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and Satoru OGAWA＊3 
 

 
Abstract 

Cylindrical blast waves generated in a real air is investigated by means of the 
method of characteristics under the assumption of a line source explosion. The effect 
of dissociation on shock wave propagation in air is evaluated by utilizing an 
effective isentropic index. The effect of dissociation is remarkable in the velocity 
profiles behind shock front for initial shock strengths between M0=4 and 8. Various 
mesh sizes on numerical computation are tested to determine the trajectory of the 
shock front in the time-space domain. In the case of perfect gases without 
dissociation, the 51 points on a constant time line are enough to integrate the 
characteristic equations. For dissociating gases, the 201 points are necessary to 
continue stable computations. Pressure profiles at a long time elapse after explosion 
reveal that the pressure in the vicinity of the explosion center gradually decreases 
below the initial pressure of the atmosphere different from similarity solutions. 
 
Key words; Point source explosion, Characteristics, Dissociating air,Isentropic Index. 
 

1. Introduction 
 A standard method for solving the equations of unsteady one-dimensional flows 

is to render two independent variables to a single one by combining a space variable 
r with a time t. In the past there are two analytical methods, which are similarity 
solutions based on the dimensional analysis and the method of characteristics for a 
system of hyperbolic equations in the Eulerian system. In the last few decades, 
remarkable advances in available computer codes together with hardware enable us 
numerically to simulate various complex flows. The formulation of the problems is 
finally completed so as to satisfy the boundary conditions imposed on both explosion 
center and shock front discontinuity. The present problem is a type of source flow, so 
that the continuity equation includes the source term as an inhomogeneous term.  
Such the source term has a singular property. Only the solutions on a point source 
explosion, in this case, give mathematically exact solutions. Physical meaning of the 
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point explosion is that at the explosion center, the symmetry condition for flow 
velocity must be satisfied. Typical solutions were proposed by Sedov, Taylor, von 
Neumann and Korobeinikov. Across a shock front in high temperature air, the 
dependent variables as flow velocity u, densityρ, and pressure p have many 
possible interpretations depending on the thermodynamic situation under 
consideration. In this case the energy equation should be described by an 
appropriate caloric equation of state relating the internal energy with the pressure 
and the density, even if the substance behaves as a perfect gas. In general cases, 
transition process across the shock front is important. In the present analysis, 
however, a simple thermodynamic model is introduced to analyze high temperature 
air flows by applying an isentropic index as a function of temperature and density 
or pressure in stead of constant ratio of specific heats. In addition, only local 
equilibrium flows are considered without taking into count the relaxation process. 
Otherwise we cannot specify the degree of dissociation.  

  Though the blast wave theory was much developed relevant to the 
blast-damage of atomic bombs since the nineteen-forties, the most of explosion 
problems are of considerable theoretical and practical interest. The flow between a 
body surface and a conical shock wave generated around hypersonic vehicles can be 
analyzed by applying a method of similarity solutions (1). The method is utilized 
under the assumption that the flow variables change with time in such a manner 
that their distributions with respect to coordinate variables always remain similar 
in time. Taylor (2), von Neumann (3), and Sedov (4) obtained self-similarity solutions, 
separately, when the initial pressure in front of the shock front can be ignored in 
comparison to the highly compressed gas just behind the shock front. Thus the 
self-similar solutions are available for infinitely strong shock waves. However, when 
the shock wave travels at a position far from explosion center, the effect of initial 
pressure on the decay of shock strength becomes significant. Then the blast wave 
theory for the finite strength of shock waves received a good deal of attention since 
nineteenth-fifties. Various similarity solutions are obtained by Korobeinikov 
Mil’nikova, and Ryazanov(5), Stanukovich(6), Chernyi(7), Sakurai(8), and Oshima(9). 
The problems of detonation waves are also investigated by Levin and Chernyi(10), 
Korobeinikov(11), and Lee(12). Their investigations were available only for gases with 
constant specific heats. The blast wave theory in high temperature air with 
dissociation was firstly investigated by Higashino(13). Though the similarity 
methods are generally applied to solve the gas-dynamics of explosion, these 
investigations are valid, only if the location of shock wave front is given by the 
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power law of time, as pointed out by Guderley(14). In reality, when the blast wave is 
sufficiently weakened and approaches to sound wave, the overpressure behind the 
shock front steadily decreases. Finally the pressure behind the shock front 
sufficiently falls off in the regular manner and the pressure distribution decreases 
below the initial pressure of the atmosphere at a long time elapsed after explosion. 
Such characteristic phenomena of pressure profiles cannot be analyzed by using the 
similarity method. It is impossible analytically to solve a set of partial differential 
equations for blast wave problems, even if variable transformations are formulated 
for a point or a line source explosion. In the present analysis, we will propose a new 
approach exactly to solve the problem including the effect of dissociation in a real 
air by means of the method of characteristics. 

As the blast wave travels in the air far away from the explosion source, the 
similarity assumption based on the power law of time cannot be valid. To obtain 
realistic distributions of pressure at long time elapsed after explosion, Higashino(15) 
solved the problem by applying the method of characteristics. In regard to the 
system of hyperbolic equations, a set of partial differential equations can be reduced 
to a family of ordinary differential equations, since the independent variables, r and 
t, are suitably combined to give only one parameter along the characteristic lines. 
Each Mach wave or wave equation can transmit information only at a finite 
constant velocity which represents a propagation speed of disturbances traveling 
along every characteristic direction in space. Inspection of equations reveals that 
there are three characteristic curves or Mach waves in the flow field of the source 
flow. Though the solutions computed by the characteristics method give analytically 
exact ones, the computations on non-linear propagation of blast waves depend fairly 
on the mesh size. Therefore the effect of the numerical grid size on computations is 
tested and discussed in the present analysis. 
 

2. Basic equations for unsteady one-dimensional flows 
In case of cylindrically or spherically symmetric flows all quantities depend only on 

one coordinate distance r from an axis or a point chosen as origin. Then the conservation 
equation of momentum for unsteady flows without transport phenomena is expressed in 
the Euler coordinates as  

0 .u u pu
t r r

ρ ∂ ∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠
        (1) 

Here the flow velocity u is also only one component directed away from the symmetry 
point and ρand p, are density and pressure, respectively. The equation of mass 
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conservation is written in the divergence form as 

   0 .u uu j
t r r r
ρ ρ ρρ∂ ∂ ∂
+ + + =

∂ ∂ ∂
            (2) 

Here the numerical constant j is given as j=0 for a planer flow, j=1 for a cylindrical flow, 
and j=2 for a spherical flow. The last term appeared in the right hand side of eq. (2) is a 
source term which has a singular property at r=0. A simple plane flow of j=0 differs from 
a cylindrically or a spherically symmetric flow. Equation (2) is conveniently rewritten to 
obtain characteristic formulae as   

      2 2 ,p p u uu a j a
t r r r

ρρ∂ ∂ ∂
+ + = −

∂ ∂ ∂
             (3) 

Here the derivatives of the densityρ is replaced by those of the pressure p through 
sound speed a .  

The conservation equation of energy is described in various forms. Since there are no 
compression shocks in the flow region behind the incident blast wave, the entropy may 
be preserved. Therefore changes in the thermodynamic state of each particle obey 
isentropic process. In such thermodynamic situation the energy equation can be written 
by entropy S as 0dS = . Furthermore, if we express the entropy as a function of 
temperature T and pressure p or density ρ, then the energy equation may be written 
in the following expression as  

( ) ( ) 0 ,p u p
t r

ρ ρ−Γ −Γ∂ ∂
+ =

∂ ∂
    (4) 

HereΓ  is an effective isentropic index which is identical to the ratio of specific heats for 
ideal gases without dissociation. In many cases the value of the isentropic index Γ is 
defined according to the various criteria in thermodynamic states and is generally given 
by the ratio of specific heats at constant pressure to constant volume. It is also possible 
to determine the value from the experimental point of view by measuring the velocity of 
sound. However, the classical kinetic theory of heat has thrown light on many important 
points in regards to specific heats for real gases in high temperature. Furthermore, we 
can take into account even the effect of rotational and vibrational energy mode of high 
temperature molecules in virtue of the quantum theory (16), (17), (18), (19). In fact, the 
internal energy and enthalpy of molecules can be given as a function of temperature 
and density or pressure with the help of the kinetic theory of gases. We can thus define 
an isentropic index Γ  as a function of temperature and pressure in stead of the ratio of 
constant specific heats (20), even for dissociating gases. Thus high enthalpy air composed 
of 80% nitrogen and 20% oxygen can be described as a function of temperature T and 
pressure p, respectively, since the specific internal energy and enthalpy are given by 
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explicit functions based on a kinetic theory of molecules. The classical definition of the 
isentropic index is simply defined by the ratio of specific heats as  

      ; , .p
p V

p VV

C h eC C
C T T

∂ ∂⎛ ⎞ ⎛ ⎞Γ = = =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
     (5) 

However, we sometimes introduce the following isentropic index given by the ratio of 
the specific enthalpy to the internal energy as   

        
( )
( )

,
.

,
h T p
e T p

Γ =         (6)   

When the gas temperature is not so high (20), the value of Γ calculated by eq.(5) is 
almost the same as the ratio of specific heats evaluated by eq.(6). In practice, a caloric 
equation of state may be expressed by introducing such the effective isentropic index 
Γ in stead of the specific heat ratio as 

 .p constρ−Γ =        (7)               
It follows from eq. (7) that a sound speed a  is given in terms of pressure p and density
ρas  

    . 2

S

p p a
ρ ρ

⎛ ⎞∂
= Γ =⎜ ⎟∂⎝ ⎠

.      (8)   

  
3. Characteristic formulations for the fundamental equations 

To formulate characteristic equations as the wave function of distance r and time t, 

new variables ( ) ( ), , , ,r t r tξ ξ η η= =  are introduced (21),(22),(23),(24),(25). When the 

independent variables in the basic equations, (1), (3) are transformed into the new 
variables, the following equations can be obtained with unknown derivatives with 
respect to andξ η , as, 

    2 2 ,p p uu a u a j
t r r t r r r
ξ ξ ξ η η η ρρ ρ

ξ η
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + = − + − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

    (9) 

    
1 1 .u p uu u
r t r r t r
ξ ξ ξ η η η

ρ ξ η ρ η
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + =− − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

   (10) 

The problem is then reduced to solve the partial differential equations, (9) and (10) with 
the energy equation (4), so as to satisfy the initial conditions between the explosion 
center at r=0 and the shock front at r=R. Since ξ  and η  are chosen arbitrary and 

independent each other, the characteristic directions are determined from the 
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conditions that the determinants for each variable andξ η are zero at every point in 

the (r,t) plane. Thus the following conditions are established to specify the characteristic 
directions. It should be noticed here that the equation (9) has the source term, so that 
the variables andξ η  are generally independent each other, only if the source term is 

vanished. This condition is satisfied from the boundary condition at r=0. Then we can 
get the following conditions for specifying the characteristic lines as eigenvalues.  

 

2 2

0, 0 ; 0 0 .
1 1

u a u a
ut r r t r r j at r
ru u

r t r r t r

ξ ξ ξ η η ηρ ρ
ρ

ξ ξ ξ η η η
ρ ρ

∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥= = = =
∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

 (11) 

Two characteristic curves for .constξ =  and .constη = are obtained from eqs.(11) as 

       ( ) ,d u a
dt t r
ξ ξ ξ∂ ∂
= + ±
∂ ∂

 ( ) ,d u a
dt t r
η η η∂ ∂
= + ±
∂ ∂

  .dr u a
dt

= ±  (12) 

Here we used the sound velocitya defined by eq.(8). The Mach wave traveling with 
propagation speed of u a+  from an arbitrary point to the right is compression waves 
which constitute the right running family, while a left running family traveling with the 
speed of u a−  constitutes the family of expansion waves in the (r,t) plane. 

When the derivatives of ξ  and η  with respect to time t are to be remained finite, 

consistency conditions on pressure p, and velocity u may be complied with the 
characteristic curves. By multiplying the momentum equation by sound speed a  and 
adding to or subtracting from the continuity equation, we can get the constitutive 
equations along corresponding characteristic curves in stead of eqs. (1), (2) as 

  
( ) ( )

( ) ( )

1 ,

1 .

u u p p juau a u a t
t r a t r r
u u p p juau a u a t
t r a t r r

ρ

ρ

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤+ + + + + = − Δ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤+ − + + − = Δ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

     (13) 

Therefore the conservation equations of mass and momentum are transformed into two 
wave equations. Thus the problem is reduced to integrate the following consistency 
equations in the characteristic forms on every constant time line as  

     
1 , .au drdu dp j dt along u a on C
a r dtρ ±± = = ±∓    (14) 

Another characteristic curve is obtained directly from the energy equation. Since 
equation (4) takes already a characteristic form, the characteristic equation is easily 
derived along individual particle-pass trajectories as,  
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( )1

0' ' , .p a dralong u on C
p a dt

Γ
Γ−⎛ ⎞= =⎜ ⎟

⎝ ⎠
       (15) 

The system of these ordinary differential equations (14), (15) constitutes the 
fundamental equations for cylindrical or spherical flows on explosions. They are 
integrated under the given initial conditions that are specified at the explosion center, 
r=0, and at the shock front, r=R. 
  

4. Boundary conditions 
    In case of nuclear explosions, the explosion energy is confined in a very small 
vessel comparing with an ordinary chemical explosive and is released in the 
surrounding air within a short time interval. When an amount of initial energy per 
unit length or per unit area is deposited along a line or a plane in the air, a propagating 
blast wave followed by outward flow can be generated around the explosion center. The 
decay rate of the finite strength of the shock wave may be physically restricted by the 
initial energy density of the explosion. On the other hand, there exists another 
boundary condition at the explosion center to be used regardless the explosion energy. 
The flow velocity is always directed out ward and is evaluated only on the distance from 
the center of explosion. From the mathematical point of view, the mass flow at the 
explosion center, r=0, must satisfy 0uρ = . However, if there is no mass density at the 

explosion center, blast waves cannot be generated. Therefore, the initial pressure and 
density must always be finite from the beginning at t=0. In addition, it is natural to 
consider that the flow velocity at the center is naught regardless time by virtue of 
symmetrical property of the flow. Thus the physical condition of the explosion energy 
can be replaced by a mathematical model at the explosion center. This simple model is 
called a point source model for explosion named by Korobeinikov (1),  

    ( )0, 0.u t =         (16) 

The basic equations (9) and (10) have two independent characteristic variables,ξ and 
η , only if the equation (16) is satisfied as a boundary condition on every constant time 

line. The point source model is applicable to various problems for source flows including 
high temperature gas flows with chemical reactions.  
   On the other hand, the flow of the matter across the shock front must satisfy the 
conditions of balance for mass, momentum, energy and entropy. The balance statements 
per unit area of of shock front surface give the normal shock conditions across the shock 
discontinuity as,       
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( ) ( )
( )

2 2

2 2
0 0

2 1 1 2 11 , , 1 .
1 1 2 1

s s

s s

M Mp u
p M U M

ρ
ρ

− Γ + ⎛ ⎞
= + = = −⎜ ⎟Γ + Γ − + Γ + ⎝ ⎠

 (17) 

Here U is shock wave velocity propagating at the distance r=R and Ms is the shock 
Mach number defined by using a sound velocity 0a  in front of the shock front defined 

as  

     
0

, .s
dR UU M
dt a

= =  (18) 

 
5. Numerical Computations 

 As in the previous analysis (20), the real gas effects on blast waves are analyzed 
by introducing an effective isentropic index. Fundamental differential equations, (14), 
and (15) in the physical characteristics forms, are replaced by the finite difference 
formulae as  

    
1 , ; ,au ru p t along u a C
a r tρ ±

Δ
Δ = Δ Δ = ±

Δ
∓ ∓      (19) 

2
( 1)

0; ,
' '
p a ralong u C
p a t

Γ
Γ− Δ⎛ ⎞ =⎜ ⎟ Δ⎝ ⎠

         (20) 

Here Δ represents a finite difference width between two adjacent points on a constant 
time line, namely, time increment. Independent variables, r and t, are space and time 
coordinates. Dependent variables ρ, u and p express the density, velocity, and pressure 
of flow, respectively. Variables 'p  and 'a  should be evaluated for every particle path 

line and have constant values along the particle path. The pursuit of available solution 
along the characteristic curves is possible for the linear system of hyperbolic equations 
(26), (27),(28),(29),(30). The intersection of two families of characteristic curves may not occur 
at equal intervals in either time t or distance r, except possibly on the initial time line. 
An advantageous method numerically computing a whole flow region is to seek the 
solutions satisfying the characteristic equations on a constant time line bounded 
between the center of explosion and the shock discontinuity. When the initial shock 
strength Ms and the distribution of flow variables as pressure, density, and velocity are 
specified on a constant time line at arbitrary position and time, the flow variables on the 
next constant time line can be analyzed. In practice, the finite difference equations (19) 
are numerically integrated on the constant time line as a two point boundary value 
problem. In the present analysis, to begin computation with a given strength of shock 
Mach numbers, Ms=M0, the initial values of pressure, density, and flow velocity on the 
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constant time line 0t t= , are estimated by applying the method of quasi similarity 

solutions by Oshima(9). The solutions at every equidistance points on the constant time 
line are computed by similar manner to the method of similarity. Thus the flow 
variables on every constant time line can be successively computed by step by step in 
accordance with 0 , 1, 2,3, , .t t n t n n= + Δ = − − −  The CFL condition is used as usual 
for giving every time step. The detailed procedures for practical computations are 
described in the previous paper (15).      
 

6. Results and Discussion 
 Before starting the characteristic computations, the properties of the 

thermodynamic state variables in high temperature air are evaluated and 
compared to the results by Hansen (16) and Sischa (17). Their results agreed well with 
the present thermodynamic computations. A thermodynamic state is generally 
given by local thermodynamic conditions as a function of temperature and pressure 
or density. In the present analysis, because the flow behind decaying shock front is 
always unsteady, it is impossible to take into account relaxation processes on 
chemical reactions behind shock front different from shock tube problems. 
Therefore computations are carried out under a local equilibrium assumption. In 
the present analysis the initial conditions for pressure and temperature or density 
are taken to be a standard atmosphere at rest. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Effective isentropic index vs. temperature; Eq.(6) . 
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Numerical computations were carried out for cylindrically symmetric flows with 
the initial shock Mach numbers between Ms=M0=3 and M0=9. In case of fairly 
strong blast waves, nonlinear effects of shock compression are significant, so that 
the blast wave cannot decay linearly. In such flow regions, the results by means of 
the method of characteristics may depend on the mesh size as pointed by 
Guderley(31). However, since there are no reasonable methods (28) to evaluate the 
accuracy of computations, testing in computations was carried out by adopting 51, 
101, and 201 points on constant time lines. Computations based on the 51 points on 
the constant time line were almost sufficient to integrate the characteristic 
equations for the ideal gases without dissociation. Since the degree of dissociation is 
a strong function of temperature as well as density, the value of the isentropic index 
violently varies due to small change in temperature. The 201 data points on the 
constant time line may be necessary to continue stable computations for the case of 
dissociating air. Especially for shock waves stronger than the initial shock Mach 
number of nearly Ms=M0=4, we experienced sometimes numerical instabilities 
during iteration procedure to compute the isentropic index. For such computations, 
we used to the formula defined by eq. (6) for the isentropic index. The variation of 
such isentropic indexes against temperature is shown in Fig.1 for comparison. This 
figure shows that the change in such the isentropic index is almost the same, when 
the temperature is less than 8000K. 

The real gas effects of high temperature air were recognized between Ms=M0=4 
and 8. The typical profiles of pressure, density, and flow velocity behind shock front 
for Ms=M0=4 and M0=7 are shown in Fig.2, and Fig.3. The physical values in these 
figures are normalized by the values just behind the shock front. The profiles 
behind shock front almost coincide with those calculated by means of the similarity 
method (20).  
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Fig.2 Initial shock strength M0=4.        Fig3. Initial shock strength M0=7. 
( Profiles behind a shock front on pressure p, densityρ, and flow velocity u ) 
 

The stronger effects of dissociation on the flow velocity was apparently seen in 
the case of Ms=M0=7 than 4. The distributions of flow velocity and pressure behind 
shock front may significantly affect the decay rate of blast waves. Trajectories of 
shock front propagating in the (r,t) plane are shown in Fig. 4 for the case of 
Ms=M0=8. Although the decay coefficients (20) between M0=Ms=4 and 8 for the 
dissociating gases significantly vary, the non-uniform effect of the blast decay was 
not explicitly appeared in the shock trajectories as in Fig.5, and the shock front 
decays monotonously in (r,t) plane. However the blast waves in real air decay faster 
than shock waves in the ideal gas without dissociation. In every computation, the 
shock wave trajectories are curved line at the beginning but gradually approached 
to straight ones. It means that the blast wave non-linearly propagates at first, so 
that the effect of mesh sizes on the propagating shock should be significant. 
However, the 51 points for the ideal gas and 201 points for the real gas are sufficient 
in every computation. Only the discrepancy of numerical results depending on the 
mesh sizes comes from nonlinear properties of gas-dynamics. As a whole we cannot 
find noticeable differences in the shock wave trajectories except for close to the 
explosion center, where the nonlinear effect of gas-dynamics is important. Therefore, 
it is recommended that in the vicinity of the explosion center, we should utilize the 
similarity solutions together with the symmetry condition of flow. In contrast to the 
flow close to the explosion center, the shock wave approaches to sound wave as 
limiting case. In this flow region, the similarity method is inadequate, since the 
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similarity solution cannot tend to acoustic wave. The basic concept of similarity 
assumption is that the shock wave decay with time obeys power law of time.   

   

    Fig.4 Shock wave trajectory in (r,t) plane; Initial shock strength Ms= M0=8 . 

The results computed by means of the method of characteristics under the 
assumption of line source explosions give analytically exact solutions, even if the 
chemical reactions in high temperature air are taken into account. When the blast 
wave is sufficiently weakened and approaches to sound velocity at a long time 
elapsed after explosion, it propagates almost at constant speed in the atmosphere. 
In this circumstance, the decay rule of propagating blast waves may not obey the 
similarity analyses expressed by the power law of time. In addition, the pressure in 
the vicinity of explosion center may decrease due to the expansion of centered 
rarefaction waves. Finally the pressure in the vicinity of the explosion center 
becomes below the initial pressure of the atmosphere at a few millisecond elapsed 
after explosion as shown in Fig.5. Such property of blast waves characterized by 
over expansion flow cannot be analyzed by means of self -similarity analyses. In this 
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stage, the change in flow variables become very small, at the same time, the effect of 
the mesh size on the blast wave analyses becomes negligibly small. 

 

 

Fig.5 Pressure decay of cylindrical blast wave (j=1) vs. distance r. 
       Initial shock strength 0 5Ms M= =  
 

7. Concluding Remarks 
The propagation of blast waves with real gas effects in high temperature air was 

investigated by means of the method of characteristics. The results of the pressure, 
density and flow velocity are almost the same as the similarity solutions. Two 
characteristic lines can be derived from the continuity and the momentum 
equations of cylindrical flows under the line source explosion. To solve 
axis-symmetric explosion, the initial condition for a line source model given by 
u(0)=0 is necessary independently to get two characteristics curves. In the case of 
the analyses for ideal gases without dissociation, computations adopted by 51 data 
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points on a constant time line are sufficient to analyze the flow behind blast waves. 
However in the case of the dissociating air, 201 data points may be necessary to 
continue stable computations, since the change in effective isentropic index may 
strongly depend on temperature change during iteration computations.  

The effect of dissociation can be seen in the range of the initial shock strengths 
between Ms=M0=4 and 8. The flow velocity behind the shock front decreases 
significantly in comparison to those without dissociation. The pressure in the 
vicinity of the explosion center decreases below the initial pressure of the 
atmosphere at few millisecond elapsed after explosion. Such property of blast 
pressure characterized by over expansion cannot be analyzed by means of self 
-similarity analyses. In this stage, the change in flow variables become very small, 
at the same time, the effect of the mesh size on the blast wave analyses becomes 
negligibly small. However, close to the explosion center, the effect of mesh size is 
important, since the nonlinear effect of the flow is important. It implies that the 
similarity method is valuable in this flow region as pointed by Guderley.   

 
The authors prepared this manuscript with deep regret to know that Prof. H. 

Oguchi and also Dr. V. P. Korobeinikov have passed away. They would like to 
acknowledge profs. K. Oshima and H. Honma for their interests in the present work and 
encouragement.  
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Appendix 
   Thermodynamic properties of air composed 20% oxygen and 80% nitrogen 
molecules are described by suitable equations of state. The thermal equation of state for 
the gas mixture (16),(17) can be written as 

    ( ) ( ), , 1 ,N Op Z RT Z T pρ α α= = + +      

Here Z and R are the compressibility factor and the gas constant for the gas mixtures. 

Nα  and Oα  are the degree of dissociation for nitrogen and oxygen gases. Here the 

effect of ionization is ignored for simplicity. The degree of dissociation is determined 
from each rate equation as 

   
( )2

2 exp ,
1 4

pi Di Di

i Di

K T p TT
p p T T

α
α

⎛ ⎞= = −⎜ ⎟− ⎝ ⎠
  i=N for nitrogen or i=O for oxygen 

In this expression, the suffix i indicates corresponding the species of the gas mixture. In 
this case, the degree of dissociation under locally equilibrium condition can be 

calculated by using the equilibrium constant of reaction pK  as 

      ( )
40.40 0.16 0.20 1

,
1 4

pO
O

pO

p
K

T p
p K

α

⎛ ⎞− + + +⎜ ⎟
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+
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      ( )
40.20 0.04 0.96 1

, ,
1 4

pN
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pN

p
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T p
p K

α

⎛ ⎞− + + +⎜ ⎟
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+
 

Specific internal energy ( ),e T p  and enthalpy ( ),h T p for a gas mixture composed of 

80% nitrogen and 20 % oxygen molecules can be expressed as 
    

( ) ( ) ( ) ( )5 1, 0.2 0.8
2 2 exp 1 exp 1

2
3

VO VN

O N O N
VO VN

jO VO N VN

T T
T Te T p RT

T T
T T

TT T RT
T T

α α α α

α α β

⎡ ⎤
⎢ ⎥

= + + + − + −⎢ ⎥
⎛ ⎞ ⎛ ⎞⎢ ⎥− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞+
+ + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

    

( ) ( ) ( ) ( )

( ) ( )

7 3, 0.2 0.8
2 2 exp 1 exp 1

2
1 1 5 ,

VO VN

O N O N
VO VN

jDO DN
O N

T T
T Th T p RT

T T
T T

TT T RT
T T T

α α α α

α α β

⎡ ⎤
⎢ ⎥

= + + + − + −⎢ ⎥
⎛ ⎞ ⎛ ⎞⎢ ⎥− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
+ + + + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 

Here O Nandα α  are the degrees of dissociation for oxygen and nitrogen molecules. 

The symbols , ,, ,VO VN DO DNT T T T are the characteristic temperature of vibrational 

energy and dissociation, for nitrogen and oxygen gases, respectively. Here β  and jT  

are ionization rate of the molecules and the characteristic temperature for ionization. 
Typical values of the characteristic temperature and pressure for nitrogen and the 
oxygen gases are shown in the Table 1. Another values are listed in the paper (20).  
 
             Table 1 Characteristic Values 

Temperature:  for oxygen TDO =59000K   for Nitrogen TDN =113000K 
Pressure:  for oxygen PDO=2.27x107 atm   for nitrogen PDN=6.75x!06 atm 
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