であった. この場を借りて訂正する.),機体位置変化率(X',Y',Z'), 機体速度(V)及び加速度(V'),飛行方位角(C)と方 位角変化率(C'),飛行経路角(D)と経路角変化率(D'), 及び飛行経路長(S)である.それぞれの飛行に対する地 上追尾データを図 12~図 17 に示す.

(http://maps.google.co.jp)

図 11. 地上追尾データ座標系

MISSION	NR	:	01001:
MISSION	TYPE:	JAXA	
MISSION	DATE:	2010	/9/9

TZERO: 8.03.03.000

STATIONS	ON	MISSILE:	rir778c

COORDINATE	SYSTEM
OCONDINATE	OTOTEN

LOCAL	CARTESIAN	SYSTEM	WITH	ORIGO	IN	
Х	=	2420604	. (Sweref93)	
Υ	=	846959	1			
Z	=	5820824				
X-Axis	oriented	123.0026	degrees	relative	TRUE	North

1

PRINTED PARAMETERS

TIME	=	TIME	IN	SECONDS	REL.	TZERO			
X,Y,Z	=	CARTESIAN	COORDINATES	IN	LOCAL	SYSTEM	:		
X',Y',Z'=	COORDINATE	VELOCITIES	IN	M/S					
V	=	VELOCITY	M/S						
V	=	ACCELERATION	(M/S**2)						
С	=	FLIGHT	COURSE	IN	DEGREES				
C'	=	FLIGHT	COURSE	RATE	IN	DEG/SEC			
D	=	DIVE	ANGLE	RELATIV	THE	X/Y	PLANE	(+=CLIMBING	-=DIVING)
D'	=	DIVE	ANGLE	RATE	IN	DEG/SEC			
S	=	DISTANCE	IN	METERS	FROM	LOCAL	ORIGO		

TIME	Х	Y	Z	X'	Y'	Ζ'	V	V'	С	C'	D	D'	S
0	-38109.0854	767.5748	13620.4962	312.4	-59.7	-17.3	318.5	4813.1	112.2	-34639	-3.1	683.5	40477.3
0.01	-38105.9617	766.9778	13620.323	365.4	17.8	23.8	366.6	-473.9	125.8	-17321	3.7	240.7	40474.3
0.02	-38101.7769	767.9311	13620.9717	308.5	14.9	9.1	309	-3229.2	125.8	17522.8	1.7	67.2	40470.6
0.03	-38099.4948	767.5631	13620.682	285	-35.6	18.9	287.8	-1133.8	115.9	18498.9	3.8	10.3	40468.3
0.04	-38096.5109	766.7509	13621.0951	308.1	-35.7	21.4	310.9	390.5	116.4	13549.4	4	15.1	40465.6
0.05	-38092.8494	766.7738	13621.2776	324	-10.7	28.2	325.4	27.6	121.1	-1563.6	5	17	40462.2
0.06	-38090.7537	766.4099	13622.3421	324.1	-5.7	30.1	325.5	6.8	122	-1593.7	5.3	-37.5	40460.6
0.07	-38086.173	766.1292	13621.9337	325.7	-2.5	26.6	326.8	209.1	122.6	-3202.6	4.7	-59	40456.2
0.08	-38083.4752	766.5677	13622.0391	329.4	7.9	21.7	330.2	120.2	124.4	-4817.7	3.8	-90.9	40453.7
0.09	-38079.7839	766.789	13623.0001	327.9	12.1	12.8	328.4	-106.8	125.1	-2890.1	2.2	-109.9	40450.5
0.1	-38076.1989	766.8327	13623.172	323.5	15.7	-0.3	323.9	-221.3	125.8	-969	-0.1	-120.1	40447.2
0.11	-38073.5011	767.2711	13623.2774	323.2	17.8	-11.7	323.9	-231.1	126.1	969.4	-2.1	-110.8	40444.7
0.12	-38069.7764	767.53	13622.863	315.7	12.6	-15.4	316.3	-211.5	125.3	2910.5	-2.8	-81.9	40441.1
0.13	-38067.1229	768.0805	13622.3002	310.5	4.5	-21.5	311.3	-137.3	123.8	4856	-4	-38.6	40438.4
0.14	-38064.0613	767.1939	13622.0059	305.7	-1.5	-25.5	306.8	-22.7	122.7	4854.8	-4.8	14.9	40435.4
0.15	-38061.1915	767.9387	13620.8675	306.5	-5.2	-25.4	307.6	101	122	4531.9	-4.7	70.7	40432.3
0.16	-38057.6376	767.8376	13620.9789	311.8	-9.2	-18.6	312.5	209.6	121.3	3891.2	-3.4	114.8	40429
0.17	-38054.6847	766.8806	13621.3314	316	-11.7	-6.4	316.3	331.6	120.9	1295.1	-1.2	143.6	40426.3
0.18	-38052.4481	766.6782	13621.0917	324.6	-11.8	8.3	324.9	405.2	120.9	329.9	1.5	159.5	40424.1
0.19	-38048.8631	766.722	13621.2636	328.5	-4.8	23.8	329.4	395.9	122.2	-970.1	4.1	157.4	40420.8
0.2	-38045.1385	766.9809	13620.8492	331.2	-5.5	38.2	333.4	305.7	122.1	-643.2	6.6	137.8	40417.2
0.21	-38041.5092	766.9125	13621.6891	333.5	-1.6	44.6	336.4	169.3	122.7	-324.6	7.6	99.3	40414
0.22	-38038.064	766.7411	13622.4473	338.4	2.9	48.7	341.9	25.3	123.5	-14.8	8.2	49.9	40411.1
0.23	-38034.4803	766.8384	13623.3372	340.4	-1.1	49.6	344	-111	122.8	288.5	8.3	-4.2	40408
0.24	-38031.645	767.5992	13624.2922	334.1	-3.6	46.5	337.3	-198.4	122.4	588.4	7.9	-50.1	40405.7
0.25	-38028.477	766.8902	13624.7871	327.2	-9.4	42.8	330.2	-262.2	121.4	896.7	7.4	-87.3	40402.8
0.26	-38024.8921	766.9339	13624.959	321.7	-16.3	32	323.7	-291.5	120.1	1208.5	5.7	-110.3	40399.5
0.27	-38021.3071	766.9776	13625.1309	317.7	-24.3	21.1	319.3	-275	118.6	1531.8	3.8	-121.9	40396.2
0.28	-38018.2455	766.0909	13624.8366	316.1	-32.3	8.2	317.8	-183.4	117.2	-91.5	1.5	-123.4	40393.2
0.29	-38015.4712	766.5086	13624.9525	315.9	-40.8	3.8	318.5	-43	115.6	-73.9	0.7	-115.3	40390.6
0.3	-38012.4872	765.6963	13625.3656	313.9	-44.6	-4.4	317.1	78.8	114.9	-50.9	-0.8	-98	40387.9
0.31	-38009.3945	764.9545	13625.1319	313.7	-47.5	-8.7	317.4	145.8	114.4	-27.2	-1.6	-69.1	40384.9
0.32	-38006.2708	764.3574	13624.9587	317	-47	-10.9	320.6	184.4	114.6	-5.6	-2	-36.8	40381.9
0.33	-38002.8233	764.0787	13624.2809	324.5	-41.2	-13.3	327.4	182.8	115.8	14.1	-2.3	-6.9	40378.5
0.34	-37999.764	763.2993	13625.4226	330	-40.2	-14.2	332.8	153.7	116.1	28.3	-2.4	14.9	40375.9
0.35	-37996.6069	762.7398	13623.8739	332	-38.5	-12.5	334.5	113.5	116.4	34.6	-2.1	39.2	40372.4
0.36	-37993.022	762.7835	13624.0458	328.3	-36.9	-5.8	330.4	37.1	116.6	37.7	-1	52.1	40369.1
0.37	-37989.4681	762.6824	13624.1572	330	-36.6	1.1	332	-59.5	116.7	36	0.2	57.9	40365.8
0.38	-37985.7434	762.9413	13623.7428	328.4	-32.5	4.7	330.1	-150.8	117.3	30.8	0.8	56.5	40362.2
0.39	-37982.7595	762.1291	13624.1559	326.4	-30.7	6.8	327.9	-219.1	117.6	30.7	1.2	47	40359.5
0.4	-37979.7611	761.0064	13624.4585	325	-29.5	15.2	326.7	-231.9	117.8	29.9	2.7	30	40356.7
0.41	-37977.4491	760.8369	13624.9473	320.7	-25.8	13	322	-193.9	118.4	20.1	2.3	7.6	40354.7
0.42	-37972.9771	760.4859	13625.1858	317	-24	12.8	318.2	-171.8	118.7	6.5	2.3	-14.1	40350.6
0.43	-37970.1395	761.1395	13624.7048	314.5	-24.3	10.8	315.7	-111	118.6	-11.9	2	-34.8	40347.8
0.44	-37967.1556	760.3273	13625.1179	310.8	-21.6	7.7	311.6	-33.8	119	-24.6	1.4	-52.2	40345.1
0.45	-37963.5706	760.371	13625.2898	313.5	-20.9	3.5	314.2	54	119.2	-34.2	0.6	-63.9	40341.8

(a) 地上追尾データ表 (一部)

図 12. 地上レーダー追尾データ (Run#1 Sortie#01001)

図 12. 地上レーダー追尾データ (Run#1 Sortie#01001)

10

RFN	LISTTYPE	1	1										
MISSION	NR	:	01001:1										
MISSION	TYPE:	JAXA											
MISSION	DATE:	2010/9/9	9										
TZERO.	8 11 59 000												
TEENO.	0.11.00.000												
STATIONS	ON	MISSILE:	rir778c										
COORDINAT	TE SYSTEM												
LOCAL	CARTESIAN	SYSTEM	WITH	ORIGO	IN								
X Y	=	2420604 846959	4 ()	Sweref93)								
Z	=	5820824	1 2 d		TOUE	N							
X-AXIS	oriented	123.0026	degrees	relative	TRUE	North							
PRINTED	PARAMETERS												
TIME	_	TIME	TN	SEGONDS		T75D0							
X,Y,Z	=	CARTESIAN	COORDINATES	IN	REL. LOCAL	SYSTEM	:						
X',Y',Z'= V	COORDINATE =	VELOCITIES VELOCITY	IN M/S	M/S									
V'	=	ACCELERATION	(M/S**2)										
C C'	=	FLIGHT FLIGHT	COURSE	IN RATE	DEGREES IN	DEG/SEC							
D	=	DIVE	ANGLE	RELATIV	THE	X/Y	PLANE	(+=CLIMBING -=D	IVING)				
D' S	=	DIVE	ANGLE IN	RATE METERS	IN FROM	DEG/SEC	ORIGO						
-													
т		Y N	/	, v	, v	7	, v	V.	C	C'	р	D'	ç
1.	0 -38350.604	4 401.0898	13596.7855	312.4	-59.7	-17.3	318.5	500.9	112.2	-180.3	-3.1	-689.5	40691.6
0	0.01 -38347.480	7 400.492	7 13596.6123	310.9	-69.6	-56.2	323.5	1214.9	110.4	123.9	-10	-141.8	40688.5
C C).02 -38344.386	9 399.6972 5 399.4305	13595.6606	337.3	6 –49.5 6 –63.1	-35.6	342.8 333.2	271.6	114./	16.3	-6 7.1	846.4 819.7	40685.3
C	0.04 -38337.835	8 398.527	13596.7925	335.9	-38.7	56.9	342.9	-7.3	116.4	349.5	9.5	361.3	40679.5
0		8 398.5708	3 13596.9644	337.5	i -11	31.3	339.1	133.1	121.1	-4415.6	5.3	61.2	40676.2
0).06 -38330.559	5 398.792 8 398.7446	13597.9255 13598.7548	341.8	s – 1.2 8 8.7	28.3	342.9 342.3	-92.5	122.8	-4792.8	4.7 4.1	-66.5	40673
C	0.08 -38324.246	9 399.4727	7 13598.9813	337.8	10.8	15.9	338.4	-107.3	124.8	-2859.9	2.7	-132.8	40667.4
C	0.09 -38320.522	2 399.7316	6 13598.5669	337.4	13	3.9	337.7	-165.8	125.2	-949.5	0.7	-128.6	40663.8
C	0.1 -38310.968	3 399.6303 5 399.691	13598.6782	335.2	: 8.9 i 7.9	-19	335.4	-178.1	124.5	977.6 2922.9	-1.2	-78.8	40660.5
C	0.12 -38310.575	7 400.1294	13597.5906	328.5	2.6	-20.5	329.2	-180.5	123.5	4876.4	-3.6	-54.6	40654.1
0		7 399.3172	2 13598.0037	328	-3.3	-19.6	328.6	-156.9	122.4	4878.8	-3.4	-30.2	40651.4
0) 15 -38300.86	7 399.576 5 399.2974	13597.5893	327.1	-4.5 -2.2	-17.7	327.0 3252	-126.6	122.2	4000.3 3912.2	-3.1	-8 75	40644.3
C	0.16 -38297.550	9 400.0958	13596.4911	323.1	-4.4	-9.1	323.2	-23.6	122.2	1303.2	-1.6	14.5	40641.4
0).17 -38294.522	6 399.1716	3 13597.5722 13597.0155	325.9	-4.4	-9.7	326.1	19.3	122.2	-1299.7	-1.7	12.2	40638.9
0).19 -38287.211	9 399.4206	5 13597.0155 5 13596.6117	323.4	-0.0 8 -2	-12.0	323.0 326.1	43.7	122.9	-3905.6	-2.1	24.4	40635.5
	0.2 -38284.590	6 399.8799	13596.7065	327.2	2 0	-12.8	327.5	119.3	123	-4877.1	-2.2	33	40629.3
0		1 399.0468	3 13597.1302	331.1	0.6	-14.2	2 331.4	144.5	123.1	-4868.1	-2.5	42.6	40626.6
0).22 -38277.881	4 399.5666	13596.032	330.0	10.3	-13	330.9	134	124.4	-3887.8	-2.2	59.4 74	40623
C	0.24 -38270.633	2 399.2859	13595.6236	331.7	/ 11.1	6.3	331.9	94.9	124.9	-2905	1.1	81	40615.8
0		4 399.7244	13595.7289	337.6	i 13.4	9.8	338	77	125.3	-1605.1	1.7	77.4	40613.3
0).27 -38261.546	3 400.3841	13596.7953	333.5	. 20.3 i 16.3	21.3	334.6 3	44.8	125.8	5.5	3.7	45.1	40610
C	0.28 -38257.962	5 400.4815	5 13597.6852	335.6	6 17.5	25.5	5 337	28.4	126	-4.7	4.3	20.6	40604.5
C	0.29 -38254.408	6 400.3804	13597.7965	331.3	8 20.8	25.6	332.9	-5.7	126.6	-11.5	4.4	3.1	40601.2
C).31 -38247.924	400.039	3 13597.6086	333.0	14.1	18.1	335	-23.6	125.4	-30.9	3.5	-25.5	40595.1
C	0.32 -38245.002	1 400.2655	5 13597.9006	336.1	9.5	11.8	336.4	13.8	124.6	1602.8	2	-35.3	40592.4
0	-38240.785	2 401.3099		335.4	8.1	11.8	335.7	17.7	124.4	2905.7	2	-36.8	40588.4
0).35 -38234.138	6 400.467	13597.7694	331.1	. 9.4 5.4	8.5	5 331.2	22.9	123.9	4543.7	1.5	-26.1	40582.1
C	0.36 -38231.303	4 401.2278	13598.7244	336.6	0.1	6.6	336.7	28.3	123	4867	1.1	-23.7	40579.8
0	-38227.609	7 401.3419	3 13598.2495	339.9	-0.9	5.8 6 1	340 337 3	32	122.9	4866.6	1	-19.8	40576.1
0	.39 -38221.32	7 401.8241	13598.5267	337.6	. 3.2 i -7.3	4.7	337.7	58.8	121.8	3883.6	0.8	-14.1	40570.3
	0.4 -38218.233	1 401.0286	13597.575	336.4	-5.4	4.5	336.5	59.5	122.1	2910.3	0.8	-7.4	40567.1
C).41 -38213.793).42 -38210.208	3 400.5864 4 400.6301	+ 13598.4709 13598.6729	336.4	+ -13.9) -12.9	0.8	336.7 332.1	36.1 43.2	120.6 120.9	1610.4 -21 8	0.1 0.3	-6.8 -6.1	40563.2 40559 9
C).43 -38207.510	5 401.0686	13598.7481	338.5	-15.5	1.3	338.8	55.6	120.4	-19.1	0.2	-5.3	40557.4
C	0.44 -38204.386	8 400.4715	5 13598.5749	340.5	5 -17.4	5.5	341	39.9	120.1	-16.3	0.9	-4.6	40554.4
C	J.40 −38200.801	9 400.5153	5 13598./468	341.1	-13.2	5.4	r 34⊺.4	12./	120.8	-13.2	0.9	-5	40001

(a) 地上追尾データ表 (一部)

図 13. 地上レーダー追尾データ (Run#2 Sortie#01001)

図 13. 地上レーダー追尾データ (Run#2 Sortie#01001)

MISSION	NR	:	01001:1
MISSION	TYPE:	JAXA	
MISSION	DATE:	201	0/9/9

TZERO: 8.40.56.000

STATIONS	ON	MISSILE:	rir778c

COORDINATE	SYSTEM
00010110112	0101200

LOCAL	CARTESIAN	SYSTEM	WITH	ORIGO	IN	
Х	=	2420604	. (Sweref93)	
Υ	=	846959	1			
Z	=	5820824				
X-Axis	oriented	123.0026	degrees	relative	TRUE	North

1

PRINTED PARAMETERS

TIME	=	TIME	IN	SECONDS	REL.	TZERO			
X,Y,Z	=	CARTESIAN	COORDINATES	IN	LOCAL	SYSTEM	:		
X',Y',Z'=	COORDINATE	VELOCITIES	IN	M/S					
V	=	VELOCITY	M/S						
V'	=	ACCELERATION	(M/S**2)						
С	=	FLIGHT	COURSE	IN	DEGREES				
C'	=	FLIGHT	COURSE	RATE	IN	DEG/SEC			
D	=	DIVE	ANGLE	RELATIV	THE	X/Y	PLANE	(+=CLIMBING	-=DIVING)
D'	=	DIVE	ANGLE	RATE	IN	DEG/SEC			
S	=	DISTANCE	IN	METERS	FROM	LOCAL	ORIGO		

TIME	Х	Y	Z	X'	Y'	Z'	V	V'	С	C'	D	D'	S
0	-45344.1063	61.1503	6583.7875	312.4	-59.7	-17.3	318.5	10	112.2	-133.4	-3.1	-54.4	45819.6
0.01	-45340.9826	60.5532	6583.6143	310.8	-66.9	-20.3	318.6	-1563.9	110.8	436.5	-3.7	-289.7	45816.5
0.02	-45337.8899	59.8114	6583.3805	283.6	-10.3	-44.5	287.2	2511.1	120.9	461	-8.9	116	45813.4
0.03	-45335.2674	60.217	6582.7573	355.2	-5.6	-18.2	355.7	3879.6	122.1	-17176	-2.9	161.3	45810.7
0.04	-45330.7954	59.866	6582.9958	382.6	6	-23.1	383.3	1060.4	123.9	-15709	-3.5	210.7	45806.3
0.05	-45327.1017	59.9801	6582.5208	337	18.6	-8.8	337.6	194.6	126.2	-4378.9	-1.5	77.4	45802.6
0.06	-45324.3729	60.5634	6582.6867	339	28.9	-6.4	340.3	99.5	127.9	-3762.4	-1.1	97.4	45799.9
0.07	-45320.819	60.4623	6582.798	336.8	37.3	-3.2	338.8	-24.6	129.3	-2843.9	-0.5	108.8	45796.4
0.08	-45318.0446	60.8799	6582.914	337.2	42.6	5.2	339.9	-332.4	130.2	-1565.6	0.9	87.6	45793.7
0.09	-45313.9042	61.9452	6582.8946	330.9	49.2	7.4	334.7	-335.5	131.5	34.4	1.3	91.2	45789.6
0.1	-45310.6054	63.2396	6582.7587	328.6	46.6	15.4	332.2	-158.2	131.1	-0.1	2.7	84.4	45786.3
0.11	-45307.4052	62.6217	6582.5961	330.8	41.8	23.7	334.2	-181.2	130.2	-22.7	4.1	78.3	45783.1
0.12	-45304.7528	63.2258	6582.7514	327.6	39.4	24.6	330.9	-175.5	129.9	-39.3	4.3	64	45780.5
0.13	-45300.6313	63.9431	6583.997	327.7	33	28.6	330.6	-165.4	128.8	-47.9	5	40.2	45776.6
0.14	-45297.7938	64.5967	6583.516	321.3	26.2	34.1	324.1	-116.6	127.7	-45.7	6	18.4	45773.8
0.15	-45294.811	63.8381	6584.6472	321.7	22.6	34.8	324.4	-79.5	127	-32	6.2	-9.2	45771
0.16	-45291.0431	64.0386	6585.6188	320.6	25.6	33.1	323.3	-48.6	127.6	-15.2	5.9	-40.5	45767.4
0.17	-45288.2809	64.6594	6584.4092	321.5	23.1	28.6	323.6	22.2	127.1	-5.3	5.1	-67.2	45764.5
0.18	-45284.6206	64.7359	6585.3097	321.6	22.2	20	323	78.7	126.9	3.9	3.6	-96.7	45761
0.19	-45282.1391	64.98	6585.9908	325.4	27.5	17.8	327	131.6	127.8	2.7	3.1	-118.5	45758.6
0.2	-45278.4144	65.2389	6585.5764	326.6	30.6	10.3	328.2	122.4	128.4	-5.9	1.8	-129.9	45754.9
0.21	-45275.609	65.8013	6585.7528	326.7	33.7	-3.1	328.4	119.2	128.9	-22.4	-0.5	-130.1	45752.1
0.22	-45272.0241	65.8451	6585.9247	332.6	29	-11.1	334	92.1	128	1595.6	-1.9	-117.8	45748.6
0.23	-45268.2994	66.104	6585.5103	332.9	27.9	-22.8	334.9	47.1	127.8	2883.8	-3.9	-98.9	45744.9
0.24	-45265.1403	67.1832	6585.9608	333.5	19.8	-27.6	335.2	2.9	126.4	3846.2	-4.7	-79.1	45741.8
0.25	-45262.0166	66.5861	6585.7876	328.3	15	-32.4	330.3	-15.4	125.6	4486.7	-5.6	-43.8	45738.7
0.26	-45258.6833	67.8645	6583.5582	330.8	7.3	-32.8	332.5	-14.2	124.3	4806.1	-5.7	-6	45735.1
0.27	-45254.7035	66.7279	6583.3911	328.9	-2.2	-28.5	330.1	1.9	122.6	4812.3	-4.9	22.6	45731.1
0.28	-45251.9747	67.3112	6583.5569	326.1	-7.8	-26.7	327.3	65.6	121.6	4491.7	-4.7	46.3	45728.4
0.29	-45249.0528	66.2093	6583.849	327.7	-11.2	-26.3	328.9	122.1	121.1	3852.7	-4.6	62.8	45725.6
0.3	-45246.183	66.9542	6582.7105	330.2	-17.3	-13.4	330.9	168	120	2886.3	-2.3	79.9	45722.6
0.31	-45241.7742	66.3671	6583.5459	333.8	-22.5	-7.4	334.6	163.9	119.2	1597.8	-1.3	86.8	45718.3
0.32	-45238.7902	65.5549	6583.959	338.3	-19	-6.4	338.9	177.1	119.8	-17.2	-1.1	92.4	45715.4
0.33	-45235.9205	66.2997	6582.8206	343.9	-23.2	-4	344.7	161	119.1	0.3	-0.7	100.3	45712.4
0.34	-45232.1958	66.5586	6582.4062	343.6	-20.6	2.6	344.2	91.8	119.6	16.6	0.4	101	45708.7
0.35	-45228.5588	64.7557	6584.0085	342.4	-20.6	14.4	343.4	7.3	119.6	-1602.7	2.4	94.8	45705.3
0.36	-45224.7697	65.197	6582.2792	339.2	-16.2	15.8	339.9	-87.9	120.3	-2902	2.7	95.2	45701.3
0.37	-45221.1094	65.2735	6583.1797	341.9	-12	24.4	343	-164.5	121	-3878.6	4.1	85.5	45697.8
0.38	-45218.1254	64.4612	6583.5928	339.7	-9.1	33.8	341.5	-214.1	121.5	-4524.2	5.7	67.5	45694.9
0.39	-45215.3833	64.7876	6584.3662	333.7	-5	34.5	335.5	-208.4	122.2	-4846.5	5.9	39.5	45692.3
0.4	-45211.7685	65.0298	6585.3166	329.7	0.7	36.9	331.8	-203.8	123.1	-4840.7	6.4	11.2	45688.9
0.41	-45208.2134	64.8751	6584.71	325	1.2	41.7	327.6	-183.3	123.2	-4509.6	7.3	-5.7	45685.3
0.42	-45204.5986	65.1172	6585.6604	324.9	4.7	32.8	326.6	-133.3	123.8	-3854.2	5.8	-30.3	45681.8
0.43	-45201.8243	65.5348	6585.7764	324.4	10.6	29.1	325.9	-35.3	124.9	-2873.2	5.1	-48.7	45679.1
0.44	-45198.7006	64.9378	6585.6032	327.4	15.7	20.9	328.4	79.4	125.8	-1572.5	3.7	-59.4	45676
0.45	-45195.2876	64.6751	6587.0188	324.3	21.3	17.8	325.5	167.1	126.8	45.7	3.1	-69.5	45672.8

(a) 地上追尾データ表 (一部)

図 14. 地上レーダー追尾データ (Run#3 Sortie#01001)

図 14. 地上レーダー追尾データ (Run#3 Sortie#01001)

RFN		LISTTYPE		1									
MISSION		NR	:		01001:1								
MISSION		TYPE:	JAXA										
MISSION		DATE	2(010/9/9									
			2.	010/0/0									
IZERO:		8.48.10.000											
STATIONS		ON	MISSILE:		rir778c								
COORDINA	ATE	SYSTEM											
LOCAL		CARTESIAN	SYSTEM		WITH	ORIGO	IN						
X Y		=	4	2420604 846959	(Swerety3)						
Z X=Avic		= oriented	1	5820824	degrees	rolativo	TDUE	North					
A Axis		onented	1	123.0020	uegrees	relative	THOL	North					
PRINTED		PARAMETERS											
TIME		=	TIME		IN	SECONDS	REL.	TZERO					
X,Y,Z X'.Y' 7'=		= COORDINATE		AN IES	COORDINATES	IN M/S	LOCAL	SYSTEM	:				
V, 1, 2 -		=	VELOCITY	Y	M/S	Wi/ 0							
V'		=	ACCELER	ATION	(M/S**2)	IN	DECREES						
C'		=	FLIGHT		COURSE	RATE	IN	DEG/SEC					
D		=	DIVE		ANGLE	RELATIV	THE	X/Y	PLANE	(+=CLIMBING	-=DIVING)		
S		=	DIVE	E	IN	METERS	FROM	LOCAL	ORIGO				
-		v		v	7	Y	, v	, 7	, v	. V	C	C'	П
	0	-45732.9747	11	194.3933	7030.6801	298.6	-91.9	-102.3	328.8	-507.6	105.9	-425.8	-18.1
	0.01	-45729.9884	11	93.4738	7029.6572	282.5	-110.5	-113	323.7	4244.8	101.6	-697.7	-20.4
	0.02	-45/2/.3248 -45723.152	11	192.1824 189.3607	7028.4209 7028.3799	351 351.3	-211.4	-56.8	413./ 397.3	26/3.6	91.9 96.4	-164 -48.9	- 7.9 - 8.5
	0.04	-45720.0582	11	88.5652	7027.4281	308.8	-173.3	-93.8	366.3	-2029.6	93.7	-77.8	-14.8
	0.05	-45717.6717	11	86.7362	7025.9284	299	-187.2	-47	355.9	195.7	91	-60.4	-7.6
	0.00	-45712.8811	11	81.2475	7026.3254	300	-190.6	-42.9	368.2	-378.2	91.3	70.7	-0.0
	0.08	-45709.7574	11	80.6505	7026.2798	318.8	-172.3	-50.8	365.9	-394.3	94.6	71.8	-8
	0.09	-45706.4395	11	178.3147	7025.5147	328	-167.6	-53.2	372.2	-555.9	95.9	86.1	-8.2
	0.11	-45697.7924	11	175.0347	7023.9398	331.6	-144.7	-61.1	367	-1077.2	99.4	59	-9.6
	0.12	-45694.7429	11	74.3513	7022.6563	312.3	-131.9	-55.9	343.6	-1099.3	100.1	29.1	-9.4
	0.13	-45691.6812	11	173.4646	7022.362	286.2	-128.5	-50.1	317.7	-915.7	98.8 07.8	0.5	-9.1
	0.14	-45685.8406	11	69.6759	7021.6649	245.6	-119.2	-34.1	275.1	-89.2	97.8	-43.3	-7.1
	0.16	-45683.5585	11	69.3079	7021.3752	248.7	-120.7	-28.2	277.9	529.3	97.1	-61	-5.8
	0.17	-45684.0986	11	168.7952	7022.4555	266.7	-133.8	-29.3	299.8	1186.3 1688.6	96.4 96	-63.6 -59.2	-5.6 -5.9
	0.19	-45680.0322	11	65.7959	7021.6253	316	-160.7	-42.7	357.1	1965.7	96	-54.4	-6.9
	0.2	-45673.7703	11	64.2914	7021.1684	330.6	-181.2	-48.7	380.1	1880	94.3	-46.2	-7.4
	0.21	-45669.8647	11	163.0684 159.5295	7019.5546	351.8 372.7	-201./	-52.4	408.9	1532 1013 2	93.2 93.3	-27.5 4.8	-7.3
	0.23	-45660.7074	11	56.9974	7018.8105	377.9	-219.3	-48.2	439.6	479	92.9	42.3	-6.3
	0.24	-45657.3262	11	54.8977	7017.4485	379.6	-218.6	-43.7	440.2	10.5	93.1	88.4	-5.7
	0.25	-45656.8471	11	151.9619 150 1409	7017.8824	367.8	-204.5	-40./	422.8	-380./ -688.7	93.9 96.2	137.6 1704	-5.5 -6
	0.27	-45648.0935	11	48.8595	7017.433	353.3	-156.9	-58.5	390.9	-875.9	99.1	182.6	-8.6
	0.28	-45643.8132	11	46.1618	7017.4631	350.6	-138.1	-73.2	383.8	-989.4	101.5	175.5	-11
	0.29	-45635.9368	11	45.5905	7016.8518	353.0	-116.3	-82.2	381.2	-1108.4	104.8	68.7	-12.5
	0.31	-45633.6979	1	145.281	7013.9619	342.8	-92	-97.5	368.1	-1199.6	108	-11.1	-15.4
	0.32	-45630.2523	11	43.3636	7011.285	330.6	-91.6	-101.5	357.7	-1332.1	107.5	-93.5	-16.5
	0.33	-45623.5736	11	142.6119	7010.9196	306.8	-94.2	-97.3	335.4 315	-1444.5	105.9	-107.8 -223.1	-16.6
	0.35	-45621.8925	1	1141.388	7010.4567	258.9	-123.4	-80.1	297.7	-1291.1	97.5	-241.8	-15.6
	0.36	-45615.737	11	39.7059	7009.2106	238	-129.7	-67.1	279.2	-1014.3	94.4	-228.5	-13.9
	0.37	-45614.8069	11	130.1189 136.5786	7008.1989	210./ 204.1	-134.6 -140	- 58.7) – 61 ค	201.8	-552.5 33.6	91.2	-126.3	-13
	0.39	-45613.1928	11	34.5155	7007.2134	206.3	-146.1	-68	261.8	560.6	87.7	-71	-15.1
	0.4	-45611.5561	11	33.4036	7006.4969	219.1	-147.7	-69.3	273.2	982.2	89	-37.8	-14.7
	0.41	-45607 4586	11	32.4901	7006.5588 7005 7272	235.3	-153	-62.9	287.9	1260.4	90 92 4	-29.5	-12.9 -114
	0.43	-45604.4413	11	29.7745	7004.7649	297.1	-171.6	-60.1	348.3	1296.8	93	-63.1	-9.9
	0.44	-45599.5721	11	28.1359	7003.2282	304	-187.8	-46	360.3	1124.3	91.3	-91.7	-7.3
	0.45	-45596.1478	11	125.9777	/003.2523	301.3	-206.1	-32.4	366.5	938.6	88.6	-108.2	-5.1

(a) 地上追尾データ表 (一部)

図 15. 地上レーダー追尾データ (Run#4 Sortie#01001)

S 46285.7

46282.5 46279.7

46275.5

46272.3

46269.6 46266.7 46264.8 46261.7

46258.2

46253.6 46249.4 46246.1 46243.1

46239.6

46237.1

46234.8

46235.5

46232.9 46231.2

46224.9

46220.8

46215.7 46211.5 46207.9

46207.4

46202.6

46198.6

46194.3 46189.9 46186.3

46183.8

46179.9

46176.9

46173.2

46171.5 46165.2

46163.9

46163.6

46162.2

46160.5 46158.8

46156.2 46153.1

46148

46144.6

D -229.7

511.6 456.6 -117.9

48.4

97.8

60.8 4.5 7.8 12.6

-12.3

1.3 18.7 31.4

34.3 32.7

29

18.3

11.4

6.1 2.9

1.3

-6.2

-20.8 -38.9

-63.9 -90.4

-114.8

-132.4

-134.6 -119.6

> -86.9 -44.8

-15.5

1.1

14.9

29.9

43.8 54.6

69.2

86.7

109 135.7

163.5 175.2

162

図 15. 地上レーダー追尾データ (Run#4 Sortie#01001)

MISSION	NR	:	01003:
MISSION	TYPE:	JAXA	
MISSION	DATE:	2010)/9/9

TZERO: 10.50.40.000

STATIONS ON MISSILE: rir778c

COORDINATE S	SYSTEM
--------------	--------

LOCAL	CARTESIAN	SYSTEM	WITH	ORIGO	IN	
Х	=	2420604	(Sweref93)	
Υ	=	846959				
Z	=	5820824				
X-Axis	oriented	123.0026	degrees	relative	TRUE	North

1

PRINTED PARAMETERS

TIME	=	TIME	IN	SECONDS	REL.	TZERO			
X,Y,Z	=	CARTESIAN	COORDINATES	IN	LOCAL	SYSTEM	:		
X',Y',Z'=	COORDINATE	VELOCITIES	IN	M/S					
V	=	VELOCITY	M/S						
V	=	ACCELERATION	(M/S**2)						
С	=	FLIGHT	COURSE	IN	DEGREES				
C'	=	FLIGHT	COURSE	RATE	IN	DEG/SEC			
D	=	DIVE	ANGLE	RELATIV	THE	X/Y	PLANE	(+=CLIMBING	-=DIVING)
D'	=	DIVE	ANGLE	RATE	IN	DEG/SEC			
S	=	DISTANCE	IN	METERS	FROM	LOCAL	ORIGO		

TIME	Х	Y	Z	X'	Y'	Z'	V	V	С	C'	D	D'	S
0	-37033.5099	-1136.9201	13605.4083	344.5	-17.1	75.8	353.2	-3298	120.2	-35022	12.4	-883.1	39470
0.01	-37030.0647	-1137.0916	13606.1665	317.2	38.6	19.9	320.2	-603.9	129.9	-17492	3.6	-928.9	39467
0.02	-37027.1651	-1136.1483	13605.8066	336.4	43.1	-36.7	341.1	-1085.9	130.3	-1819.8	-6.2	-84.7	39464.2
0.03	-37023.4714	-1136.0342	13605.3317	307.6	31.2	0.9	309.2	-207.8	128.8	2830.3	0.2	-160.2	39460.5
0.04	-37020.8368	-1135.8318	13606.0339	318.2	19.6	-41	321.4	-734.8	126.5	4335.8	-7.3	126.1	39458.3
0.05	-37017.2951	-1135.7297	13604.8198	297.7	30.7	-13	299.5	-473.1	128.9	-1582.8	-2.5	-44.4	39454.5
0.06	-37014.5352	-1135.0016	13605.0462	294	33	-10.5	296	-286	129.4	16.4	-2	24.2	39452
0.07	-37012.2531	-1135.3696	13604.7565	295.2	31.3	-3.3	296.9	-219.8	129.1	24.4	-0.6	54.5	39449.8
0.08	-37009.3534	-1134.4263	13604.3966	296.9	37.2	1.8	299.2	-35.5	130.1	32.7	0.4	41.5	39446.9
0.09	-37006.7954	-1134.203	13605.0882	298.3	39.4	0.4	300.8	-5.3	130.5	35.4	0.1	58.2	39444.7
0.1	-37003.0707	-1133.9441	13604.6738	296.9	41.1	3.9	299.7	65.3	130.9	25.3	0.8	39	39441.1
0.11	-37000.2665	-1133.3281	13605.5683	302.1	40.1	-0.3	304.8	37	130.6	22	0	37.7	39438.8
0.12	-36996.6815	-1133.2844	13605.7402	305.2	42	-2	308.1	-15.7	130.8	19.6	-0.4	38.2	39435.5
0.13	-36993.3827	-1131.99	13605.6043	303.8	40.8	5.4	306.6	-44.5	130.6	9.9	1	48.3	39432.3
0.14	-36991.1139	-1132.1011	13604.7071	300.8	43.9	7.2	304.1	-38.5	131.3	5.7	1.3	63.9	39429.8
0.15	-36988.4161	-1131.6626	13604.8125	293.5	44.9	14	297.3	-26.2	131.7	3.4	2.7	70.4	39427.3
0.16	-36984.7225	-1131.5485	13604.3375	293.4	43.3	14.7	296.9	-33	131.4	4.5	2.8	72.7	39423.7
0.17	-36981.9936	-1130.9653	13604.5034	291.4	43.4	19.3	295.3	-16.2	131.5	-2.8	3.8	60.5	39421.2
0.18	-36979.2228	-1130.3868	13606.7733	295.4	39.9	27.9	299.4	32.4	130.7	-14	5.3	38.4	39419.3
0.19	-36976.4307	-1129.5676	13606.3423	299.8	41.9	34.8	304.7	77.3	131	-28	6.6	18.9	39416.6
0.2	-36973.8726	-1129.3443	13607.0339	300.5	42.5	32.6	305.2	103.8	131.1	-35.5	6.1	-4	39414.4
0.21	-36970.1789	-1129.2302	13606.559	298.5	44.5	29.7	303.2	69.8	131.5	-37.1	5.6	-21.1	39410.8
0.22	-36967.3736	-1128.6678	13606.7355	299.9	37.5	23	303.1	20.7	130.1	-35.9	4.4	-42.6	39408.2
0.23	-36963.7898	-1128.5705	13607.6254	303.6	31.2	18.4	305.7	-40.8	128.9	-31.1	3.5	-62.2	39405.1
0.24	-36961.0609	-1127.9872	13607.7912	304.6	27.1	16.5	306.3	-77	128.1	-28	3.1	-70.4	39402.6
0.25	-36958.1469	-1127.3544	13607.3209	303.6	27.7	12.7	305.2	-83.9	128.2	-18.8	2.4	-63.3	39399.7
0.26	-36955.387	-1126.6263	13607.5473	298.7	28.5	11.8	300.2	-71.9	128.4	0.4	2.2	-52.6	39397.1
0.27	-36952.4651	-1127.7282	13607.8393	296.4	29.7	5.3	297.9	-77.5	128.7	29	1	-37.4	39394.5
0.28	-36948.7737	-1127.5069	13608.8003	295.8	30.7	-0.2	297.4	-84.5	128.9	47.5	0	-19.1	39391.4
0.29	-36946.0426	-1127.0308	13607.5302	296.9	31	-1.1	298.5	-60.1	129	54.7	-0.2	2.7	39388.4
0.3	-36943.2062	-1126.3236	13607.7673	296.3	34.5	3.2	298.3	-12.5	129.6	55.8	0.6	24.7	39385.8
0.31	-36940.5083	-1125.8851	13607.8726	297.3	44.3	3.9	300.6	41.7	131.5	51	0.7	37.3	39383.3
0.32	-36937.6708	-1125.2315	13607.3916	293.5	52.3	6.6	298.2	67.1	133.1	41.9	1.3	49.7	39380.4
0.33	-36934.1623	-1125.167	13607.5529	292.4	50.7	13.4	297.1	80.5	132.8	34.6	2.6	51.8	39377.2
0.34	-36931.4645	-1124.7285	13607.6583	294.8	48.7	21.5	299.5	97.3	132.4	20.9	4.1	44.3	39374.7
0.35	-36928.6293	-1123.9676	13608.6133	297.5	50.8	24.8	302.8	106.4	132.7	0.4	4.7	32.6	39372.3
0.36	-36925.2994	-1122.5284	13608.538	300.3	48.5	20.2	304.9	98.4	132.2	-19.3	3.8	22.3	39369.2
0.37	-36923.095	-1122.822	13608.9557	300	46.1	22.4	304.3	93.8	131.7	-25.9	4.2	8.9	39367.2
0.38	-36919.5423	-1122.8694	13609.785	300.5	50	20.1	305.3	61.9	132.4	-23.7	3.8	-4	39364.2
0.39	-36916.6282	-1122.2366	13609.3146	304.2	45.7	18.8	308.2	16.1	131.5	-23.4	3.5	-6.1	39361.3
0.4	-36913.4071	-1120.8678	13609.8862	304.1	40.3	18.7	307.3	-28.8	130.6	-24	3.5	3.8	39358.4
0.41	-36910.25	-1121.4273	13608.3375	302.6	38.3	18.9	305.6	-45.6	130.2	-19.2	3.5	21.2	39354.9
0.42	-36907.5855	-1121.0264	13609.8183	301.6	42.4	17.6	305.1	-47	131	-16.3	3.3	26.1	39352.9
0.43	-36904.2247	-1119.4424	13609.8035	299.5	41.5	17.4	302.8	-55.4	130.9	-14	3.3	30.9	39349.7
0.44	-36901.0567	-1120.1514	13610.2984	298.6	38.6	23.7	302	-56.7	130.4	-1.3	4.5	29.5	39347
0.45	-36898.4986	-1119.9282	13610.99	296.4	37.5	29.8	300.3	-40.8	130.2	8.5	5.7	23.6	39344.8

(a) 地上追尾データ表 (一部)

図 16. 地上レーダー追尾データ (Run#5 Sortie#01003)

図 16. 地上レーダー追尾データ (Run#5 Sortie#01003)

MISSION	NR	:	01003:
MISSION	TYPE:	JAXA	
MISSION	DATE:	2010)/9/9

TZERO: 10.58.55.000

STATIONS ON MISSILE: rir778c

COORDINATE S	SYSTEM
--------------	--------

LOCAL	CARTESIAN	SYSTEM	WITH	ORIGO	IN	
Х	=	2420604	. (Sweref93)	
Y	=	846959	1			
Z	=	5820824				
X-Axis	oriented	123.0026	degrees	relative	TRUE	North

1

PRINTED PARAMETERS

TIME	=	TIME	IN	SECONDS	REL.	TZERO			
X,Y,Z	=	CARTESIAN	COORDINATES	IN	LOCAL	SYSTEM	:		
X',Y',Z'=	COORDINATE	VELOCITIES	IN	M/S					
V	=	VELOCITY	M/S						
V	=	ACCELERATION	(M/S**2)						
С	=	FLIGHT	COURSE	IN	DEGREES				
C'	=	FLIGHT	COURSE	RATE	IN	DEG/SEC			
D	=	DIVE	ANGLE	RELATIV	THE	X/Y	PLANE	(+=CLIMBING	-=DIVING)
D'	=	DIVE	ANGLE	RATE	IN	DEG/SEC			
S	=	DISTANCE	IN	METERS	FROM	LOCAL	ORIGO		

TIME	Х	Y	Z	X'	Y'	Z'	V	V'	С	C'	D	D'	S
0	-38184.9196	-1670.9237	13608.6336	341.4	-31.6	69.8	349.9	-3221.1	117.7	-34904	11.5	-845.4	40571.8
0.01	-38181.5054	-1671.24	13609.3312	315.7	31.3	16.9	317.7	-859.9	128.7	-17495	3	-957.4	40568.9
0.02	-38178.6058	-1670.2968	13608.9713	328.6	27.6	-44.3	332.7	1151.9	127.8	-1278	-7.6	-115.9	40566
0.03	-38175.0507	-1670.4515	13608.3647	335.4	83.2	-7.3	345.7	-159	136.9	3447.3	-1.2	57	40562.5
0.04	-38171.722	-1668.9587	13609.0074	308	84.1	-22	320	-373.2	138.3	4431.6	-3.9	207.2	40559.5
0.05	-38169.0996	-1668.553	13608.3841	315.2	54.5	-12.2	320.1	-125.9	132.8	-1554.1	-2.2	-45.2	40556.8
0.06	-38166.1544	-1667.7754	13607.9743	318.3	56.1	-12.8	323.5	-12.5	133	13.4	-2.3	25.1	40553.8
0.07	-38162.931	-1666.5138	13607.1098	319.8	53	-8.5	324.3	-56.8	132.4	-9.4	-1.5	59.7	40550.5
0.08	-38159.8717	-1667.2932	13608.2515	320.5	56	-5.3	325.4	-36.2	132.9	-37.1	-0.9	30.1	40548
0.09	-38156.178	-1667.1791	13607.7766	320.7	54.1	-4	325.2	47.9	132.6	-18.5	-0.7	31.5	40544.4
0.1	-38153.0334	-1665.7895	13608.3375	323.9	54.1	1.8	328.4	15.6	132.5	7.2	0.3	20.8	40541.5
0.11	-38149.2322	-1665.5514	13607.9337	322.9	55.3	3.3	327.7	-27.3	132.7	7.9	0.6	21.3	40537.8
0.12	-38146.5344	-1665.1129	13608.039	322.5	55.2	3.7	327.2	-53.4	132.7	8.1	0.7	22	40535.3
0.13	-38143.2046	-1663.6737	13607.9637	319.9	58.9	-6.3	325.3	-76	133.4	1.1	-1.1	21.6	40532.1
0.14	-38140.5067	-1663.2353	13608.069	316.5	60.6	-3.9	322.3	-89.9	133.8	-2	-0.7	23.1	40529.5
0.15	-38136.9218	-1663.1916	13608.2409	317.7	56.9	0.1	322.7	-104.3	133.2	-7.9	0	25	40526.2
0.16	-38134.0222	-1662.2483	13607.8811	315.7	56.6	6.5	320.8	-82.4	133.2	-18	1.2	29.8	40523.3
0.17	-38130.4372	-1662.2046	13608.053	315.6	55.3	11.1	320.6	-63.2	132.9	-28	2	29.9	40520
0.18	-38127.6295	-1661.7494	13606.7934	315.7	50.3	9.2	319.9	-40.5	132.1	-38	1.7	24.7	40516.9
0.19	-38124.4096	-1660.3269	13608.083	315.2	51.1	11.3	319.5	-25.3	132.2	-46.2	2	5.1	40514.3
0.2	-38120.7493	-1660.2504	13608.9835	314.4	49.1	13.6	318.5	-29.5	131.9	-48.1	2.4	-13.2	40511.1
0.21	-38118.128	-1659.7912	13609.0782	318	44.2	13.9	321.3	-11.3	130.9	-51	2.5	-26.5	40508.7
0.22	-38115.2916	-1659.0839	13609.3152	317.5	41	8.8	320.2	6.5	130.4	-45.9	1.6	-31.5	40506.1
0.23	-38111.7043	-1659.1474	13608.0511	317.7	38.4	2.8	320.1	11.4	129.9	-33.4	0.5	-30.2	40502.3
0.24	-38108.8691	-1658.3866	13609.0062	317.6	32.4	-3.2	319.2	17.5	128.8	-22.1	-0.6	-32.4	40499.9
0.25	-38105.3152	-1658.4877	13609.1175	315.7	32.1	-3.8	317.4	11.5	128.8	-4.5	-0.7	-31.6	40496.6
0.26	-38101.5905	-1658.2287	13608.7031	319.3	30.2	-2.3	320.8	4.8	128.4	17.9	-0.4	-25.8	40492.9
0.27	-38098.9225	-1657.9887	13608.0299	320.7	34.9	-0.3	322.6	23.7	129.2	33.3	-0.1	-20.9	40490.2
0.28	-38096.0229	-1657.0455	13607.67	317.7	40.8	0.5	320.3	27	130.3	43.8	0.1	-19.8	40487.3
0.29	-38092.6099	-1657.3081	13609.0857	318.6	42.5	-3.7	321.5	24.8	130.6	48.7	-0.7	-27.2	40484.6
0.3	-38089.8356	-1656.8905	13609.2016	315.9	47.3	-5.2	319.5	7.7	131.5	42.9	-0.9	-38.1	40482
0.31	-38086.1109	-1656.6316	13608.7872	315.9	54.6	-5	320.6	-31.3	132.8	29.3	-0.9	-39.8	40478.3
0.32	-38082.8265	-1655.0268	13608.7618	318.5	54.2	-10.3	323.2	-45.3	132.7	9.4	-1.8	-32.9	40475.2
0.33	-38080.1275	-1654.6419	13608.1492	316.8	53.3	-13.5	321.6	-26.7	132.6	-7.4	-2.4	-16.8	40472.4
0.34	-38076.5426	-1654.5982	13608.3211	315.8	51.9	-21.2	320.8	-19.7	132.3	-18.4	-3.8	7.1	40469.1
0.35	-38073.705	-1653.9446	13607.8401	314.2	48.2	-23	318.7	-7.6	131.7	-27.9	-4.1	28.3	40466.2
0.36	-38070.3442	-1652.3605	13607.8253	312.8	41.9	-14.9	316	-4.5	130.6	-33.2	-2.7	46.9	40463
0.37	-38067.2503	-1653.156	13606.8736	314.6	39.1	-8.5	317.1	7	130.1	-25.2	-1.5	62.1	40459.8
0.38	-38064.5226	-1652.5191	13607.7575	318.9	39.8	-0.8	321.3	34.6	130.1	-18.4	-0.1	67.6	40457.5
0.39	-38060.9676	-1652.6739	13607.1508	318.6	40.7	7.7	321.3	38.9	130.3	-9.8	1.4	70.9	40454
0.4	-38058.2065	-1651.9994	13606.6592	318.5	40.4	10.7	321.2	28.6	130.2	-1.2	1.9	61	40451.2
0.41	-38054.5784	-1652.0141	13608.2172	318.9	39.2	12.3	321.5	9.7	130	6.7	2.2	43.6	40448.3
0.42	-38051.3251	-1650.5541	13608.1313	319	45.3	11.4	322.4	-20.1	131.1	10	2	31.3	40445.1
0.43	-38047.7402	-1650.5103	13608.3032	320.2	43	8.9	323.2	-35.8	130.7	11.3	1.6	19	40441.8
0.44	-38044.967	-1650.0391	13609.1371	316.8	43.3	13.9	320.1	-21.7	130.8	12	2.5	10.1	40439.5
0.45	-38042 2048	-16494183	13607 9275	314 4	42.3	124	3175	3.3	1307	114	22	78	404364

(a) 地上追尾データ表 (一部)

図 17. 地上レーダー追尾データ (Run#6 Sortie#01003)

This document is provided by JAXA.

図 17. 地上レーダー追尾データ (Run#6 Sortie#01003)

3.1.2. オンボードデータ

地上からのレーダー追尾データとは別に,機体に搭載 された機器によるオンボードデータも NEAT 側より提供 された.提供データ項目は,時刻,緯度,経度,高度, マッハ数,迎角,ピッチ角,加速度である.図18~図19 に各 sortie のオンボードデータ表及びグラフを示す.な お,図中に赤丸で示しているブームハウスの位置は緯度 66.4°経度19.3°である.

(a) オンボードデータ表 (一部)

図 18. オンボードデータ (Sortie#01001)

Time(s)	Latitude(deg)	Longitude(deg)	Height_airdata(m)	Mach	Alfa(deg)	Pitch(deg)	Acc_x(m/s2)	Acc_y(m/s2)	Acc_z(m/s2)
29039.084	66.45607404	18.9124029	14234.2	1.1	4.773	4.314	-0.095	-0.088	0.105
29039.35	66.45586033	18.91323827	14234.2	1.1	4.761	4.314	-0.076	-0.01	0.133
29039.484	66.45564719	18.91407307	14234.2	1.1	4.773	4.314	-0.095	0	0.076
29039.617	66.45543348	18.91490844	14234.3	1.1	4.761	4.314	-0.076	0.01	0.019
29039.75	66.45522091	18.91574152	14234.3	1.1	4.773	4.314	-0.095	-0.048	0.076
29039.884	66 454 79406	18 91741169	14234.3	1.1	4.//3	4.309	-0.105	0.019	0.076
29040.15	66.45458034	18.91824649	14234.3	1.1	4.773	4.297	-0.114	-0.076	0.133
29040.284	66.45437064	18.91909504	14234.4	1.101	4.744	4.291	-0.057	-0.01	0.095
29040.417	66.4541575	18.91992984	14234.4	1.1	4.773	4.28	-0.105	-0.019	0.162
29040.55	66.45394379	18.92076464	14234.4	1.1	4.744	4.274	-0.076	-0.057	0.248
29040.684	66.45373065 66.45351751	18.92159944	14234.4	1.1	4.744	4.269	-0.095	-0.01	0.095
29040.95	66.45330437	18.92326675	14234.5	1.101	4.756	4.269	-0.067	-0.038	0.124
29041.084	66.45309065	18.92410155	14234.5	1.102	4.756	4.269	-0.124	-0.029	0.152
29041.217	66.45287751	18.92493577	14234.5	1.101	4.767	4.269	-0.095	-0.019	0.067
29041.35	66.45266609	18.9257763	14234.5	1.101	4.784	4.269	-0.076	-0.019	0.095
29041.483	66.45245238 66.45223024	18.9200111	14234.5	1.102	4./6/	4.274	-0.086	-0.01	0.124
29041.75	66.45202552	18.92828013	14234.5	1.102	4.767	4.28	-0.095	-0.038	0.067
29041.883	66.45181296	18.92911149	14234.5	1.102	4.767	4.286	-0.086	-0.029	0.067
29042.017	66.45159924	18.92994629	14234.5	1.102	4.756	4.291	-0.114	0	0.038
29042.15	66.45138553	18.93078052	14234.5	1.102	4.784	4.286	-0.105	0.038	0.067
29042.284	66.45117239	18.93161474	14234.5	1.102	4.784	4.286	-0.076	-0.01	0.01
29042.417	66 45074725	18 93329007	14234.0	1.102	4.767	4.20	-0.087	-0.038	-0.01
29042.684	66.45053354	18.93412373	14234.6	1.102	4.767	4.274	-0.086	-0.038	0.076
29042.817	66.4503204	18.93495795	14234.6	1.102	4.784	4.274	-0.086	-0.048	0.133
29042.95	66.45010726	18.93578989	14234.6	1.102	4.75	4.269	-0.114	-0.038	0.048
29043.084	66.44989412	18.93662354	14234.6	1.102	4.767	4.269	-0.095	-0.057	0.133
29043.217	66.44968041	18.93/45/19	14234.6	1.102	4./56	4.269	-0.133	-0.057	0.105
29043.484	66.44925355	18.93912507	14234.6	1.102	4.784	4.203	-0.095	-0.057	0.076
29043.617	66.44904041	18.93995873	14234.6	1.102	4.767	4.28	-0.105	-0.048	0.105
29043.75	66.4488267	18.94079238	14234.6	1.102	4.767	4.28	-0.095	-0.057	-0.019
29043.884	66.44861356	18.94162604	14234.6	1.102	4.767	4.286	-0.076	-0.057	0.067
29044.017	66 4 4 8 4 0 0 4 2	18.9424574	14234.6	1.102	4./0/	4.286	-0.124	-0.076	0.067
29044.284	66.44797357	18.9441247	14234.0	1.102	4.784	4.291	-0.124	-0.067	0.038
29044.417	66.44776043	18.94495836	14234.7	1.102	4.784	4.291	-0.095	-0.076	0.01
29044.55	66.4475513	18.94580576	14234.7	1.102	4.784	4.291	-0.105	-0.086	0.105
29044.684	66.44733758	18.94663884	14234.7	1.102	4.767	4.297	-0.124	-0.038	-0.01
29044.817	66 4460112	18.94/4/192	14234.7	1.102	4./84	4.297	-0.067	-0.076	0.114
29045.084	66 44669816	18 94913637	14234.7	1.102	4.790	4.297	-0.152	-0.037	0.029
29045.217	66.44648502	18.94997002	14234.7	1.102	4.778	4.297	-0.114	-0.057	0.057
29045.35	66.44627131	18.9508031	14234.7	1.102	4.784	4.297	-0.124	-0.067	0.029
29045.484	66.44605817	18.95163618	14234.7	1.102	4.778	4.297	-0.105	-0.067	0.057
29045.617	66.44584503	18.95246926	14234.7	1.102	4.756	4.297	-0.095	-0.057	0.086
29045.75	66 44 54 18 17	18 95413542	14234.7	1.102	4.767	4.297	-0.086	-0.076	0.086
29046.017	66.44520503	18.9549685	14234.7	1.102	4.767	4.297	-0.095	-0.057	0.076
29046.15	66.44499247	18.95579929	14234.8	1.102	4.79	4.297	-0.057	-0.076	0.019
29046.283	66.44477933	18.9566318	14234.8	1.102	4.767	4.297	-0.095	-0.057	0.048
29046.417	66.44456561	18.95746488	14234.8	1.102	4.767	4.297	-0.105	-0.095	0.019
29046.55	66 444 3 5 2 4 7	18.95829739	14234.8	1.102	4./0/	4.297	-0.114	-0.057	0.076
29046.817	66.44392963	18.95997615	14234.8	1.102	4.767	4.303	-0.076	-0.086	-0.01
29046.95	66.44371649	18.96080866	14234.8	1.102	4.784	4.303	-0.133	-0.067	-0.038
29047.084	66.44350335	18.96164174	14234.8	1.102	4.784	4.303	-0.105	-0.095	0.019
29047.217	66.44329078	18.96247196	14234.8	1.102	4.767	4.297	-0.124	-0.086	0.048
29047.35	66.44307764 66.44286303	18.96330447	14234.8	1.102	4./50	4.291	-0.105	-0.076	0.048
29047.617	66.44265079	18.96496948	14234.9	1.102	4.75	4.286	-0.086	-0.076	0.019
29047.75	66.44243994	18.96581116	14234.9	1.101	4.767	4.28	-0.067	-0.076	0.048
29047.884	66.4422268	18.96664309	14234.9	1.102	4.767	4.274	-0.029	-0.076	0.105
29048.017	66.44201366	18.9674756	14234.9	1.102	4.756	4.269	-0.076	-0.086	0.076
29048.15	66.44180052	18.96830753	14234.9	1.102	4.756	4.269	-0.133	-0.048	0.133
29048 417	66 44137481	18 96997026	14234.9	1 102	4 7 5 6	4 274	-0.105	-0.067	0.048
29048.55	66.44116167	18.97080277	14234.9	1.102	4.784	4.28	-0.133	-0.076	0.133
29048.684	66.44094853	18.9716347	14234.9	1.102	4.778	4.291	-0.086	-0.057	0.076
29048.817	66.44073539	18.97246663	14234.9	1.102	4.767	4.291	-0.105	-0.038	0.067
29048.95	66.44052225	18.97329914	14235	1.102	4.778	4.291	-0.076	-0.029	0.01
29049.004	66 44009597	18 97496301	14230	1.102	4.778 4.778	4.291	-0.076	-0.057 -0.038	-0.038
29049.35	66.4398834	18.97579265	14235	1.102	4.778	4.286	-0.067	-0.038	0.105
29049.484	66.43967026	18.97662459	14235	1.102	4.761	4.286	-0.076	-0.038	0.048
29049.617	66.43945712	18.97745652	14235	1.102	4.767	4.28	-0.105	-0.01	0.048
29049.75 29049.884	00.43924398	18.9/828846	14235	1.103	4.761	4.274	-0.095	-0.029	0.133
20040.004	00.70000700	10.07010414	17233	1.103	4./J	7.205	0.114	0.01	0.019

Time [ஊc] (b) オンボードデータグラフ (Run#1)

図 18. オンボードデータ (Sortie#01001)

-40

-50

-60

-40

-50

-60

(c) オンボードデータグラフ (Run#2)図 18. オンボードデータ (Sortie#01001)

(d) オンボードデータグラフ (Run#3)図 18. オンボードデータ (Sortie#01001)

(e) オンボードデータグラフ (Run#4)図 18. オンボードデータ (Sortie#01001)

(a) オンボードデータ表(一部)

図 19.	オンボードデータ	(Sortie#01003)

Time(s)	Latitude(deg)	Longitude(deg)	Height_airdata(m)	Mach	Alfa(deg)	Pitch(deg)	Acc_x(m/s2)	Acc_y(m/s2)	Acc_z(m/s2)
39105.002	66.44464067	18.96383846	14263.1	1.068	5.506	5.025	0.324	-0.133	-0.095
39105.135	66.44443097	18.96463946	14263	1.068	5.518	5.031	0.333	-0.105	-0.105
39105.208	00.44422012	18.90344273	14203	1.068	5.489 E 400	0.031	0.371	-0.076	-0.095
39105.402	66 44270057	18.90024003	14203	1.068	5.483	4.990	0.352	-0.105	0.019
39105.668	66 44358815	18 96786464	14262.9	1.000	5 4 3 2	4,502	0.324	-0.076	0.048
39105 802	66 44337787	18 96866792	14262.9	1.000	5 4 1 4	4.956	0.000	-0.057	0.076
39105.935	66.44316702	18.96947121	14262.9	1.069	5.42	4.962	0.352	-0.01	0.133
39106.068	66.44295675	18.97027564	14262.8	1.069	5.449	4.973	0.362	0.019	0.076
39106.202	66.44274647	18.97107721	14262.8	1.069	5.46	4.985	0.352	-0.057	0.076
39106.335	66.44253562	18.97188107	14262.8	1.069	5.432	4.99	0.333	-0.057	-0.038
39106.468	66.44232535	18.9726855	14262.8	1.069	5.443	4.996	0.314	-0.076	0
39106.602	66.4421145	18.97348994	14262.7	1.069	5.449	5.002	0.343	0.019	-0.029
39106.735	66.44190365	18.97429437	14262.7	1.069	5.46	5.019	0.333	-0.01	-0.038
39106.868	66.4416928	18.9750988	14262.7	1.069	5.472	5.019	0.343	0	0.029
39107.002	66.44148195	18.97590324	14262.7	1.07	5.483	5.019	0.362	-0.01	0.057
39107.135	66.44127111	18.97670767	14262.7	1.07	5.466	4.99	0.352	-0.048	-0.01
39107.268	66.44106083	18.97751038	14262.6	1.07	5.426	4.962	0.314	-0.048	0.048
39107.402	66.44084941	18.97831539	14262.6	1.07	5.432	4.973	0.314	-0.048	0.105
39107.535	66.44063856	18.97912039	14262.6	1.07	5.432	4.979	0.324	-0.048	0.019
20107.000	66 44042771	10.9799204	14202.0	1.07	5.420	4.900	0.371	-0.019	0.019
39107.802	66 44000487	18 98154802	14202.0	1.071	5 4 5 5	4.99	0.333	0.029	0.048
39108.068	66 43979345	18 98235359	14262.5	1.071	5 4 2 6	5 002	0.343	-0.038	0.048
39108 202	66 4395826	18 9831586	14262.5	1.071	5 443	4 9 9 6	0.343	0.000	0.019
39108.335	66.43937175	18,98396246	14262.5	1.071	5.426	4,979	0.324	-0.038	0.048
39108.468	66.43916033	18.98476804	14262.5	1.071	5.437	4.973	0.352	-0.019	0.019
39108.602	66.43894891	18.98557362	14262.5	1.071	5.397	4.973	0.333	-0.038	0.086
39108.735	66.43873806	18.9863792	14262.5	1.071	5.426	4.99	0.324	-0.029	0.019
39108.869	66.43852606	18.98719222	14262.5	1.071	5.426	5.002	0.352	-0.029	-0.01
39109.002	66.43831464	18.98799837	14262.5	1.072	5.426	5.008	0.343	-0.067	0.019
39109.135	66.43810322	18.98880453	14262.5	1.072	5.455	5.013	0.333	0.019	-0.038
39109.269	66.4378918	18.98961068	14262.5	1.072	5.455	5.019	0.343	-0.01	-0.029
39109.402	66.43768095	18.99041454	14262.5	1.072	5.437	5.019	0.324	-0.057	-0.095
39109.535	66.43746896	18.99122069	14262.5	1.072	5.437	5.025	0.314	-0.029	-0.057
39109.668	66.43725754	18.99202741	14262.5	1.072	5.455	5.025	0.333	-0.019	0
39109.802	66.43704611	18.99283414	14262.5	1.072	5.455	5.025	0.362	0.01	0
39109.935	66.43683412	18.99364086	14262.5	1.072	5.437	5.031	0.343	0.029	0.048
39110.069	66.4366227	18.99444759	14262.5	1.072	5.437	5.031	0.324	-0.048	-0.038
39110.202	66.4364107	18.99525431	14262.5	1.073	5.449	5.031	0.314	-0.01	0.019
39110.335	66.43619928	18.99606046	14262.5	1.073	5.437	5.036	0.343	-0.076	0.019
39110.468	66.43598786	18.99686604	14262.5	1.073	5.437	5.036	0.343	-0.067	-0.038
39110.602	66.43577587	18.99767277	14262.5	1.073	5.437	5.042	0.333	-0.029	-0.038
39110.735	66.43556387	18.99848006	14262.5	1.073	5.455	5.042	0.324	-0.086	-0.067
39110.868	66.43535188	18.99928736	14262.5	1.073	5.437	5.042	0.333	-0.057	-0.067
39111.002	66.43513988	19.00010612	14262.6	1.073	5.449	5.048	0.324	0	-0.038
39111.133	66 4247150	19.00091342	14202.0	1.073	5.449	5.030	0.324	-0.048	-0.01
39111.208	00.4347109	10.00252050	14202.0	1.073	0.4Z	5.031	0.352	0.019	-0.038
39111.402	66 42420101	19.00232838	14202.0	1.074	5.437	5.031	0.314	-0.019	-0.067
39111.555	66 43407001	19.00333474	14202.7	1.074	5.42	5.048	0.295	-0.01	0.048
39111.000	66 43386702	10 00/0/00	14202.7	1.074	5 4 3 2	5.048	0.4	-0.038	0.105
30111.002	66 43365535	19 00575777	14262.8	1.074	5 392	5.013	0.024	-0.01	-0.01
39112.068	66 43344336	19.00070777	14262.8	1.074	5 3 9 2	5.036	0.200	0.019	0.01
39112.000	66 43323079	19.00737867	14262.8	1.074	5 4 2	5 048	0.324	0.029	0.048
39112 335	66 43301822	19 00818654	14262.9	1.074	5 42	5 0 5 9	0.314	0.019	-0.076
39112.468	66.43280623	19.00899499	14262.9	1.074	5.437	5.071	0.343	0.01	-0.048
39112.602	66.43259423	19.00980114	14262.9	1.075	5.432	5.076	0.333	-0.01	-0.076
39112.735	66.43238167	19.01060958	14263	1.075	5.449	5.082	0.314	-0.01	-0.048
39112.868	66.4321691	19.0114186	14263	1.075	5.443	5.065	0.333	-0.01	-0.048
39113.002	66.4319571	19.01222704	14263.1	1.075	5.414	5.053	0.324	-0.029	-0.076
39113.135	66.43174396	19.01304293	14263.1	1.075	5.432	5.048	0.324	-0.038	-0.048
39113.269	66.4315314	19.01385195	14263.2	1.075	5.414	5.048	0.343	0	-0.048
39113.402	66.43131883	19.01466097	14263.2	1.076	5.414	5.048	0.314	-0.029	0.038
39113.535	66.43110569	19.01546941	14263.3	1.076	5.403	5.048	0.324	0	-0.019
39113.669	66.43089369	19.01627671	14263.3	1.076	5.42	5.048	0.305	-0.038	0.019
39113.802	66.43068113	19.01708572	14263.4	1.076	5.403	5.048	0.314	0.01	-0.01
39113.935	66.43046856	19.01789531	14263.4	1.076	5.414	5.048	0.352	-0.029	0.019
39114.069	66.43025542	19.01870433	14263.5	1.076	5.397	4.99	0.352	-0.029	0.133
39114.202	66.43004285	19.01951392	14263.6	1.076	5.334	4.905	0.352	-0.038	0.219
39114.335	00.42982971	19.02032293	14263.6	1.077	5.271	4.864	0.324	0.029	0.429
39114.469	00.42901/14	19.0211331	14263.7	1.0//	5.248	4.864	0.333	0.01	0.305
39114.002	00.429404	19.02194269	14263.7	1.0//	5.254	4.899	0.305	-0.057	0.219
39114./35	00.42919144	19.022/5056	14203./	1.077	5.283	4.95	0.314	-0.01	0.248
39114.009	00.4289/83	19.023000/2	14203.8	1.077	5.34 5.202	5.002	0.333	-0.029	0.076
20115 125	66 42855202	10.0243/031	14203.0	1.077	0.09Z	5.042	0.324	0.01	_0.019
39115 260	66 4282282	19.0231004/	14203.0	1.077	J.449 5 // 20	5.005	0.302	-0.01	-0.124
39115 402	66 42212516	19 02681225	14263.0	1 077	5.443	5.070	0.324	-0.020	-0.095
39115 535	66 42791202	19 02762242	14263.9	1 077	5 4 5 5	5.070	0.333	0.029	-0.114
39115 669	66.42769888	19.02843315	14264	1 078	5 4 2 6	5 059	0.324	-0.01	0.114
39115,802	66.42748631	19.02924102	14264.1	1.078	5.409	5.048	0.295	-0.019	-0.038

Time [sec]

-20

-30

-40

-50

-60

-20

-30

-40

-50

-60

Time [sec]

(c) オンボードデータグラフ (Run#6)図 19. オンボードデータ (Sortie#01003)

-30

-40

-50

-60

-30

-40

-50

-60

3.2. 大気データ

3.2.1. 観測気球データ

ソニックブーム伝播推算に必要となる飛行試験中の飛 行空域における大気情報を収集する目的で,大気観測気 球による観測を試験日の朝に1回実施した.観測実施時 刻は下記の通り.

観測番号 (観測時刻)

01001/01003(8:30)

計測項目は、時刻、高度、大気圧、温度、露点、湿度、 水平方向風向風速、大気密度である. 観測データ(数値 データの一部と描画データ)を図 20 に示す. 数値データ 表中に記載されている地名 Point Charlie が観測気球放 球点であり基準海面高度(Mean Sea Level: MSL) 440m である. なお、ソニックブーム計測地点(地名 Nausta) は MSL が 473m であり、Point Charlie よりも 33m 高 度が高い. 図 20 において P は大気圧, T は気温, TD は 露点温度, U は相対湿度, Speed は風速, Density は大 気密度である. Dir は風向で北を 0° として時計回りに定 義され, v-comp は南北方向の風速成分(北に向かって吹 く風速成分が正), u-comp は東西方向の風速成分(東に 向かって吹く風速成分が正)を示している.

3.2.2. 係留気球データ

係留気球の破損により,上空約 1,000m における外気 温,外気湿度,気圧の計測は実施していない.

3.2.3. 地上データ

地上の観測データを表 2 に示す. なお,飛行試験中の 天候は快晴である.

FMV:T&I Testrange Barbro Juus Marina Sun	ERV/RV Vidsel so dman		TEST REPORT										
		Ν	IETEOROL	OGICAL	MEASURI	EMENTS							
		N	lission no:	01001:1	01003:1								
GROUND OBSERVATIONS		C P	ate: 2010-0 Place: Point	09-09 Charlie		Time: 08:30 MSL: 440	UTC						
		G V C A T T F V	Ground wind (isibility: > Clouds: 1/8 ir Pressure Cemperature Rel humidity Veather: NS	1: 240 deg 75 km Ci 8000 n 972 hP 972 hP 9: 12,6 de 7: 68 % SW	3,5 m/s n a ag C								
UPPER AIF MEASUREI	R MENTS	C F	Date: 2010-0 Place: Point	09-09 Charlie		Time: 08:30 MSL: 440	UTC						
	MSL	hPa	deg C	deg C	%	deg	m/s	m/s	m/s	kg/m3			
Time	Height	Р	Т	TD	U	Dir	Speed	v-comp	u-comp	Density			
0	440	972.6	12.7	7.0	69	240	3.5	1.8	3.0	1.18			
2	450	971.5	13.3	6.4	63	239	2.9	1.5	2.5	1.18			
4	461	970.2	13.1	6.2	63	239	2.9	1.5	2.5	1.18			
0	473	968.7	12.7	0.3	60	239	3.3	1.7	2.8	1.18			
10	403	966.1	12.3	6.3	67	239	3.0 4.0	2.0	3.1	1.10			
10	508	964.7	12.3	6.4	68	240	4.3	2.0	3.7	1.17			
14	519	963.5	12.0	6.4	68	241	4.5	2.2	4.0	1.17			
16	530	962.3	11.8	6.3	69	241	4.8	2.3	4.2	1.17			
18	539	961.1	11.7	6.2	69	242	5.0	2.3	4.4	1.17			
20	549	960.0	11.6	6.3	70	243	5.1	2.3	4.6	1.17			
22	560	958.8	11.5	6.3	70	244	5.3	2.3	4.8	1.17			
24	570	957.7	11.4	6.3	71	245	5.4	2.3	5.0	1.17			
26	581	956.4	11.3	6.3	71	246	5.6	2.2	5.1	1.17			
28	595	954.8	11.2	6.3	72	248	5.8	2.2	5.3	1.17			
30	607	953.5	11.1	6.3	72	249	5.9	2.1	5.5	1.16			
32	617	952.3	11.0	6.3	73	250	6.1	2.1	5.8	1.16			
34	626	951.2	10.9	6.3	73	251	6.3	2.0	6.0	1.16			
36	634	950.4	10.9	6.2	73	252	6.5	2.0	6.2	1.16			
38	642	949.4 049.5	10.8	6.2	73	253	6.7	1.9	6.4	1.16			
40	658	940.0	10.0	0.1	73	254	7 1	1.9	0.0	1.10			
42	665	541.1 046.2	10.7	6.0	73	204	7.1	1.9	0.0	1.10			
46	674	945.8	10.8	6.0	72	255	7.3	1.9	7.1	1.16			
.0			() ⇒	1.001		- / 4							

(a) 計測データ表 (一部)

図 20. 観測気球データ (Sortie#01001/Sortie#01003)

30

(b) 気圧・気温・湿度データ図

(c) 風向風速データ図

図 20. 観測気球データ (Sortie#01001/Sortie#01003)

時刻	気温(℃)	湿度(%)	気圧(hPa)	風速(m/s)	風向(deg)	備考
10:05	13	73	969.0	2.7	227.0	Run#1
10:13	13	72	969.0	2.7	247.0	Run#2
10:42	14	70	968.9	1.8	232.0	Run#3
10:49	15	70	968.9	1.8	203.0	Run#4
12:52	17	59	968.7	3.1	159.0	Run#5
13:00	17	58	968.8	3.1	205.0	Run#6

表 2. 地上大気データ

3.3. ソニックブームデータ

3.3.1. 空中計測データ

係留気球の破損により,空中ソニックブーム計測は実 施していない.

3.3.2. 地上計測データ

地上計測は全ての飛行,チャンネルにおいて正常な計 測に成功した.全6回の飛行に対する地上計測データを 図21~図26に示す.時刻は各飛行においてフラッシュ マウントにおけるソニックブーム計測データの開始時刻 を零とした相対時刻としている.なお,ブーム開始点は 最大音圧の10%になる点と定義した.また,音圧の単位 psf は重量ポンド毎平方フィート(lbf/ft²: pounds force per square foot)を表し, 1psf は約 47.9Pa である.

ブーム波形の代表としてフラッシュマウントのマイク 計測データを見ると、ほぼ全てのフライオーバーにおい てN型のソニックブーム圧力波形が計測されているのが 分かる.ただし、Run#1では、ダイブ飛行開始時とダイ ブ中に発生した2つのソニックブームがほぼ同時刻にマ イクに到達し、フォーカシングを起こしかけている.フ ォーカシングは特に Run#1 における湖の対岸での計測 データに顕著に現れている.(フォーカシングについては 次章で詳細に議論する.)

図 21. 地上計測音響データ (Run#1 Sortie#01001)

図 23. 地上計測音響データ (Run#3 Sortie#01001)

図 24. 地上計測音響データ (Run#4 Sortie#01001)

図 25. 地上計測音響データ (Run#5 Sortie#01003)

図 26. 地上計測音響データ (Run#6 Sortie#01003)

3.3.2.1. 反射板データ

4 種類の地上計測法 (フラッシュマウント,逆さ置き, 横置き,高さ 1.5m)の計測データを比較すると,まず高 さ 1.5m の位置では明らかに直接波と地面からの反射波 の 2 つの N 波が 0.01 秒程度の時間的なずれを伴って重 なっており,単一のソニックブーム波形を正確に計測す るには適当でないことが分かる.他の 3 種類の手法では 明確な差異は確認できない.ただし,フラッシュマウン トのマイクによるデータが他の 2 種類の設置方法による マイクのデータよりもややレベルが大きく,人が感じる ソニックブームの大きさとの相関が高い ASEL

(A-weighted sound exposure level: 単発騒音暴露レベル, A 特性音響暴露レベル)の値も最大で 1dB 程度大きくなる傾向が見受けられる. 横置きと逆さ置きではマイクのダイアフラム中心と反射板表面の間に僅かな距離があるため,この距離に応じた高周波成分の応答特性が変化する可能性ある. 今回はその距離は約 1cm と前回のABBA Test#1 よりも短く設定されており,影響は小さかったものと推察されるが,マイクの設置方法による僅かな差異の一因になった可能性もある.

反射板に取り付けた加速度計の計測データから反射板 の振動は十分に抑制されており、マイクの仕様からその 音響計測に与える影響は十分に小さいことが確認された. 従って,今回用いた反射板の下に砂を敷き詰める手法は, 地上計測精度向上のための方策の一つと言える.

今回は地上での計測であったため、地表から高度 1~ 2km 程度の大気境界層内で顕著に現れると言われている 大気乱流の影響により、ソニックブーム波形の一部が変 形していると考えられる.特に Run#3 と Run#4 を比較 すると、飛行条件はほぼ同じであり飛行時刻も 7 分程度 しか違わないが、特に圧力上昇部でのブーム波形の様子 は大きく異なっている.(Run#3 はピークが丸まってい るのに対して、Run#4 はピークが立ち上がっておりスパ イク状の変動も観察される.)同じ Run におけるマイク 同士が非常に良く一致していることからも、この違いは 大気乱流によるものであると推定される.この他にも例 えば Run#2 においては先端及び後端圧力上昇時に非常 に高いスパイクが観測されており、典型的な大気乱流効 果であると言って良い.

大気乱流による波形変形の影響を除去する簡易的な手

法として,後端ブーム後の圧力変動を,先・後端ブーム 部分から差し引く方法がある ⁵. この手法を飛行条件が 同じである Run#3 と Run#4 のフラッシュマウントマイ クのデータに適用した例を図 27 に示す. この図の(a)は 計測データであり,(b)が大気乱流の影響を除去したデー タである.図 27(b)より,大気乱流の影響を除くと,同じ 飛行条件で発生したソニックブーム波形はほぼ同一にな ることが分かる.

次に、ABBA Test#2 の主目的の1つであるダイブ飛行 と水平定常飛行のブーム波形の比較を行う.図 28(a)にダ イブ飛行(Run#2)と水平定常飛行(Run#4)のフラッシュ マウントマイクのデータを示す.ダイブ飛行と水平定常 飛行でブーム波形に大きな違いはなくどちらもN型波形 となっている.このことから D-SEND#2 のダイブ飛行に よる低ソニックブーム概念実証の可能性が示唆された. ただし、先端及び後端圧力上昇部においては大気乱流効 果と考えられる差異がある.そこで、前述の方法により 大気乱流の影響を除去した波形を図 28(b)に示す.このデ ータ処理により先端ブーム部分では2つの波形は特に良 い一致を示しており、ダイブ飛行と水平定常飛行での波

形の類似性が確認された.しかしながら,ここで用いた 大気乱流の影響を除去するための方法は簡易的なもので あり,圧力上昇部分の立ち上がり時間等も含めた詳細な 波形を取得するためには,大気乱流の影響を避けた空中 ブーム計測により再確認する必要があると考える.また, 波形中程の小さな圧力ピークの位置が,水平定常飛行で はダイブ飛行よりやや後方に位置していることについて も,マッハ数が約 0.1 異なっている影響とも考えられる ため更に条件を一致させた飛行試験を行った方が良いと 思われる.

増槽タンクの有無によるソニックブーム波形の違いに ついては、同じダイブ飛行をした場合の Run#2(増槽無 し)と Run#5/Run#6(増槽有り)のブーム波形を比較す ると明確な違いが確認できる.図29に増槽なし(Run#2) と増槽あり(Run#6)のフラッシュマウントマイクによる 計測結果(a)と、それらに大気乱流効果除去の処理を施し た結果(b)を示す.増槽ありでは増槽なしに比べて波形中 程の小さな圧力ピークの位置が後方に移動している.ま た、増槽ありでは先端圧力上昇のすぐ後方に強めの圧力 ピークがあることが、特に Run#5 で顕著に確認できる. このことから形状変更効果が確認できるソニックブーム 波形データが取得できたものと考えるが、先端圧力上昇 直後の圧力ピークに関しては、Run#6ではそれほど明確 には確認できなかったことから、大気乱流の影響の少な い上空での計測が求められる.

3.3.2.2. マネキンデータ

マネキンの耳に設置されたマイクと、反射板の上方に 設置されたマイクは共に地面から 1.5m の高さである. 従って、これらのデータを比較すると、直接波と反射波 の到達時間差は同じであり、同様の波形が計測されてい る.また、波形全体の強度もマネキンの有無にかかわら ず類似していることも確認される.しかし、特にショッ ク部分に置いては圧力変動の挙動がやや異なり、マネキ ンの耳における計測データの方が複雑な圧力波形となっ ている.この原因として、反射板上方 1.5m 点のマイク とマネキンの耳に設置されたマイクの位置は水平方向に 25m 離れていたために大気乱流の影響の現れ方が異なっ ていた可能性も考えられるが、いずれの飛行に置いても 同様の傾向が見られることから、頭部、耳介、胴体等に

よる反射や回折の影響の可能性が高いものと推察される. ASEL 値もマネキンの有無により多少異なっているが, その大小関係は 6 回の飛行を通じて統一的な傾向は観測 されていない.

マネキン胴体の前面と背面の計測に用いたマイクは他 のマイクと比べて低周波性能がやや劣るため、ブーム波 形中央部の圧力下降部分が直線的ではなく曲線状になっ ている.この現象は、低周波性能のより劣っているマネ キン背面でより顕著に確認される.一方,これらのマイ クの高周波性能は他のマイクと同様であり,従って先端 ショック近傍においては他のマイクによる計測結果と強 度の比較も可能である.実際に胴体の前・背面および耳 の位置での計測結果を比較してみると、強度にはあまり 大きな差は見られない. マネキンは Run#3 と Run#4 の 水平定常飛行においてソニックブームがマネキンの前上 方から伝播する方向に設置された.このためマネキン胴 体が壁のような働きをして前面では圧力が上昇し、背面 では減少する可能性も考えられたが、波形全体としては 計測データにはそのような傾向は明確には現れていない. これは、マネキンの大きさに対してソニックブーム波形 全体の波長が長かったためであると考えられる.従って, ソニックブームによる胴体の圧迫感や振動などを検討す る際には、全体の強度としては胴体のない自由空間で計 測したデータを参照することが可能と言える.一方,胴 体の前面と背面ではショック部分の挙動が異なっており, 背面でのデータは前面に比べるとショック後の比較的小 さな圧力変動が少なく滑らかな波形となっている. これ は衝撃部およびその直後に含まれる高周波成分はマネキ ン胴体の大きさに対して波長が十分に長くないためと考 えられる.

4. 試験結果解析

4.1. ソニックブーム強度推算

前回(2009年9月)と同様に、本飛行試験において計 測されたソニックブーム強度を First-cut 法 ⁶⁾ を用いて 推算する. First-cut 法では水平定常飛行を仮定している ため、Run#3/Run#4 に関しては計測地点から Ray Path (ブーム伝播の波線)を逆に辿った観測ソニックブーム 発生位置での飛行条件そのものを用い、それ以外のダイ ブ飛行においては観測ブーム発生地点と計測地点との相 対位置及びダイブ角を用いて水平定常に換算した換算高 度で推算を行う.(高度換算のイメージを図 30 に示す.) また,換算による伝播経路の差異,燃料消費による重量 の差異,及び増槽タンクの有無による形状ファクタへの 影響については考慮しない.使用した超音速機の機体全 長は 14.1m,機体重量の情報は得られていないが,器材 は搭載していないため空虚重量と最大離陸重量の中間を とって 7.7ton と仮定した.地上での反射係数は経験値か ら 1.9 とし,機体形状の影響を考慮するための形状ファ クタ Ks は揚力パラメータ KLの関数として下記の通り与 えた.

Ks=2.1KL+0.065

これは図 31 右上に示すデルタ翼の戦闘機タイプの近似 式である.また地上計測システムの標高が 473m あるこ とから仮想的に飛行高度を 473m 下げて推算した結果で ある.

Run#1:ケースA: M=1.36, H=6.0km, ΔP=2.02psf Run#2:ケースA: M=1.41, H=5.5km, ΔP=2.26psf Run#3:ケースC: M=1.33, H=6.3km, ΔP=1.90psf Run#4 : ケース C : M=1.33, H=6.4km, ΔP=1.90psf Run#5:ケース B: M=1.39, H=5.5km, ΔP=2.24psf Run#6:ケース B: M=1.38, H=5.3km, ΔP=2.32psf これらの推算結果と計測結果の比較を表3に示す.ここ で、計測結果から得られる先・後端の圧力上昇量を表す 値として各飛行のフラッシュマウントマイクデータの最 大値と最小値を用いる.計測結果には大気乱流等の影響 による波形の変形が含まれているため、正確な比較は困 難であるが, 計測波形から判断して大気乱流による波形 変形が最大値や最小値に与える影響が比較的小さいと考 えられる Run#3 や Run#6 では First-cut 法による推算結 果と計測結果の先端及び後端の圧力上昇量はまずまず良 い一致を示しており、N 波強度推算法としての First-cut 法の有効性が示されている.

図 30. 換算飛行高度の定義

図 31. First-cut 法における Ks と KLの関係 ⁶⁾

表 3. 圧力上昇	昇量の推算と	:計測結果の比	上較
-----------	--------	---------	----

Run	推算值 (First-cut)	計測最大値 (先端)	計測最小値 (後端)
1	2.02	2.29	-1.88
2	2.26	2.98	-2.19
3	1.90	2.04	-1.87
4	1.90	2.33	-1.93
5	2.24	2.87	-2.40
6	2.32	2.30	-2.09

4.2. ソニックブーム伝播解析

本飛行試験のRun#1/Run#2/Run#5/Run#6の4回のフ ライオーバーでは約45度のダイブ飛行を行ったが、地上 レーダー追尾データやオンボードデータで見た様に、ダ イブ飛行に入る際にマッハ数約 1.1 で水平定常飛行から ダイブ飛行へ移行する急降下運動(Pushover)を行う. 急降下運動している間は、機体から生ずる衝撃波は湾曲 し、時々刻々発生する衝撃波の伝播波線は図 32 に示す様 に包絡線(Caustic)を形成する.この包絡線上において はソニックブーム波形は通常のN型波(低ブーム設計さ れていない機体の場合)ではなく U 型の波形となること が知られており、ブームフォーカシング(フォーカスブ ーム)と呼ばれている.ブームフォーカシングは急降下 運動時だけではなく、加速運動(図33)や旋回運動にお いても発生する.また図 34 に示す様にカットオフマッハ 数(飛行速度が地上での音速に等しくなるマッハ数)で 飛行した際にも波線の包絡線が形成されるためフォーカ シングが発生する.非定常運動によるブームフォーカシ ングが発生した際には、その非定常運動の前後における 定常運動時に発生した N型波とブームフォーカシングの U型波が間をおいて続けて観測されるが、ある場所にお いては N 型波と U 型波が同時に観測されることがあり、 その場合にはブーム強度が数倍に強まって観測される. 狭義にはこの現象をフォーカスブームと呼んでおり、ソ ニックブームの許容性評価において重要な課題となって いる.

図 32. 急降下運動によるフォーカスブーム 7)

Straight Caustic

図 34. カットオフマッハ数飛行時のフォーカスブーム 7)

ABBA Test#2 においても Run#2/Run#5/Run#6 にお いては, 飛行経路直下においては N 型波の約 0.7 秒後, 対岸(1.6km 側方)においては N 型波の約 0.6 秒後に U 型波が観測された(図 35(a)).一方,水平定常飛行では 観測されたのはN波のみで,U波は観測されていない(図 35(b)). N 型波は定常ダイブ(厳密にはわずかに加速し ているがダイブ角はほぼ一定) で観測点のほぼ直上を通 過した際に発生した衝撃波が真下に伝播してきたソニッ クブームであり、U型波は高度 14km で急降下運動をし た際に発生したフォーカスブームである.一方, Run#1 においては飛行経路直下においてN型波が崩れているの が分かる.これはN型波の持続時間(Duration)より短 い時間間隔(0.1 秒以内)でU型波が観測されたため、 N型波とU型波がつながって観測された結果である.ま た Run#1 では湖対岸において先端ブーム強度が約 6psf と機体直下の3倍近い値となっており、これがまさにN 型波とU型波が同時に観測されたフォーカスブームであ

る.波形もN型とU型の重ね合わせの形をしており,U 型波の持続時間がN型波よりもわずかに長いため後端ブ ームは2段の圧力上昇となっている.

この様に Run#1 と Run#2/Run#5/Run#6 とでフォー カシングの具合に差が出た原因を探るため実飛行データ 及び気象データを用いたソニックブーム伝播解析⁸⁾を実 施した.図12~図17に示した地上レーダー追尾データ を入力として時々刻々発生する衝撃波の波線を追いかけ, 地上との交点を求める. 伝播経路における気象条件とし ては図 20 に示した観測気球データを用い、大気温度(音 速)の変化による波線の屈折や、風による流れも考慮し た. 図 36 に 4 ケースの飛行経路を重ねて示す. Run#1 は Run#2/Run#5 と比較すると急降下を始めるタイミン グが遅く,観測地点上空通過時の高度が高いのが分かる. 一方 Run#6 は Run#2/Run#5 よりも急降下を始めるタイ ミングが早く, 観測地点上空通過時の高度は低くなって いる.図37には、飛行経路直下及び対岸(飛行経路側方 1.6km の位置)における波線と地面との交点を、横軸を 時間(ブーム観測時間),縦軸を飛行経路に沿った距離(地 上) でプロットした図を示す. 図中にブームの発生順序 を矢印で示してあるが、このダイブ飛行の場合、観測地 点ではブーム発生順序とブーム観測順序は逆となり, 定 常ダイブ時のN型波が先に,急降下運動時のU型波が後 に観測されることが本解析でも示された. 観測地点 (X=0m)における N型波とU型波の観測時間差を図中 に示してあるが, Run#1 では約 0.1 秒, Run#2/Run#5 では約 0.9 秒, Run#6 では約 1.3 秒の間隔をおいて観測 されると推算された.本結果は計測データの傾向と一致 しており、飛行試験におけるブームフォーカシングを説 明することができる.本推算手法により今後計画してい る D-SEND#2 飛行試験においてブームフォーカシング を避けるための飛行パターンを検討することが可能とな った.対岸においてもこれらの時間差はほぼ同様である が、Run#1 に関しては時間間隔が更に短くなっており、 対岸でN型波とU型波が同時に観測された計測結果の傾 向と一致している.

図35. N波とU波

図 36. 飛行経路データ (Run#1/Run#2/Run#5/Run#6)

(b) 飛行経路側方 1.6km(湖の対岸)図 37. ソニックブーム伝播解析結果

5. まとめ

JAXA が開発した空中ソニックブーム計測システム (ABBA システム)を含むソニックブーム計測システム (BMS)の確認,及び D-SEND#2 飛行試験におけるダ イブ飛行による低ブーム設計概念実証の可能性確認のた め, 実機を用いた飛行試験 (ABBA Test #2) を実施した. 地上計測システムにより、各種マイク設置方法および設 置位置で実ソニックブーム波形計測を行いその差異の検 討を行うことでミニマムサクセス(地上ブーム計測法の 確立)を達成した.また、係留気球の破損により ABBA システムの計測はできなかったが、地上ソニックブーム 計測によりダイブ飛行による低ブーム設計概念実証の可 能性を確認し、フルサクセスの一部(D-SEND#2低ブー ム設計概念実証可能性の確認)を達成した.また、増槽 タンクの有無による機体下面形状の差異を示すソニック ブーム波形データを取得し、エクストラサクセス(ソニ ックブーム推算手法検証データの取得)も達成した. さ らに、ダイブ飛行特有の現象であるソニックブームのフ オーカシング現象が観測され、フォーカスブーム推算技 術の検証データも得られた.

本試験で達成できなかったフルサクセスのABBAシス テムの冗長性の確認は,2011年5月に実施する飛行試験 で確認する予定である.

6. 謝辞

本飛行試験の実施にあたり,JAXA 航空プログラムグ ループ運航・安全技術チームの町田茂氏,及び超音速機 チームの本田雅久氏には,JAXA 試験隊の安全管理者と して多大なる御協力を得た.また,東北大学の山下博氏 と内海雄紀氏にはソニックブーム計測で御協力頂いた. 関係各位に感謝の意を表する.

参考文献

- 村上哲,「静粛超音速研究機技術の研究開発について」第40回流体力学講演会/航空宇宙数値シュミレーション技術シンポジウム論文集, pp.79-82, 2008.
- 本田雅久,牧野好和,冨田博史,進藤重美,「低ソニ ックブーム設計コンセプト確認落下試験(D-SEND) 計画」日本航空宇宙学会第 41 期年会講演会講演集, pp.652-655, JSASS-2010-1115, 2010.

- 3) 中右介,牧野好和,進藤重美,「空中ソニックブーム 計測システム確認飛行試験(その1)」 JAXA-RM-10-012, 2010.
- (NEAT における第2次ソニックブーム計測試験計 画書」XNS-10023, 2010.
- Plotkin, K., Haering, E.A., Murray, J.E., Maglieri, D.J., Salamone, J., Sullivan, B.M., Schein, D., "Ground Data Collection of Shaped Sonic Boom Experiment Aircraft Pressure Signatures," AIAA-2005-0010, 2005
- Carlson, H.W. and Maglieri, D.J., "Review of Sonic Boom Generation Theory and Prediction Methods," J. Acoust. Soc. Am., 51(1972), pp.675-684.
- Plotkin, K., Martin, R., Maglieri, D., Hearing, E.A. and Murray, J., "Pushover Focus Booms from the Shaped Sonic Boom Demonstrator," AIAA-2005-0011, 2005.
- 8) 牧野好和,石井寛一,「小型超音速実験機のソニック ブーム計測」第44回飛行機シンポジウム講演論文集, pp.60-68, 2006.

付録:写真集

地上計測システム設置状況

地上計測手法の検討

対岸における計測システム設置状況

マネキンによる計測

マネキン右耳のマイク

増槽タンク搭載機体形状