

宇宙航空研究開発機構研究開発資料

JAXA Research and Development Memorandum

静粛超音速研究機基本設計低ブーム確認超音速風洞試験

牧野 好和,野口 正芳

2010年1月 宇宙航空研究開発機構

Japan Aerospace Exploration Agency

目 次

1. 記号	1
2. はじめに	2
3. 試験計画	2
3.1 模型設計	2
3.2 近傍場圧力波形計測	3
3.3 六分力計測	5
3.4 模型たわみ角推定	6
3.5 試験実施ケース ·······	7
4. 試験結果	8
4.1 低ブーム設計検証	8
4.1.1 機首部圧力波形に及ぼす模型サイズの影響	8
4.1.2 ADS が先端ブームに及ぼす影響	8
4.1.3 インテークスピレージが波形に与える影響	8
4.1.4 模型支持方法の違いによる圧力波形比較	9
4.1.5 低ブーム設計検証結果	9
4.1.6 垂直尾翼が圧力波形に与える影響	9
4.1.7 伝播距離が圧力波形に与える影響	10
4.1.8 水平尾翼厚みが圧力波形に与える影響	10
4.1.9 胴体後端ベース面が圧力波形に与える影響	11
4.1.10 第 3.5 次形状と第 3.5-2 次形状の波形比較	11
4.1.11 機首部と中胴部が圧力波形に与える影響	11
4.2 飛行制御要求検証	12
4.2.1 飛行マッハ数が圧力波形に与える影響	12
4.2.2 迎角変動が圧力波形に与える影響	12
4.2.3 ロール角変動が圧力波形に与える影響	12
4.2.4 水平尾翼舵角が圧力波形に与える影響	13
5. まとめ	13
6. 謝辞	13
参考文献	13

静粛超音速研究機基本設計低ブーム確認超音速風洞試験*

牧野 好和*1,野口 正芳*1

Preliminary Supersonic Wind Tunnel Test for Low Sonic-boom Design Validation of Silent Supersonic Technology Demonstrator*

Yoshikazu MAKINO*1 and Masayoshi NOGUCHI*1

ABSTRACT

Near-field pressure signatures of the silent supersonic technology demonstrator are measured in the JAXA $1 \text{ m} \times 1 \text{ m}$ supersonic wind tunnel in its preliminary design phase for validating its low sonic-boom design. The low sonic-boom features are observed in the measured pressure signatures which are compared to those predicted by some CFD codes. Some flight requirements which are imposed on the demonstrator such as the retention of flight Mach number, variations in the pitch or roll angle, are validated by the comparison of near-field pressure signatures for these effects.

Keywords: supersonic transport, sonic-boom, wind tunnel

概 要

低ソニックブーム設計技術の実証を第一の目的とする静粛超音速研究機の基本設計において、低ブーム設計検証のためにJAXA1m×1m超音速風洞において機体近傍場の圧力分布計測を実施した。計測された圧力波形は設計時の数値解析結果と同様に、低ブーム特性を示していることが確認された。また、マッハ数や迎角、ロール角等の飛行条件がブーム特性に与える影響について調べ、研究機に求められる飛行制御要求の妥当性についても検証した。

	1. 記 号	Fy Fz	天秤横方向荷重 天秤縦方向荷重
C_D	抗力係数	Н	レール上面から模型先端までの高さ
C_L	揚力係数	L	模型長
Cm	ピッチングモーメント係数	M	一様流マッハ数
CNs	風洞起動停止荷重係数 $Fz/(P_0*S)$	Me	ナセル出口マッハ数
Cp	圧力係数	Mx	天秤ロールモーメント
Fx	天秤軸方向荷重	My	天秤ピッチモーメント

^{*} 平成 21 年 11 月 11 日 受付 (Received 11 November, 2009)

^{*1} 航空プログラムグループ 超音速機チーム(Supersonic Transport Team, Aviation Program Group)

Mz 天秤ヨーモーメント

Ps 一様流静圧

Pse ナセル出口静圧

Pte ナセル出口総圧

P₀ 一様流総圧

S 模型投影面積

S_w 主翼基準面積

X 模型先端から後方への距離

 $X_0 \qquad \beta H$

α 迎角

 $\beta \sqrt{M^2-1}$

θ ポッドピッチ角

 ϕ ポッドロール角

 δ e スタビレータ舵角

ΔP 静圧との差圧 (P-P_s)

2. はじめに

宇宙航空研究開発機構 航空プログラムグループ 超音速機チームでは,環境適合性に優れた超音速旅客機の設計技術を確立することを目的とした静粛超音速機研究開発プログラム¹⁾を推進している.この研究開発においては第一の目標として,超音速機特有の騒音である超音速飛行時のソニックブームを半減させる技術の獲得を目指しており,低ソニックブーム設計技術の研究と,その技術を飛行実証するための静粛超音速研究機の設計を進めている

静粛超音速研究機は全長約 $14\,\mathrm{m}$,最大離陸重量約 $4\,\mathrm{ton}$ の無人航空機であり,基本設計における設計条件は,巡航マッハ数 1.6,巡航高度 $13.4\,\mathrm{km}$,巡航時想定機体重量 $3.3\,\mathrm{ton}$,設計 $C_L=0.055$ (主翼面積 $Sw=21\,\mathrm{m}^2$)であり,許容重心位置は $FSTA=7.97\sim8.3\,\mathrm{m}$,尻すり角制限は 13° 以上としている.基本設計における低ブーム設計目標は,地上で低ブーム波形が観測可能であることであり,具体的には,CFD 推算/風試計測された近傍場圧力波形から

推算される地上ブーム圧力波形の前半部が台形型の低ブーム圧力波形であって,圧力波形の後半部が通常のN型ではなく2つ以上の圧力ピークで形成されていることとしている。上記低ブーム設計要求を満足する機体形状を設計するため,研究機には低抗力/低ブーム主翼,非軸対称機首,後胴揚力面,水平尾翼,胴上配置エンジンナセル等の各種コンセプトを,多分野統合最適設計やCFD多目的最適設計等の設計ツールを活用して適用している。形状設計の詳細については文献2)に詳細が述べられている

本論文では、基本設計フェーズにおいて研究機の低ブーム設計検証のために実施した、静粛超音速研究機基本 低ブーム設計確認超音速風洞試験の概要について述べる.

3. 試験計画

3.1 模型設計

本低ブーム確認試験には、JAXA 風洞技術開発センター $1 \text{ m} \times 1 \text{ m}$ 超音速風洞を用い、マッハ数 1.4 から設計マッハ数 0.6 までで試験を実施した、試験の供試体としては静粛超音速研究機第 3.5 次形状(図 1)の 2.5 %模型を新規製作した、模型の構成を表 1 に示す、本模型は翼

図1 静粛超音速研究機第3.5次形状

表1 模型構成

No.	名 称	備 考
1	機首部	第 3.5 次/第 3.5-2 次/第 3.5 次 ADS 付き
2	翼胴部	
3	中胴部下面	第 3.5 次/第 3.5-2 次
4	後胴部	第3.5次/ベース面拡大形状
5	水平尾翼	舵角-6°/舵角-4°/翼厚比6%
6	垂直尾翼	
7	インテーク部	フロースルー/中実/インテークキャップ
8	ストラットスティング支持部	8° / 16°
9	フロースルーナセル支持部	流量調整金具により3段階(0%,50%,100%)に流量調整可能,総静圧各1点
10	直スティング支持部	

胴部を共通として機首部・中胴部下面・後胴部・水平尾 翼を取替え部品としている。また、図2(a)に示す4種 類の模型支持方法を試験目的に合わせて選択可能とした. 直スティング支持及び16°ストラットスティング支持で は垂直尾翼のOn/Offができ、フロースルーナセル支持時 には流量調整金具を用いて3段階の流量状態での試験が 可能である. 8°及び16°の後退角を有する2種類のスト ラットスティング支持は、後端低ブーム特性を確認する ために採用した支持法であり、その後方をφ28の天秤で 支持することによって六分力計測も可能である. (本試験 では16°ストラットスティング支持時にのみ六分力計測 を実施している.) 交換機首部としては研究機の機首に取 り付ける予定の ADS を付けた機首を用意して ADS がブー ム特性に与える影響を調べた、また、第3.5次形状の低ブ ーム特性を改善するために設計した第3.5-2次形状は、機 首部及び中胴部下面の交換部品をセットで交換すること により定義される.後胴部には第3.5次形状の他に胴体後

16 ストラットスティング支持
水平尾翼(-6 /-4 / 6%翼厚)
水平台
直スティング支持
交換後胴部
第3.5-2次中胴部
インテークキャップ
ナセル支持
流量調整金具
(0%/50%/100%)
第3.5-2次機首
第3.5次ADS付き機首

(b) 模型構成

図2 静粛超音速研究機基本ブーム確認風試模型

端のベース面を拡大し、機体後端膨張部の後端ブーム特 性に与える影響を調べるための部品を製作した. 後胴部 には水平尾翼 (スタビレータ) を取り付けるが、第3.5次 形状のノミナル形態である舵角-6°/-6°(左右ともに 6°後縁上げ)以外に-4°/-4°も用意してスタビレー タ舵角が後端ブームに与える影響を調べるとともに、 左 右の舵角に差を持たせてスタビレータのエルロン操舵時 のブーム特性についても調査した.また、後端低ブーム 設計に水平尾翼翼厚が及ぼす影響について調べるためノ ミナル形状の4%翼厚を増加させた6%翼厚部品(舵角 は-6°/-6°)も製作した。直スティング支持形態及び ストラット支持形態においては、フロースルーナセルの 影響は考慮できないが、フロースルーナセル支持での結 果と比較し易いように、外形形状はフロースルー形態と 同じとした中実部品を製作してフロースルーナセル支持 の流量0%の結果との比較を実施した. なお, 通常の試 験形態ではナセルインテーク部は強い衝撃波の発生を避 けるためにインテークキャップと呼ばれるカバーを付け て試験を実施した. 模型部品の写真を図2(b) に示す.

3.2 近傍場圧力波形計測

近傍場圧力波形には超音速風洞試験用に設計・製作された静圧レール³⁾を使用した、静圧レールは幅 35 mm,高さ50 mm の矩形の断面を持つ全長約 1.8 mのステンレス製の装置であり、先端部及び後端部はレール自身から発生する衝撃波を最小化する様に尖らせている。下壁に静圧レールを設置した状態での風洞測定部の様子を図 3 に示す。レール上面には 330 点の静圧孔が設けてあり、上流側の 255 点は 4 mm 間隔,下流側の 75 点は 6 mm 間隔となっている。今回の計測では高速多点圧力計測装置 ZOC HyScan 2000 システム(米国スキャニバルブ社製)の

(a) 模型セッティング

モジュールを 5 台使用して 330 点の圧力孔中下流側 312 点の計測を行った。各モジュールが担当した静圧孔番号を表 2 に示す。スペックに基づく ZOC モジュールの計測精度は \pm 0.1 % FS であり,圧力に換算すると Ch01 \sim 03 モジュールでは \pm 0.03 psi(\pm 0.2 kPa),Ch04 及び Ch05 モジュールでは \pm 0.027 psi(\pm 0.18 kPa)となる。この値を

(b) 測定部内写真 図3 フロースルーナセル支持模型 (2.5 %模型)

表2 ZOCモジュール

Ch#	ZOC S/N	ZOC 計測レンジ	静圧孔番号
Ch01	299	\pm 15 psi	#143 ~ 200
Ch02	290	$\pm~15~\mathrm{psi}$	#201 ~ 265
Ch03	302	$\pm~15~\mathrm{psi}$	#266 ~ 330
Ch04	298	-12 psi $\sim +15$ psi	#78 ~ 142
Ch05	296	-12 psi \sim +15 psi	#13 ~ 77

図4 ZOC 較正時計測データの一例

Cp 値に換算すると約±0.003@M=1.4~2.0となる. 図4に Ch01 (S/N 299) に関して試験前に実施した ZOC 較正時の計測データの一例を示すが,ほぼフルスケールの圧力を印加した状態での計測誤差は全ポートにおいて十分スペック内に収まっていることが分かる.図5には模型を入れない状態(CTC: Clean Tunnel Case)での M=1.4 及び M=1.6 での静圧レール計測データを示す.ZOC の計測は風洞起動後8秒から0.5秒刻みで計測を行い(計測にかかる時間は0.32秒),28秒まで40回データを取得した.

(a) M=1.4 (Run No.26523)

(b) M=1.6 (Run No.26522)

図5 静圧レール計測データのばらつき (CTC)

図6 静圧レール上の圧力分布 (CTC)

各静圧孔における 40 回のデータのばらつきは M=1.4 よりも M=1.6 の方がやや小さく、どちらのマッハ数においてもおよそ Δ Cp= \pm 0.0005 以内に収まっている。(Δ Cp は 40 回の平均値からの差分)なお、レール先端部(Ch05)の領域においてばらつきが大きくなる傾向があるが、これはモジュール(S/N 296)の問題では無く、静圧レール上に形成される静圧分布が静圧レール自身が生ずる圧力変動によって、先端及び後端部で図 6 に示す様に大きく変動するためであることが分かっている。上記に示した様な静圧レール計測の再現性に基づき、次章に示す研究機模型の機体近傍場における圧力波形は、模型有りの圧力分布計測データから同じマッハ数での模型無し(CTC)圧力分布を差し引く形で求めている。

3.3 六分力計測

上述した様に、16°ストラットスティング支持時には六 分力天秤(28 MT 6-400-117)を外挿方式で使用して模型 にかかる力を計測した.表3に天秤容量を,図7に天秤使 用時の模型セッティングを示す。天秤計測は風洞起動時0 秒から風洞停止時まで0.1秒間隔でデータを取得し続け る. 本試験では天秤を外挿方式で使用するため、模型強 度以外に天秤にかかる最大荷重に気を付けなくてはなら なかった、そこで風洞起動時及び停止時に予想される天 秤荷重と実際に計測された荷重とを比較し, 今後の模型 設計の参考とする. 上方より見た模型の投影面積は約 25.200 mm²であり、面積中心と天秤中心との距離(モー メントアーム長) は約560 mmである. 超音速風洞で想定 される起動停止荷重は図8(風洞マニュアル4)より抜粋) に示すとおりであり、"Wing alone"の実験データベース の推算値を用いれば CNs=0.128@M=1.4, CNs=0.168@ M=1.6 であり、それぞれ風洞総圧 P₀=150 kPa@M =1.4、 P₀=170 kPa@M =1.6 と投影面積から Fz=50 kgf@M=1.4, Fz=73 kgf@M=1.6となり垂直力は十分天秤容量内に収ま っているが、それにモーメントアーム長をかけると My=28 kgfm@M=1.4, My=41 kgfm@M=1.6 となり M=1.6 で はピッチングモーメントが天秤容量を超える可能性があ った. 図9には実際の通風で天秤が計測した荷重データ を示すが、M=1.4でも M=1.6でも起動時の荷重の方が停

Fx	80 kgf						
Fy	300 kgf						
Fz	400 kgf						
Mx	8 kgf · m						
My	35 kgf ⋅ m						
Mz	20 kgf · m						

(a) 模型セッティング

(b) 模型写真(2.5%模型) 図7 16°ストラットスティング支持形態

図8 風洞起動停止荷重 (風洞ユーザーズマニュアルから抜粋)

止時よりも大きく、M=1.4 では Fz=20 kgf (予測値の 40 %)、My=8.5 kgfm (予測値の 30 %)、M=1.6 では Fz=22 kgf (予測値の 30 %)、My=10 kgfm (予測値の 25 %) 程度と予測

(a) M=1.4 (Run No.26569)

(b) M=1.6 (Run No.26572)図9 風洞起動停止荷重 (天秤計測データ)

値を大きく下回る結果であった. (ただし, 経験的に超音速風洞の起動停止荷重は M=1.8 以上で急激に大きくなる傾向があるため注意が必要である.)

3.4 模型たわみ角推定

通風時には風洞ポッド角 θ に対して、模型にかかる力 によるたわみを考慮する必要がある. 通常, 六分力天秤 を使用する試験では、天秤とスティングの組み合わせに 対するたわみ係数を用意して,通風中に天秤にかかった 荷重(ピッチ角補正としてはFzとMy) それぞれに対す るたわみ角を推算し、風洞ポッド角に足すことで模型迎 角を求めている. 今回の試験においても, 天秤を使用し たケース(16°ストラットスティング支持形態)において はこの天秤たわみ補正を実施しているが、本試験におい ては天秤を外挿式に使っているため、天秤たわみ以外に 天秤より先の模型自体のたわみ角も補正する必要がある. そこで通風前に模型のたわみ検定を実施して模型のたわ み係数を求めた. 具体的にはショートキャルの要領で模 型に荷重をかけ、天秤出力を計測するとともに模型上の 水平台の角度と天秤カバー上の角度の差を計測し、その 比例関係から模型部分のたわみ係数を求める. 天秤出力 は上述の通り縦系ではFzとMyが計測されるが、今回の 簡易たわみ検定方法ではFzとMyを同時にかけてしまう ため両者の分離ができず、Fzに対するたわみ係数と My に対するたわみ係数が出てきてしまう. 本試験の支持方 法では天秤が外挿式であるため、模型にかかる揚力が天 秤の My に大きく出てくることから、今回は My で整理し たたわみ係数を用いることとした. ちなみに 28 MT 6-400-117 天秤のたわみ係数は Fz に対して 0.00727 deg/kgf, My

(a) 基本全機超音速風洞試験(5%模型)

(b) CL-α 計測例 (M=1.6) 図 10 研究機基本全機風試

に対して $0.0808 \, \text{deg/kgfm}$ であり,模型自体のたわみ係数は My に対して $0.0935 \, \text{deg/kgfm}$ であった. M=1.6 通風中の例では, θ =3.0° に対して天秤たわみ角は約 0.4°,模型たわみ角は 0.3° 程度であり,模型たわみ補正分は天秤たわみ補正分とほぼ同等となり,正確な模型迎角を求める際の模型たわみ補正の重要性が示された.

天秤を使用しない支持形態 (8°ストラットスティング, 直スティング, フロースルーナセル支持) においても, 正確な模型迎角を求めるためには模型たわみ補正をする 必要があると考えられるが, 天秤出力が無いため推算に 頼らざるを得なかった. それぞれの支持形態において通 風前にたわみ検定を実施し, 模型にかけた荷重に対する 模型 (スティング含む) のたわみ角を計測してたわみ係 数を求めておき, 通風中に模型にかかる荷重を研究機の 基本全機超音速風試結果 (図10) から求められる CL を ベースに推算してたわみ角を推算した. それぞれの支持形態に対する模型たわみ係数は, 8°ストラットスティングで 0.037 deg/kgf, 直スティングで 0.019 deg/kgf, フロ

- スルーナセル支持で 0.0128 deg/kgf であった. (天秤無 しでは垂直力に対してたわみ係数を定義した.) **3.5 試験実施ケース** 表 4 に今回のブーム確認風試で実施した通風のケース

表4 試験ケース表

28516 1.55	Run No.		Data No., $ heta$, ϕ , H/L	胴体	水平尾翼	垂直尾翼	ナセル	天秤	模型	備考
28515 1.55	26515	1.4								
28512 1.5		1.55								
26953 1.4 Data No.4.9.14.19.24.29.34.39 44.95.4 62.63.5 1.4 Data No.4.9.14.19.24.29.34.39 44.95.4 62.53.5 1.4 Data No.4.9.14.19.24 62.53.5 1.5 Data No.4.9.14.19.24 62.53.5 1.5 Data No.4.9.14.19.24 62.53.5 62.53		1.6		-	_	-	-	-	CTC	
28533 1.4			H/L=N/A							
26536 1.6										
26537 1.6			Data No.4,9,14,19,24,29,34,39,44,49,54							
26538 1.4							インテーク			
28539 14			, .	#1/#2/#1					S3TD	
26540 1.6	26539	1.4			-6/-6	-		-		
28541 1.6	26540	1.6	υ –3.4, ψ –0, 2.3, 3, 7.3, 10, Η/ L–2.0							
26543 1.4 少=0, H/L=2 0 1.6 26545 1.6 Data No.4.9.14.19.24.29.34.39 #1/#2/#1 -6/-6 -50% 7D-スルー 7D-30	26541	1.6					中実			
26544 1.6 26546 1.4 Data No. 4.9,14,19,24,29,34,39 #1/#2/#1 -6/-6 - 50% - 7ロースルースネーグ - 26549 1.6 Data No. 4.9,14,19,24,29,34,39 #2/#1/#1 -6/-6 - 50% - 7ロースルースネーグ - 26549 1.6 Data No. 4.9,14,19,24,29,34,39 #2/#1/#1 -6/-6 - 26/-6										
28546 1.4		1.6	φ 0, τ.ν. <u>2</u> 2.0				0%			
26547 1.4			Deta No 4 9 14 10 24 29 24 29	#1/#2/#1	_6/_6	_	50%	_		
26548 1.6					-0/-0					
26559 1.4	26548	1.6					100%			
26550 1.55			Data No 4 9 14 19 24 29 34 39							
26562 1.6			θ =0, 2.5, 3.1, 3.3, 3.4, 3.5, 4, 5							
26562 1.6	26561	1.6			-6/-6					
26563 1.6 26564 1.6 0 26584 1.6 0 0 2.5 3.1 3.3 3.4 3.5 4.5 2.6565 1.6 0 0 2.5 3.1 3.3 3.4 3.5 4.5 2.6565 1.6 0 0 2.5 3.1 3.3 3.4 3.5 4.5 2.6565 1.6 0 0 2.5 3.1 3.3 3.4 3.5 4.5 2.6565 1.6 0 2.5 3.1 3.3 3.4 3.5 3.5 2.6565 1.6 0 2.5 3.1 3.3 3.3 3.3 3.3 3.3 3.3 2.6569 1.4 0 2.5 2.6 3.3 3.3 3.2 4.5 0 0 1.5 2.6	26562	1.6		#1/#2/#1			. – L		S3TD	
26566 1.6	\vdash		•			-		-	ストラットスティング	
265666 1.4					-6/-4		1177		8deg	
26568 1.6	-		• '	#1/#1/#1	-6/-6					
26569	\vdash	-								
1.5 26570 1.5 26571 1.55 26572 1.6 Data No.4.9.14.19.24.29.34.39 4.5 26572 1.6 Data No.4.9.14.19.24.29.34.39 4.5 26575 1.6 Data No.4.9.14.19.24.29.34.39 4.5 26575 1.6 Data No.4.9.14.19.24.29.34.39 4.5 26575 1.6 Data No.4.9.14.19.24.29.34.39 Data No.4.9.14.19.24.29.34.39 Data No.4.9.14.19.24.29.34.39 Data No.4.9.14.19.24.29.34.39 Data No.4.9.14.19.24.29.34.39 Express of the control of the contr		$\overline{}$	·	#1/#1/#2	-6/-6					
26571 1.50 0										
Table Data No.4.9.14.19.24.29.34.39										
1.5			Data No 4 9 14 19 24 29 34 39							26572 <i>D</i>
Data No.4,9,14,19,24,29, θ=0, 3, 3, 3, 3, 3	26573	1.6	θ =0, 1, 2, 2.8, 3, 3.2, 4, 5, ϕ =0, H/L=1.5	#1/#1/#1		_				
Data No.4.9.14.19.24.29.34.39	26574	1.6		1717 117 11	-6/-6					
日本の	00575	1.0					キャップ			26572の回
26576 1.6	26575	1.0								転中心変更
Data No.4,9,14,19,24,29,34,39	26576	1.6				ON				
265/8 1.6 26579 1.6 26580 1.6 0 = 0, 1, 2, 2.8, 2.9, 3, 4, 5 #2/#2/#1 -4/-4 -4/-			·	#1/#2/#1						
26580 1.6			θ =0, 1, 2, 2.8, 2.9, 3, 4, 5	#2/#2/#1	_A /_A	-				
26581 1.6			, .		7/ 4				パニケーフ	
26582 1.4	26581	1.6		_	_	_	_			
26623 1.6	26582	1.4						_	(16°円錐)	
26624 1.4	26623	1.6	Data No.4,9,14,19,24,29,34,39							テンスカラコネフ
26625 1.6 Data No.9, θ = 3.5 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1.0 Data No.9, θ = 3.4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1.0 θ = 0, 0.4, 10, 15, 23, 30, 35 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 1, 1, 2, 2, 2 θ = 0, 0.4, 10, 15, 23, 30, 35 θ = 0, 0.4, 10, 15, 23, 30, 35 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 1, 1, 2, 2, 2 θ = 3.4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 1, 1, 2, 2, 2 θ = 3.4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 1, 1, 2, 2, 2 θ = 3.4 θ = 0, 3.4, 5, 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 1, 1, 2, 2, 2 θ = 3.4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 1, 1, 2, 2, 2 θ = 3.4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, H/L=1, 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, 1/4 θ = 0, 3.4, 5, 0, 3.4, 5, ϕ = 0, 1/4 θ =		1.4			11/2A	ON				
26627		1.6			+4/+4 	ON		_	圧力模型	
26628			ϕ =0, H/L=1.0							オイルフロー
26629 Data No.9, θ=3.4 φ=0. 回転中心=窓中心 オイルフロー 26630 26631 1.6 Data No.9 θ=3.4 -6/-6 - 100% - フロースルー スティンケ テープ・ラフキ スティンケ テープ・(サイ	26628			#1/#1/#1						H/L=1.0,2.0
26629	00000									+/1170
26631 1.6 Data No.9 -6/-6 - 100% - 7ロースルー 7-ブラフネ 26632 θ = 3.4 スティング 7-ブ・ウブ・サイ			φ=0. 回転中心=窓中心						COTE	
<u>26632</u> θ = 3.4 スティング デーフ (サイ		16	Data No 9		-6/-6	_	100%	_		
	26632		θ =3.4		- · ·					テープ (サイト)
			ϕ =0, H/L=1.0							ADSカバー 曲家亦画
Data No.4.10.15.22.20.25			Data No.4,10,15,23.30.35							曲率変更
26635 θ = 0, 3.4, 5, 0, 3.4, 5, φ = 0, H/L=1, 1, 1, 2, 2, 2 H2/#1	20035									H/L=1.0,2.0

表を示す。上述の通り通風中の ZOC 計測は模型姿勢角の変更とは無関係に 0.5 秒間隔で行っているので、模型静定時の近傍場圧力波形を選択するため表中に Data No. を記載している.

4. 試験結果

4.1 低ブーム設計検証

4.1.1 機首部圧力波形に及ぼす模型サイズの影響

まずは先端低ブーム特性を確認するために、16°ストラットスティング支持形態試験時のH/L=2.0 における近傍場圧力波形計測データを CFD 解析結果と比較したものを図11 (a) に示す.波形先端スパイクのピーク圧力値はCFD 推算とほぼ一致しているものの、圧力上昇後の膨張がCFD 推算に対して風試結果の方が急膨張しており、その後方の圧力ピークも CFD 推算値よりも低くなっているのが分かる.H/Lに対してこの傾向が変わるかどうかを調べるため模型高さを下げてH/L=1.0で計測した結果を図11 (b) に示すが、やはり傾向は同様である.そこで模型サイズが圧力波形に与える影響を調べるため、基本全機超音速風洞試験で使用した5%圧力模型を用いて

(a) H/L=2.0

図11 模型サイズが先端波形計測に与える影響

H/L=1.0での圧力波形を計測した.その計測結果も図11 (b) に示すが、先端スパイク後の膨張は2.5%模型と同じく CFD 解析結果よりも強いものの、その後方の圧力ピークは CFD 解析結果と良く一致しているのが分かる.この結果から先端波形の不一致の原因はおそらく2.5%模型側にあると考えられるが、Re数の違いによる粘性効果等による流体力学的な要因であるのか、模型の製作精度の問題であるのかは断言できない.

4.1.2 ADS が先端ブームに及ぼす影響

研究機の先端には気流乱れの小さな場所で飛行マッハ数や機体姿勢角を検知するためのエアデータセンサー (ADS)を取り付ける予定であるが、基本設計における低ブーム設計時には ADS を考慮していなかったため、ADSがブーム特性に与える影響を調べる必要がある。そこで直スティング支持形態(インテーク形状中実)で、第3.5次形状機首を ADS 付きの機首に交換して近傍場圧力波形を比較した。図12を見る限り波形には目立った差が無く、研究機で想定されるサイズの ADS が低ブーム特性に与える影響はほとんど無いことが確認された。

4.1.3 インテークスピレージが波形に与える影響

実エンジンを搭載した研究機においてエンジン作動状態がブーム特性に与える影響としてインテークスピレージの影響が考えられる。そこでブーム確認風試模型ではフロースルーナセル支持形態において流量調整金具によりナセル流量を変化させて近傍場圧力波形を計測した。流量はフロースルーナセル出口において総圧(Pte)と静圧(Pse)を計測することにより推算する。ナセル出口マッハ数はPse/Pte > 0.528では亜音速であるため等エントロピ関係式、

$$M_e = \sqrt{\frac{2}{\gamma - 1} \left[\left\{ \frac{P_{te}}{P_{se}} \right\}^{\frac{\gamma - 1}{\gamma}} - 1 \right]} \tag{1}$$

図12 ADS 有無による波形の違い

から求め、 $Pse/Pte \le 0.528$ では超音速となるため、下記 Rayleigh のピトー管公式から繰り返し計算により求める.

$$\frac{P_{te}}{P_{se}} = \left\{ \frac{\left(\frac{\gamma+1}{2}\right)^2 M_e^2}{\gamma M_e^2 - \frac{\gamma-1}{2}} \right\}^{\frac{\gamma}{\gamma-1}} \frac{\gamma M_e^2 - \frac{\gamma-1}{2}}{\frac{\gamma+1}{2}}$$
(2)

図13に3種類の流量調整金具を付け替えた際の近傍場圧力波形の比較を示す。それぞれのケースにおけるナセル出口マッハ数及び単位時間・単位面積当りの流量は表5の通り。流量の違いは波形中央部の正の圧力ピーク部に現れており、流量を小さくすることによりスピレージ量が増え、それが主翼上面から下方へ回り込むことによって圧力ピークが上昇しているものと考えられる。ただし、100%の最大流量時と流管断面積を50%にしたケース(流量で53%)とでは大きな差は無く、実際のエンジン運転状態で考えられる最小流量がフロースルー時の70%程度であることを考えれば、スピレージがブームに与える影響は大きくないと言える。

4.1.4 模型支持方法の違いによる圧力波形比較

図 14 に模型支持方法による計測圧力波形の違いについて示す。まず機首からの衝撃波による先端スパイク部から $(X-X_0)$ / L=0.3 付近までの圧力波形はどの支持形態でもほぼ一致しているのが分かる。その後方の圧力ピークは主翼部及びインテークによるものであるが、直スティング支持

図13 フロースルーナセル流量による波形の違い

表5 フロースルーナセル流量推算結果

Run	Data	Pte [kPa]	Pse [kPa]	Me	流量 [kg/s/m ²]
#26544	29	28.6	29.1	0.0	0.0
#26545	19	74.4	45.2	0.78	150.4
#26548	19	138.2	78.9	0.83	281.6

図14 模型支持法による比較

(中実インテーク)とフロースルーナセル支持(0%流量)は良く一致しており、外形形状の等しい中実インテークと流量を0%としたフロースルーインテークがほぼ同じ外部流れを形成していることを示している。一方同じインテークキャップを付けた直スティング支持と8°及び16°ストラットスティング支持とで違いが見られるのは、それぞれの支持形態によるたわみ補正後迎角の差(揚力の差)によるものであると考えられる。後部波形においてはフロースルーナセル支持形態では(X-X₀)/L=0.6においてナセル上部の支持部から発生する強い衝撃波による圧力ピークが観測され、ここから後方の波形比較はできないことが分かる。その他3種類の支持形態では後胴揚力面による圧力ピークの出現位置に多少の違いが見られるものの、どの支持方法でも後端低ブーム特性を確認することができる。

4.1.5 低ブーム設計検証結果

以上の検討結果から、現時点で最も信頼できる実験結果として波形先端部(機首部)は5%圧力模型、波形中央部(主翼及びインテーク部)はフロースルーナセル支持形態、波形後部(後胴揚力面と水平尾翼)はストラットスティング支持形態であると考えられるため、図15にH/L=1.0における上記風試データを組み合わせた波形とCFD解析結果との比較を示す。定性的に見れば近傍場における低ブーム波形の特徴を良くとらえており、波形中央部においては定量的な一致も良いと言える。課題としては上述した通り先端スパイクの膨張部がCFD推算に対して風試が強めの膨張を示している点と、波形後半部の負圧がCFD推算よりも弱く出ている点が挙げられる。また波形後端の圧力回復後に風試結果が過膨張して負圧となっている点については模型支持方法の問題であると考えられる。

4.1.6 垂直尾翼が圧力波形に与える影響

第3.5次形状の低ブーム設計においては、ナセル上部に

付く単垂直尾翼は横方向への圧力波は発生するが機体下方のブーム特性への影響は小さいと考え考慮していない。そこで今回のブーム確認風試において垂直尾翼が近傍場圧力波形に与える影響を調べた。図 16 には 16° ストラットスティング支持形態における M=1.6, $\theta=3$ ° での垂直尾翼 On/Off の結果比較を示す。波形後半部の後胴揚力面による圧力上昇部付近に違いが見られるが,垂直尾翼の存在によって後胴揚力面の圧力上昇が強まっている傾向が確認でき,後端低ブーム特性をロバスト化する方向に働くものと期待される。

4.1.7 伝播距離が圧力波形に与える影響

図 17 には 16°ストラット支持形態(インテークキャップ,水平尾翼-6°/-6°,垂直尾翼 Off,第 3.5 次形状胴体)において M=1.6, θ =3°の状態で模型姿勢角を固定し,模型を上下させることで静圧レールとの距離を H/L=1.0~2.0 に変化させた際の近傍場圧力波形の変化を示す.全ての圧力ピークにおいて距離の増加とともに圧力ピークが減衰してゆく様子が見て取れるが,減衰率は距離が離れるにつれて小さくなる傾向がある.(H/L=1.0 付近では急激に減衰するが,H/L=2.0 付近ではあまり変化しなくなる.)

図15 波形各部の低ブーム特性検証結果

図16 垂直尾翼有無の効果

4.1.8 水平尾翼厚みが圧力波形に与える影響

従来の低ブーム設計では後端低ブーム波形を実現する ために、主翼平面形を機体後端まで分布させて揚力分布 を長く分布させる必要があったため、強い頭下げモーメ ントを生じてトリム特性を悪化させるという課題があっ た. 静粛超音速研究機に適用した後端低ブーム設計コン セプトである後胴揚力面は、胴体下面の凸部から発生す る衝撃波による圧力ピークによって後端低ブーム化を図 るため、主翼平面形に対する拘束が無く通常の水平尾翼 を採用することも可能となる利点がある. そこで本試験 において水平尾翼の翼厚比が後端低ブーム特性に与える 影響について調べるため、第3.5次ノミナル形状(翼厚比 4%、舵角-6°/-6°) に対して舵角は同じで翼厚比を 6%に増加した水平尾翼を製作し、8°ストラットスティ ング支持形態において比較した. 図18に示す通り、水平 尾翼の翼厚比は後胴揚力面による圧力ピーク及び後端圧 力波形に影響を与えることが分かる. その傾向は翼厚比 を増加することによって後胴揚力面の効果を増強し、後 端低ブーム特性をロバスト化する方向であると考えられ る.

図17 H/Lによる波形の減衰

図18 水平尾翼厚みが近傍場圧力波形に与える影響

図19 胴体後端ベース面が近傍場圧力波形に与える影響

4.1.9 胴体後端ベース面が圧力波形に与える影響

後端低ブーム特性に与える胴体後端形状の影響を調べるため、第3.5次ノミナル形状に対して、胴体後端のベース面積を増加させた交換後胴部模型を製作し、近傍場圧力波形を比較した。図19に示す通り胴体後端部の違いは圧力波形後部の圧力回復部付近にのみ影響しており、その傾向はベース面積の増加によって後端の負圧が弱まるため後端ブーム強度が低減される傾向にあると推測される。ただしベース面積の増加により形状抗力の増加も考えられるため性能とブーム特性のトレードオフが必要であろう。

4.1.10 第3.5次形状と第3.5-2次形状の波形比較

本風試では、第3.5次形状設計後に翼胴フェアリングや 主脚バルジが低ブーム特性に与える悪影響を改善するた めに、胴体形状を修正して定義された第3.5-2次形状のブ ーム特性を確認するため機首部と中胴部下面に第3.5-2次 形状用の交換部品を用意した。図20には16°ストラット スティング支持形態およびフロースルーナセル支持形態 における第3.5次形状と第3.5-2次形状の近傍場圧力波形 比較を、図21にはCFD解析による両形状の近傍場圧力波 形推算結果を示すが、どちらの支持形態においても先端 スパイクの後方での圧力膨張部が強まることと、主翼・ インテーク部による圧力ピークが低減される第3.5-2次形 状の低ブーム特性改善効果が確認できた. なお, 両形状 の CFD 解析結果と風試結果の比較においては、前述の模 型サイズによる効果と考えられる相違がどちらの形状に おいても確認された. このことから風試結果が CFD 解析 結果と異なる理由としては模型個々の製作精度というよ りは、模型サイズに関連した流体力学的な要因が有力と 推定される.

4.1.11 機首部と中胴部が圧力波形に与える影響

図22には、前節で示した16°ストラット支持形態にお

図20 第3.5次形状と第3.5-2次形状の計測波形比較

図21 第3.5次形状と第3.5-2次形状の推算波形比較

図22 機体各部の波形への影響分離

ける第3.5次形状と第3.5-2次形状の比較を再度示すが,同時に機首部は第3.5次形状,中胴部下面は第3.5-2次形状としたケースの波形も示す。その波形は, $(X-X_0)$ /L=0.2付近を境として前方では第3.5次形状と一致し,後方では第3.5-2次形状の結果と一致しており,超音速流れ場においては機体各部が近傍場圧力波形に与える影響領域は限定的であることが分かる。

4.2 飛行制御要求検証

4.2.1 飛行マッハ数が圧力波形に与える影響

研究機の設計マッハ数は M=1.6 であるが、ADS による マッハ数計測誤差が最大 0.01 程度あり、飛行制御におい ても変動風等によって変動し得るため、飛行制御要求に マッハ数変化許容値AM=±0.05を与えている.本試験に おいてその要求の妥当性を検証するためマッハ数許容下 限のM=1.55での近傍場圧力波形を計測した。また、研究 機の飛行性能上, 設計マッハ数に到達できない (あるい は必要な時間マッハ数を維持した水平定常飛行ができな い)場合も想定されるため、低いマッハ数における低ブ ーム設計飛行実証の可否についても調べておく必要があ るため、M=1.5及びM=1.4における近傍場圧力波形も計 測した. 図23に示す同じ迎角での圧力波形比較を見ると、 まず M=1.55 の波形は M=1.6 と比較して先端スパイクの後 方の圧力ピークがやや増加して先端低ブーム特性を悪化 させることが想定されるもののN型波に統合する程の差 ではないと考えられる. また後方波形においても後胴揚 力面による圧力ピーク値は M=1.6 とほぼ同等であり再後 端の負圧ピークにも違いが見られないので後端低ブーム 性は維持しているものと考えられ, マッハ数保持精度 0.05 は妥当と言える. 更にマッハ数を下げた M=1.5 及び M=1.4 では上記圧力波形の変化量が増加し、特に M=1.4 では先端スパイク後方の圧力ピーク増加が目立ってきて おり、後方の後胴揚力面による圧力ピークもやや小さく なっている. ただし研究機は CL 保持で飛行するためマッ ハ数の低下に伴い、飛行高度は低下する (13.4 km@M=1.6, 12.6 km@M=1.5, 11.7 km@M=1.4) tw, ブーム伝播距離が短くなり波形の統合も抑えられる効果 があることも考慮すれば低ブーム特性を失わせる程の変 化ではないと考えられる.

4.2.2 迎角変動が圧力波形に与える影響

前述の通り研究機第 3.5 次形状の設計迎角は約 3.5° である.研究機の飛行制御は C_L 一定の要求に対して主として Az センサーの出力を制御する様に行われ,迎角自体を制御変数とはしていないが,ADS による計測精度誤差が約 0.1° 程度ある上,飛行制御において変動も想定されるため飛行制御要求を与える必要がある.第 3.5 次形状設計においては CFD 解析をベースに迎角変動がブーム波形に与える感度解析を実施し, $\Delta\alpha=\pm0.18$ ° と指定しており,本ブーム確認風試においてもその妥当性を検証した.図 24 に設計迎角(ポッドピッチ角 θ で 3.3°)に対して ±0.2 ° 変化させた場合の近傍場波形計測結果を示すが,まず先端波形については非常にロバストであり ±0.5 ° 程度変化しても問題無いことが確認された.一方後端波形については迎角に対する感度が大きく,揚力分布の影響を受け

図23 マッハ数変化に対する圧力波形比較

図24 迎角変動が圧力波形に与える影響

易いことが分かるが、±0.2°程度であればそれほど大きくは変化しておらず低ブーム特性は維持できるものと考えられる.

4.2.3 ロール角変動が圧力波形に与える影響

研究機の飛行制御要求には機体バンク角変動及び、マ イク列に対する飛行経路の横方向誤差が含まれており, それぞれバンク角 $\phi=2.5$ °以内、コース保持精度650 m以 内と指定している. これらの要求の妥当性を検証するた め,本風洞試験においては模型のロール角を変えて機体 近傍場圧力波形を比較した. 直スティング支持形態で模 型のたわみ角を考慮した上で設計迎角である α =3.5° とな る様にポッドピッチ角を θ =3.4°で固定して、ポッドロー ル角を $\phi=0^{\circ}$, 2.5°, 5°, 7.5°, 10°と変化させた. 実際に はポッドピッチ角とロール角の組み合わせによって迎角α と横滑り角 β は変化してしまうが、 ϕ <10°の範囲では $\alpha=3.45^{\circ}\sim3.5^{\circ}$, $\beta=0^{\circ}\sim0.6^{\circ}$ と変動範囲は小さいためほ ぼ $\alpha=3.5$ °、 $\beta=0$ °とみなしても良いと考えられる。本検討 においてはバンク角とコース保持精度は等価と考え, 高 度13.4 km を飛行する際のコース保持精度650 m は幾何学 的な関係からバンク角2.8°相当であり、バンク角要求 2.5°とほぼ同等の要求と言える. 図 25 に示す近傍場圧力

波形計測結果を見ると、ロール角変化に対する波形の変化は波形後半部のみに現れ、波形前半部はほぼ一致しているのが分かる。すなわち先端低ブーム特性は、バンク角や飛行経路の横方向変動に対して十分ロバストであり、現在のバンク角及びコース保持精度に対する要求は先端ブームに関しては十分であると考えられる。一方、後方圧力波形はロール角変化に対して比較的敏感であり、ロール角の増加に伴い後胴揚力面による圧力ピークが低減して後端膨張ピークが深くなる傾向にあり、後端低ブーム特性が悪化することが予想される。しかし、バンク角制限としている $\phi=2.5$ °程度であればさほど大きな変化ではないため後端低ブーム特性は維持できるものと考えられる。

4.2.4 水平尾翼舵角が圧力波形に与える影響

最後に水平尾翼舵角が低ブーム特性に与える影響について調べた。水平尾翼舵角に対する飛行制御要求としては水平定常飛行を維持するために許容する舵角変動を $\Delta\delta e=\pm 1$ 。以内と指定しており、本風試模型ではノミナル舵角-6°/-6°に対して-4°/-4°の交換水平尾翼部品を用意し、対称スタビ操舵を想定した-4°/-4°のケースと、差動エルロン操舵を想定した-6°/-4°のケー

図25 ロール角変化による波形の違い

図26 水平尾翼舵角の効果

スの計測を実施した. 図 26 に 3 ケースを比較して示すが, 後部圧力波形に違いが見られるものの後端低ブーム特性 に影響する程の変化ではなく, 2°程度の舵角変動は許容 可能であると推測される.

5. まとめ

静粛超音速研究機の基本設計において,低ブーム設計 検証のために超音速風洞試験によって機体近傍場の圧力 分布計測を実施した.計測された結果を設計時の数値解 析結果と比較することによってその低ブーム特性を確認 し,研究機の主要な目的である低ソニックブーム設計技 術の実証可能性を示した.また,マッハ数や迎角,ロー ル角等の飛行条件がブーム特性に与える影響について調 べることにより,研究機に求められる飛行制御要求の妥 当性についても検証した.

6. 謝辞

本低ブーム設計確認超音速風試の実施にあたり多くの 方々の御協力を得た.風洞技術開発センター超音速風洞 セクションリーダーの永井伸治氏には多くの有益な御助 言を頂いた.また試験では,主任研究員の佐藤衛氏,渡 辺光則氏,研究員の赤塚純一氏,IHIエアロスペースエン ジニアリングの西島寛典氏,木村毅氏の各位に多大な御 協力を頂いた.また模型強度検討においてはサンテクノ ロジーの會澤新太郎氏に御協力頂いた.また超音速機チ ーム推進技術セクションリーダーの渡辺安氏にはエンジ ン運転状態での流量に関して御助言を頂いた.関係各位 に感謝の意を表する.

参考文献

- 1) 村上哲,「静粛超音速研究機技術の研究開発について」 第40回流体力学講演会/航空宇宙数値シュミレーション技術シンポジウム論文集,pp.79-82,2008.
- 2) 牧野好和,野口正芳,徳川直子,高橋則之,「静粛超音速研究機の空力設計」第47回飛行機シンポジウム 講演論文集,JSASS-2009-5018, 2009.
- Y.Makino, K.Suzuki, M.Noguchi and K.Yoshida, 'Nonaxisymmetrical Fuselage Shape Modification for Drag Reduction of Low-Sonic-Boom Airplane,' AIAA Journal Vol. 41, No. 8, pp. 1413–1420, 2003.
- 4) 風洞技術開発センター「WINTEC 風洞利用のご案内 第2部 技術編 (1 m×1 m超音速風洞)」, 文書番号 WTR 03-007 R 2, 2005 年 3 月 9 日 R 2 改訂.

宇宙航空研究開発機構研究開発資料 JAXA-RM-09-006

発 行 平成 22 年 1 月 29 日

編集・発行 宇宙航空研究開発機構

〒182-8522 東京都調布市深大寺東町 7-44-1

URL: http://www.jaxa.jp/

印刷・製本 (株)東京プレス

本書及び内容についてのお問い合わせは、下記にお願いいたします。

宇宙航空研究開発機構 情報システム部 研究開発情報センター

〒305-8505 茨城県つくば市千現 2-1-1

TEL: 050-3362-6224 FAX: 029-868-2956

© 2010 宇宙航空研究開発機構

※本書の一部または全部を無断複写・転載・電子媒体等に加工することを禁じます。

本書は再生紙を使用しております。 紙へリサイクル可。