宇宙航空研究開発機構研究開発資料 JAXA Research and Development Memorandum

航空機の雪氷滑走路摩擦係数研究の方向性について

井川寛隆，神田 淳

航空機の雪氷滑走路摩擦係数研究の方向性について＊

井川 寛隆，神田 淳＊2
Research Outlines for Aircraft Friction Coefficient on Winter Contaminated Runway＊1
Hirotaka IGAWA and Atsushi KANDA＊2

Abstract

On winter contaminated runways，aircraft operation may be inefficient．The rules of operation for airlines provide excessive safety margins because the relationship of the friction coefficient of actual aircraft and the friction coefficient determined by a ground friction measurement device，which is used for drawing up the rules，is not based on actual conditions．This report investigates the difficulties that airlines face，the relevant guidelines，and the present status of researches．Research outlines are presented in order to improve the accuracy of relationships of friction coefficients．The research includes the development of a new ground friction measurement device，analysis of flight data，and estimation of a maximum friction coefficient．

Keywords：Contaminated Runway，Friction Coefficient，Winter Operation

概 要

冬期に滑走路が雪氷で覆われると航空機の運航に大きく影響して運航効率が下がる。一方で，エアラインの運航規定策定に用いられている航空機と地上計測装置の摩擦係数の相関データが実情に合つておらず，運航規定には過剰な安全性があると考えられる。本報告では，日本のエアラインが直面している問題，諸規定，関連する研究の状況につ いて調査した結果を示す。さらに，冬期における運航効率の向上を目指して，摩擦係数の相関データの精度を高める ために，JAXA が進めていく研究（新しい地上計測装置の開発•飛行データの解析•最大摩擦係数の推定）の方向性 を示す。

1．はじめに

航空機の就航率（就航予定便数のうち実際に運航した割合）および定時運航率（出発予定時刻の 15 分以内にゲ ートを出発する割合）を高めることは，エアラインにと つて非常に重要な課題である。才が国も加盟している International Civil Aviation Organization（ICAO：国際民間航空機関）の勧告でも 95% 以上の就航率が求められてい る。しかしながら北海道•東北•北陸地方等の寒冷地に おける空港では，冬期の就航率•定時運航率は低下する

傾向にある 1）これは冬期に滑走路が雪氷で覆われるこ とで滑りやすくなることによる離着陸の制限や，除雪作業による離着陸の遅延が主たる原因である。特に離着陸 の制限に伴う欠航•目的地変更は利用者への影響が大き いだけでなく，多大なコスト増となるため，エアライン にとつては大きな問題となっている。

冬期の就航率や定時運航率を上げるために，空港を管轄する国土交通省は，高性能の除雪車両を導入すること で滑走路の除雪時間の短縮を図っている。また離着陸性

[^0]を高めるために，航空機メーカーは Antiskid Braking System（ABS）の性能を向上させるなどの改善を長年に渡り行ってきている。一方で，滑走路雪氷時の離着陸に関する運航規定の策定にあたつて，一部に実情に合わな い古いデータが使われているという現状がある。これは滑走路雪氷時の航空機の摩擦に関するデータであるが，
理論解析が困難であることに加え大規模な実験がなかな か実施できないために更新されていない。実情に合つて いないにも関らず使われ続けているのは安全側のデータ になつているためであるが，結果として過剰に安全な離着陸規定となつている可能性が高い。各エアラインが運航規定を緩和して，これまで不可と判断されできた状況 でも離着陸を可能とすれば，一層の就航率の向上につな がる。勿論，運航の安全性確保は最重要であるため，や みくもに規定を緩和することはできない。そこで安全性 を確保しつつ冬期の運航効率を向上させることを目標と して，JAXA ではエアラインと協力して雪氷滑走路の摩擦係数に関する研究を現在進めている。本資料では，日本のエアラインが直面している問題，諸規定，関連する研究の状況について示し，最後にJAXAが進めていく研究の方向性について述べる。

2．背景と課題

雪氷で覆われた滑走路（雪氷滑走路）でどのような問題が起こるのか，そして日本のエアラインは航空機の運航に際してどのような問題に直面しているのか，雪氷滑走路における離着陸の問題について，背景と課題につい て述べる。

2．1．滑走路面状態と運粇への影響

滑りやすさの観点から滑走路表面の状態を大きく分類 すると，乾燥（Dry），湿潤（Wet／Water／Damp），および雪氷（Compacted Snow／Dry Snow／Wet Snow／Slush／Ice）と なる（Table 2－1）。乾燥状態においては，タイヤと滑走路面間の凝着剪断抵抗がすべり摩擦として大きく作用する

ためにもつとも滑りにくくなり，航空機の離着陸性能を最大限発揮できる路面状態である。湿潤状態では，タイ ヤと滑走路面の間の水分により凝着剪断抵抗が減るため乾燥状態に比べると滑りやすくなる ${ }^{2)}$ 。また，高速度に なると水面上にタイヤが浮き上がり極端に摩擦が減る八 イドロプレーニング現象が湿潤滑走路では発生する 3） ただし現在，国内各地の空港の滑走路面にはグルービン グ加工が施されているため，十分な排水性能を保持して いればハイドロプレーニング現象を起きにくくなつてい る。このハイドロプレーニング現象を除けば，乾燥およ び湿潤状態では，基本的にタイヤと路面間のすべりの問題である。これに対して雪氷状態の場合には，タイヤと雪氷面の間のすべりの問題となり，航空機と滑走路の間 の摩擦係数が極端に小さくなる。

滑走路表面の滑りやすさは航空機の離着陸に大きく影響する。滑走路が滑りやすくなれば，着陸時には停止距離が長くなるのはもちろんのこと，離陸滑走中にエンジ ンの故障で離陸を中止した場合の停止性能にも影響を与 える。つまり必要離陸／着陸滑走路長が長くなるため，雪氷滑走路は運航上の大きな問題となる。

2．2．日本の航空環境

雪氷滑走路に関する問題は日本に限ったことではなく世界的に見られるものである。しかし日本の航空環境は世界的にみても厳しいと考えられる。

一つ目の理由として日本の空港における滑走路が短い ことが挙げられる。東京航空局の管内空港をFig．2－1 に示 す。さらに北海道•東北•北陸地方で定期便が就航して いる各空港の滑走路長を他のデー夕と共にTable 2－2に示 す。新千歳•函館•青森•三沢•仙台の各空港（表中グ レーで表示）は 3000 m 級の滑走路であるが，これら以外 の空港の滑走路は 2000 m 級およびそれ以下の長さである ことがわかる。もちろん北海道•東北•北陸以外の降雪 がある地方空港（松本，鳥取，米子，石見，出雲など） にも 2000 m 級滑走路は存在する。なお国土交通省では既

Table 2－1 滑走路面状態

分類		状態
乾燥	Dry	乾燥した状態
湿潤	Damp	湿っているが水膜は存在しない状態
	Wet	十分濡れているが，水膜の厚さは薄い状態
	Water	十分な水膜がある状態
雪氷	Dry Snow	乾燥した雪および水分をあまり含まない普通の雪
	Compacted Snow	除雪機材等で押しかためられた状態の雪
	Wet Snow	雪が水分をかなり含んでおり，手袋をした手で握ると水がにじんだりしみ出る状態
	Slush	雪が水分を十分に含んでおり，かかと又はつま先で踏 みつけたり跧ったりするとスプラッシュが上がる状態
	Ice	氷結した状態

存の大都市拠点空港整備の重点化の方針を打ち出してお り，第 7 次空港整備 7 力年計画（1996～2002 年）で未着手だった 4 地方空港の新設および 7 地方空港の滑走路延長計画を，第 8 次空港整備 5 力年計画（2003 年～）で涷結している ${ }^{4)}$ 。特に滑走路延長計画が凍結された空港は， いずれも北海道•東北•北陸地方の空港（新千歳•秋田•山形•福島•新潟•佐渡•福井）であった。延長計画が凍結されたことで，2000m 級以下の滑走路が大半を占め る状況に当面変化は無い。参考として，東京航空局管内 における最近の滑走路の新設•延長整備状況を Table 2－3 に示す。

二つ目の理由は，日本では運航している全航空機に占 める大型機の割合が圧倒的に多いことである。世界の各地域での機材区分別の運航機数を Table 2－4a に示す ${ }^{5)}$ 。な お機材区分については絶対的な指標は無いが，一般的に通用している概念に基づいて，大型機（250 席以上），

中型機（100 席以上），小型機（100 席未満），プロペラ機 に分類している（Table 2－4b）。日本のエアラインが運航 している航空機のうち，大型機の割合が $1 / 3$ 以上と世界 の他の地域に比べて高い。特に積雪のある西欧•東欧• ロシア他•北米と比較すると，圧倒的に割合が高いこと が分かる。なお参考として，国土交通省航空局（JCAB： Japan Civil Aviation Bureau）が定めている空港土木施設設計基準を Table 2－5 に示す。この基準によれば大型機が離発着する場合の滑走路長は原則として 2500 m 以上とされ ている。当然のことながら大型機はより長い滑走路長を必要とする。

滑走路雪氷時でも，滑走路長が十分にあれば問題にな りにくい。しかし日本の航空環境は，もともと滑走路が短い上に大型機の運航割合が高いことから，世界的にみ ても厳しいと言える。

Fig．2－1 東京航空局の管内空港（出典：国土交通省東京航空局管内空港の現況）

Table．2－2 北海道•東北•北陸地方の空港

地方	空港	滑走路長 ［m］	滑走路幅 ［m］	種別	管理者	路線数		便数	
						国内	国際	国内	国際
北海道	新千歳	3000	60	第2種	国土交通省	31	7	280	40
		3000	60						
	稚内	2000	45	第2種	国土交通省	6		20	
	旭川	2500	60	第2種	国土交通省	6		32	
	紋別	2000	45	第3種	北海道	2		4	
	釧路	2500	45	第 2 種	国土交通省	7		36	
	女満別	2500	45	第3種	北海道	6		32	
	中標津	2000	45	第3種	北海道	3		10	
	帯広	2500	45	第2種	国土交通省	3		12	
	函館	3000	45	第2 種	国土交通省	13	1	64	4
	丘珠	1500	30	自衛隊共用	防衛庁	5		24	
	礼文	800	45	第3種	北海道	1		4	
	利尻	800	45	第3種	北海道	2		6	
	奥尻	1500	45	第3種	北海道	1		8	
東北	青森	3000	60	第 3 種	青森県	6	2	40	10
	三沢	3050	45	米軍共用	米軍	3		12	
	大館能代	2000	45	第3種	秋田県	2		6	
	秋田	2500	60	第2種	国土交通省	5	1	24	6
	花巻	2500	45	第3種	岩手県	4		16	
	庄内	2000	45	第3種	山形県	3		10	
	山形	2000	45	第2種	国土交通省	4		10	
	仙台	3000	45	第2種	国土交通省	10	7	74	52
		1200	45						
	福島	2000	45	第3種	福島県	5	2	18	12
北陸	富山	2000	45	第3種	富山県	3	4	16	32
	小松	2700	45	自衛隊共用	防衛庁	6	2	36	14
	能登	2000	45	第3種	石川県	1		4	
	新潟	2500	45	第2種	国土交通省	8	7	44	38
		1314	45						
	佐渡	890	25	第3種	新潟県	1		10	

※平成 17 年 3 月現在。ただし，国内線については，曜日運航のものは， 8 月中で最大となる日で計上

Table 2－3．最近の滑走路の新設•延長整備状況

空港	年月日	整備後の滑走路長	備考
新潟	H8．3．28	2，500m	$(\leftarrow 2,000 \mathrm{~m})$ B 滑走路供用開始
新千歳	H8．4．26	$3,000 \mathrm{~m}$	B 滑走路新設供用開始
旭川	H9． 2.1	$2,500 \mathrm{~m}$	（ $\leftarrow 2,000 \mathrm{~m}$ ）滑走路供用開始
中標津	H9．3．2	$2,000 \mathrm{~m}$	（ $\leftarrow 1,800 \mathrm{~m}$ ）滑走路供用開始
東京国際（羽田）	H9．3．27	3，000m	新C 滑走路供用開始
仙台	H10．3．26	$3,000 \mathrm{~m}$	$(\leftarrow 2,500 \mathrm{~m}) \mathrm{B}$ 滑走路供用開始
大館能代	H10．7．18	$2,000 \mathrm{~m}$	新空港開港
福島	H10．12．3	2，500m	（ $\leftarrow 2,000 \mathrm{~m}$ ）滑走路供用開始
函館	H11．3．25	3，000m	$(\leftarrow 2,500 \mathrm{~m})$ 滑走路供用開始
利尻	H11．6．1	1，800m	$(\leftarrow 800 \mathrm{~m})$ 滑走路供用開始
（新）紋別	H11．11．11	2，000m	新空港開港
女満別	H12．2．24	2，500m	（ $-2,000 \mathrm{~m}$ ）滑走路供用開始
東京国際（羽田）	H12．3 23	2，500m	新B滑走路供用開始
釧路	H12．11．30	2，500m	$(-2,300 \mathrm{~m})$ 滑走路供用開始
調布	H13．3．31	800 m	（場外離着陸場 \rightarrow ）コミコーター空港化
成田国際	H14．4．18	2，180m	暫定B滑走路供用開始
大島	H14．10．31	1，800m	$(\leftarrow 1,200 \mathrm{~m})$ 滑走路供用開始
丘珠	H16．3．18	1，500m	$(\leftarrow 1,400 \mathrm{~m})$ 滑走路供用開始
奥尻	H16．3．18	800 m	新滑走路供用開始
八丈島	H16．9．30	$2,000 \mathrm{~m}$	（ $\leftarrow 1,800 \mathrm{~m}$ ）滑走路供用開始
花巻	H17．3．18	2，500m	$(\leftarrow 2,000 \mathrm{~m})$ 滑走路供用開始
青森	H17．4．1	3，000m	（ $\leftarrow 2,500 \mathrm{~m}$ ）滑走路供用開始
奥尻	H18．3．25	1，500m	（ $\leftarrow 800 \mathrm{~m}$ ）滑走路供用開始

Table 2－4a世界で運用されている旅客航空機の数

中南米	西欧	東欧	ロシア他アフリカ	中東	豪州	中国	日本	他アジア	世界計	
116	584	4	8	98	207	62	164	174	501	2545
(7.3%)	(12.8%)	(0.8%)	(0.4%)	(8.4%)	(35.5%)	(9.2%)	(17.8%)	(34.5%)	(29.3%)	(11.1%)
715	2434	208	749	481	246	222	652	265	757	11391
(45.2%)	(53.3%)	(42.1%)	(33.5%)	(41.1%)	(42.2%)	(33.0%)	(70.9%)	(52.6%)	(44.3%)	(49.7%)
58	648	100	780	85	39	36	68	10	65	3527
(3.7%)	(14.2%)	(20.2%)	(34.9%)	(7.3%)	(6.7%)	(5.3%)	(7.4%)	(2.0%)	(3.8%)	(15.4%)
693	899	182	698	506	91	353	35	55	387	5468
(43.8%)	(19.7%)	(36.8%)	(31.2%)	(43.2%)	(15.6%)	(52.5%)	(3.8%)	(10.9%)	(22.6%)	(23.8%)
1582	4565	494	2235	1170	583	673	919	504	1710	22931
(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)

Table 2－4b 機材区分

機材区分	機種
大型機	$\mathrm{B} 747 / 777, \mathrm{~A} 330 / 340, \mathrm{DC}-10, \mathrm{MD}-11, \mathrm{~L}-1011$
中型機	$\mathrm{B} 737 / 767, \mathrm{~A} 300 / 320 / 321, \mathrm{DC}-8, \mathrm{MD}-80 / 90$ 他
小型機	CRJ－100／200／440 他
ブロペラ機	Dash－8，Do228，YS－11，SAAB340 他

Table 2－5 空港土木施設設計基準による滑走路の標準長さ

設計対象航空機	滑走路
大型ジェット機 (B-747, B-777, MD-11 など)	原則として $2,500 \mathrm{~m}$
中小型ジェット機 (A-300, B-767, B-727 など)	原則として $2,000 \mathrm{~m}$
$\begin{aligned} & \text { プロパラ機 } \\ & (\mathrm{YS}-11 \text { など) } \end{aligned}$	原則として $1,500 \mathrm{~m}$
小型機 （ドルニエ 228－200，DHC－6－300など）	原則として $800 \mathrm{~m} \sim 1,000 \mathrm{~m}$

2．3．冬期の運航方法

エアラインは雪氷情報に基づいて運航方針を決定す る。雪氷情報の概略，雪氷情報に含まれるブレーキング アクションの測定，エアラインの雪水情報の利用方法に ついて概略を示す。

2．3．1雪氷情報の提供

雪氷情報は雪氷調査を行うことによって得られる。雪氷調査は空港管理者（例えば国が管理している第1種空港では空港事務所）が行う。調査を行うタイミングは，積雪時や除雪後，滑走路面監視装置（埋めこみセンサー） でモニタリングして状況が変わつたとき，パイロットレ ポート等による。雪氷調査には，滑走路積雪等の状態（積雪量，積雪等の種類，ブレーキングアクション，積雪又 は凍結の割合），滑走路面の状況，滑走路のスノーバンク の状態，エプロンのブレーキングアクション，除雪の状況，総合的な予想，各誘導路のブレーキングアクション が含まれる。雪氷状況調查票を Fig．2－2に示す。なお雪氷情報の提供方法は业界各国で異なるが，我が国では NOTAM（Notice to Airmen）で配信される ${ }^{6)}$

2．3．2．ブレーキングアクションの測定

雪氷情報の中でもつとも重要なのがブレーキングアク ションである。ブレーキングアクションは，滑りやすさ を摩擦係数によって分類したもので，JCAB による分類 を Table 2－6に示す ${ }^{7}$ 。航空保安業務処理規程では，ブレ

一キングアクションの測定（実際には摩擦係数の測定）
に Tapley Meter またはSAAB Friction Tester（SFT）${ }^{8}$ ）を用い ることになっている。Tapley Meter は減速度計の一種であ り，車両に搭載し，フルブレーキング時の減速度を計測 する装置である。減速度は重力加速度の単位で表示され， そのまま摩擦係数値となる。SFT は連続式摩擦係数測定計の一種であり，測定輪にかかる荷重から摩擦係数を計測する専用の車両装置である。SFT は非常に高価である ものの，計測員の技量によるばらつきが小さく信頼性の高い摩擦係数が得られる。SFT は主だつた空港に配備さ れており，Tapley Meter はSFT の補助用として用いられ ている。

ブレーキングアクションは，空港事務所の運航情報官 が計測する。60～95km／h で滑走路の中心線から $2 \sim 8 \mathrm{~m}$ の範囲を往復する。左右交互3回ずつ，滑走全長の1／3 ず つ，6回計測する。

2．3．3．エアライン

雪水情報はエアラインにとつて運航を左右する重要な データである。各エアラインのディスパッチャーおよび パイロットは，NOTAM により配信された雪氷情報によ り運航が可能かを判断する。例えば，目的地空港におけ るブレーキングアクションの区分により，最大着陸可能重量を超過することが予想されれば欠航となる。また運航しても，途中で現地の状況が変化すると，目的地が変更される。

Table 2－6 JCABのブレーキング・アクションの区分

ブレーキング・アクション		摩擦係数 (μ)
GOOD	（良好）	0.40 以上
MEDIUM TO GOOD	（概ね良好）	$0.36 \sim 0.39$
MEDIUM	（普通）	$0.30 \sim 0.35$
MEDIUM TO POOR	（不良）	$0.26 \sim 0.29$
POOR	（極めて不良）	$0.20 \sim 0.25$
VERY POOR	（極めて不良で危険）	0.20 未満

業

等添路ノエプロ		オーバーランノショルター		㴋走路奵			
S 1		T1	オーバーランは策？	u_{1}	埋れた如缐なし	V1	埋れた大奵なし
S2	2 ＂に未了郎分	T2	－に未和分	U_{2}	． 50% 未潶	V2	＂ 50% 未漸
S3	3 エ加は搝？	T3		U3	＂ $50 \% \mathrm{j}$ 上	V3	． 50% 以上
54	4 ＂ 4 に来厂部分	T4	＂に未ア部分	14	全部䛧れている	V 4	全湘梩れている
w1	1 全休的に良くなる可保	が大き					
w2	2 大きな表化はないと思	れる					
w3		予趐					
w 4		\％					
w 5	5 若干最くなる力載用に	文え。	いと思れれる				
wo	6 全体的に悪くなる可的	か大					
w7	7 不明である						
3）もの蚛							

[^1]

Fig．2－2 雪上状況調査

2．4．問題点

エアラインの運航規定は，運航の効率性という観点で問題を抱えている。航空機か離着陸可能かどうかの判断 は運航規定に基づいて行われる。運航規定では，SFT 等 の地上摩擦計測装置で計測したブレーキングアクション から，最大着陸可能重量を算出する。このため運航規定 は，予め地上計測装置と航空機の摩擦係数の相関データ を組み入れて策定されている。この相関データは，1974 ～1976年にかけての3冬期に千歳空港においてJCAB お よびエアライン 3 社が共同で行った実験データに基づい ている。実験で用いられた地上計測装置は，JCAB Type II Meter と ML－Mu－Meter である。このうち JCAB Type II Meter は当時の日本で公式に用いられていた計測装置で ある（後に Tapley Meter に取って代わられる）。航空機は DC－8－55，DC－8－61，DC－9－41，B727－200，B737－200 が用いら れている。本来であれば運航規定には当該航空機と SFT の間の摩擦係数の相関データが組み入れられているべき であるが，理論解析が非常に困難であることとこれ以降大規模な実験ができないことから，古い相関データが使 われ続けている。安全性にはかなりの余裕があると考え られるため運航の安全性という観点での問題は無いが，効率性という観点で考えると大きな問題となる。冬期に おける日本の航空環境は厳しいことは前述のとおりであ るが，運航規定の過度の安全性がさらに環境を厳しくし ていると考えられる。

3．諸規定

世界の代表的機関としてICAO：International Civil Aviation Organization，FAA ：Federal Aviation Administration及び JAA：Joint Airworthiness Authority（現 EASA：European Aviation Safety Authority）をとりあげ，それぞれが発行す るICAO 付属書，FAR 及びJAR において，湿潤及び雪水滑走路における性能基準をまとめた。性能基準の内容を （1）一般的事項，（2）Take－off，（3）Landing の 3 つに大別して整理し，比較を行ったものを Table 3－1 に示す。

3．1 ICAO

ICAO が発行する付属書には Wet 及び Contaminated Runway に関する Requirement はなく，Guidance Material として ATM：Airworthiness Technical Manual に性能基準の記述がある。ATM の離陸性能基準はJAR のそれに近い内容も部分的に見受けられる。着陸性能基準に関しては， Method A，B 及びCという 3 つの基準を設定しており， その内 Method B は FAR，Method C はJAR の内容に近い ものとなっている。これはICAO という機関の性格上，他の Requirement を平等に取り入れたためであると考え

られる。

3． 2 FAA

FAA は Landing の Required Distance 以外には何も Requirement を課していないが，1978年 Advisory Circular （91－6A）において Contaminated Runway の性能に関する Guidance／Recommendation を示している。その後，この Advisory Circular に関する改訂が議論され，1986年に Draft として Advisory Circular（91－6B）が公開されたが，現在も正式な改訂はなされていない。近年，FAA とJAA の Harmonization が盛んに言われており，JAR のNPA：Notice of Proposed Amendment と同様の内容のNPRMを反映した Advisory Circular とするためと見られている。

3． 3 JAA

JAA にも，Wet 及び Contaminated に関する Requirement は存在せず，Advisory Material という位置づけで AMJ 25X1591に性能基準を設定している。ただし，1991年5月に JAR25 を改訂する NPA が出され，それには Wet Runway における離陸性能に関する Requirementが含まれ ている。また，FAR Part 121 に相当するJAR（OPS）が JAA及び欧州のエアラインを中心に作成されており，その内容は Wet 及びSlippery Runway における離着陸性能につい ての Requirement を含んだものとなっている。

Table 3－1a 各機関のRequirement の比較（一般的事項）

項目	ICAO	FAA	JAA
Runway Condition の 定義	＠ANNEX－14 Slush： 水分を十分に含んだ状態 の雪。 Dry Snow： Loose で吹き飛ばされやす く，手で握って放すと粉々 になる雪。 Wet Snow： 手で握ると固まって団子状態になる雪。 Compacted Snow： 押し固められ，それ以上圧縮されることなく，拾い上 げると固まったままかバ ラバラに崩れる雪。	記載なし	Dry： ＂Wet＂でも＂Contaminated＂ でもない滑走路。Grooves or Porous Pavementが施された滑走路。（Braking Action が実質的 に Dry の場合） Wet： 滑走路面は十分に濡れ，光っ ているがStanding Waterの部分 はない。 Standing Water，Slush or Loose Snow： Required Length and Width の滑走路面の 25% 以上が $3 \mathrm{~mm}(0.125 \mathrm{inch})$ 以上の Standing Water で覆われている状態。も しくは，3mm 以上の Standing Water と等価な Slush または Loose Snow で覆われている状態。 Compacted Snow： 雪が押し固められた状態 Wet Ice： Wet Ice のために，Braking Actionが非常に低い状態。
Limitation	記載なし	記載なし ＠A／C 91－6A 0.5 inch を超える Standing Water，Slush or Wet Snow で覆われた滑走路では離陸禁止。	記載なし
Runway Condition 管理基準	滑走路の表面摩擦は定期的に測定すべきであり，滑走路全般またはその一部 の摩擦特性が当該国家に よって定められたレベル以下の場合は，その改善対策を講ずるべきである。滑走路の表面は良好な Braking μ を得るため，また は抵抗を小さくするため に雪，氷，水たまり等はで きるだけ迅速に完全に除 くべきである。	記載なし ＠A／C 150／5320－12A Runway Condition の管理基準を設定 ＠NPRM（1991 Summer） Wet 時の Braking Action を測定	記載なし

Table 3－1b 各機関の Requirement の比較（Take－Off その1）

項目	ICAO	FAA	JAA
Distance Requirement	＠ATM Part III One Engine Out Distance も考慮。	記載なし （G）Amendment 25－42 NPRM（1991 Summer） Wet において，One Engine Out Distance も考慮。	One Engine Out Distance も考慮。
Braking μ	＠ATM Part III Wet： Varying with speed Dry Snow： $\mu=0.25$ Ice or Compacted Snow： $\mu=0.18$	記載なし	Wet： $\mu=0.5 * \operatorname{Dry} \mu$ Standing Water，Slush or Loose Snow： $\begin{aligned} & \mu=0.25 * \text { Dry } \mu \\ & (\mathrm{V}<=0.9 * \mathrm{Vp}) \\ & \mu=0.05 \\ & (\mathrm{~V}>0.9 * \mathrm{Vp}) \end{aligned}$ Compacted Snow： $\mu=0.2$ Wet Ice： $\mu=0.05$
Reverse Thrust Accountability	＠ATM Part III考慮可能。	記載なし ＠Amendment 25－42 NPRM（1991 Summer） Wet において，考虑する。	Wet： 信頼性が実証できれば考慮可能。 Contaminated： 考慮可能。
Aquaplaning Speed の計算法	＠Circular 60 $\begin{aligned} \mathrm{Vp} & =3.4\left(\mathrm{P} / \sigma_{\mathrm{s}}\right)^{1 / 2} \\ \mathrm{P} & =\text { Tyre Pressure }(\mathrm{kPa}) \\ \sigma_{\mathrm{s}} & =\text { Relative density } \end{aligned}$	記載なし	$\begin{aligned} & \mathrm{Vp=}=9(\mathrm{P} / \sigma)^{1 / 2} \\ & \mathrm{P}=\text { Tyre Pressure }(\mathrm{lb} / \mathrm{psi}) \\ & =34(\mathrm{P} / \sigma)^{1 / 2} \\ & \mathrm{P}=\text { Tyre Pressure }\left(\mathrm{kg} / \mathrm{cm}^{2}\right) \\ & \sigma=\text { Specific density } \end{aligned}$

Table 3－Ic 各機関の Requirement σ 比較（Take－Off その2）

項目	ICAO	FAA	JAA
Precipitation Drag の計算	＠Circular 60 Drag due to slush： $\mathrm{D}=\mathrm{C}_{\mathrm{DS}} 1 / 2 \rho_{\mathrm{w}} \sigma_{\mathrm{s}} \mathrm{~V}_{\mathrm{g}}{ }^{2} \mathrm{~d}_{\mathrm{s}} \mathrm{~b}$ ρ_{w} ：Density of water σ_{s} ：Relative density of slush V_{g} ：Aeroplane ground Speed d_{s} ：Slush depth b：Chord length of tyre cross section at slush surface $\begin{gathered} =2 \mathrm{w}\left((\delta+\mathrm{d}) / \mathrm{w}-((\delta+\mathrm{d}) / \mathrm{w})^{2}\right)^{1 / 2} \\ \mathrm{w}=\text { Maximum width } \\ \delta=\text { Tyre deflection } \end{gathered}$ C_{DS} ：Slush drag coefficient	記載なし	Precipitation drag ＝Displacement Drag ＋Spray Impingement Drag Displacement Drag（Tyre Drag）： $D=C_{D} 1 / 2 \rho V^{2} S$ ρ ：Density of precipitation S：Frontal area of tyre $=b^{*} d$ $d=$ Depth of precipitation $b=$ Tyre width $=2 \mathrm{w}\left((\delta+\mathrm{d}) / \mathrm{w}-((\delta+\mathrm{d}) / \mathrm{w})^{2}\right)^{1 / 2}$ $\mathrm{w}=$ Maximum width $\delta=$ Tyre deflection $\mathrm{C}_{\mathrm{D}}=0.75 \quad$（Isolated Tyre） $=0.75^{*} 1.6$（Dual wheels trailing arm） $=0.75 * 2.0$（Dual wheels in front of the main led） $=0.75^{*} 3.35$（Four wheels bogie layout） Spray Impingement Drag： Nose Wheel $D=C_{D} 1 / 2 \rho V^{2} S^{*}$（Number of wheels） Main Wheel $\mathrm{D}=\mathrm{C}_{\mathrm{D}} 1 / 2 \rho \mathrm{~V}^{2} \mathrm{~S} / 2 *$（Number of wheels） $\mathrm{C}_{\mathrm{D}}=8 * \mathrm{~L}^{*} 0.0025$ L＝Length in feet of fuselage behind the point at which the top of the plume reaches the height of the bottom of the fuselage．
Screen Height	＠ATM Part III 35 ft （All Engine Operative） 15 ft （One Engine Inoperative）	記載なし ＠Amendment 25－42 NPRM（1991 Summer） Wet の場合 15 ft	15 ft

項目	ICAO	FAA	JAA
Threshold Speed	Method A： $1.0 \mathrm{~V}_{\mathrm{s}}+5 \mathrm{kt}$ と $1.2 \mathrm{~V}_{\mathrm{s}}$ の大きい方を $\mathrm{V}_{\mathrm{MIN}}$ とし， $\mathrm{V}_{\mathrm{MIN}}+\left(0.2 \mathrm{~V}_{\mathrm{s}}\right.$ と 20 kt の小さい方） Method B： $1.25 \mathrm{~V}_{\mathrm{s}}$ 以上 Method C： $1.25 \mathrm{VSIG}+10 \mathrm{kt}$ （All Engine Operative） $1.25 \mathrm{VSIG}+5 \mathrm{kt}$ （One Eng．Inoperative）	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {REF }} \sim \mathrm{V}_{\text {REF }}+10 \mathrm{kt}$
Angle of Descent	Method A： 3 deg． B：記載なし C： 2.5 deg．	記載なし	記載なし
Airborne Time	Method A： $24-0.0454 \mathrm{~V}_{\mathrm{TH}}(\mathrm{sec}) \quad \mathrm{V}_{\mathrm{TH}}$ in kt B\＆C：記載なし	記載なし	7 秒
Descent Rate	Method A\＆B：記載なし C： $5 \mathrm{ft} / \mathrm{sec}$ 以下	記載なし	記載なし
Touchdown Speed	記載なし	記載なし	実証値がない場合 Threshold Speed の 93\％
Touchdown Point	Method A\＆B：記載なし C：Threshold Speed の関 数として定まる	記載なし	記載なし
Distance Factor	Method A： 1．15（All Eng．）と 1．10（One Eng． Inop．）の大きい方 Method B： Wet L／D Field Length $=1.15$＊Dry Landing Field Length ＝1．15／0．6＊Dry Distance Method C： 1.0	Wet or Slippery Landing Field Length $=1.15$＊Dry Landing Field Length $=1.15 / 0.6$＊Dry Distance	1.15
Braking μ	Method A\＆B：記載なし Method C： $\text { Wet }=0.5 * \text { Dry } \mu$ 低摩擦 Wet $=0.25$＊Dry μ	記載なし	Take－Off に同じ

4．関連研究

4．1．国際プロジェクトJWRFMP ${ }^{9}$

4．1．1．JWRFMP の背景

1989年に降雪時のカナダドライデン空港で発生した Fokker－28の事故に対し，事故調查委員会は「滑走路面状態を技術的かつ正確に定義する方法とそれらが航空機性能へ及ぼす影響について調査を行うこと」という勧告を出した。
現在，雪氷滑走路での航空機性能については，国によ つてガイドラインが示されている場合もあるが，国際的 に統一された基準がないというのが現状である。これは摩擦係数測定機器により測定した摩擦係数と航空機性能 の相関確立に多くの技術的な問題があるためである。

こうした背景の中，1995年12月に力ナダ航空局及び NASA は「雪氷滑走路における摩擦係数測定」に関し共同で調查•研究を行らことに合意し，翌年1月に「雪氷滑走路等摩擦係数測定機器に関する国際的な共同調査研究プロジェクト」（JWRFMP ：Joint Winter Runway Friction Measurement Program）が発足した。さらに，1996 年には， JWRFMP の進渉状況報告会議である IMAPCR96： International Meeting of Aircraft Performance on Contaminated Runway が開催され，その後1999年，2004年にも開催された。

4．1．2．JWRFMP の目的

JWRFMP の目的は以下の通りである。
（1）雪氷滑走路における航空機及び摩擦係数測定機器の摩擦係数測定試験実施及び試験結果のデータベース化
（2）航空機と摩擦係数測定機器間の相関の確立（Landing Distance Table の作成）
（3）摩擦係数測定機器間の相関の確立（IRFI：International Runway Friction Index，詳細後述）及び摩擦係数通報の IRFIへの国際的統一
（4）Contaminant Drag に関する調査研究
（5）防除氷液がタイヤ摩擦性能に及ぼす影響の調査
（6）雪，氷および防除水液の基礎的研究
（7）雪水滑走路での横風が航空機の Handling へ及ぼす影響の調查

4．1．3．JWRFMP の構成

JWRFMP の構成メンバーは以下の通りである。
（1）運営委員会メンバー
Transport Canada（カナダ航空局），NRC（National Research Council Canada），FAA，NASA，NCAA（ノルウェー航空局），DGAC（フランス航空局）
（2）その他の協力メンバー
ICAO，JAA，ASTM（American Society for Testing Materials），研究機関，軍，航空会社，メーカー等

4．1．4．JWRFMP の活動

1996年1月から実地試験を含む調査•研究が実施され ている。ノースベイ空港，NASA Wallops Flight Facility 等 で，様々な滑走路面状態において航空機（Falcon 20，Dash 8，B737，B727等）及び摩擦係数測定機器（10 種以上） の実地試験が行われた。日本においても2003年に新千歳空港で実施試験が行われた ${ }^{10)}$ 。また，定期的に国際会議 や Workshop 等が開催され，データの解析結果，プロジェ クトの進渉状況に関して議論が行われた。

4．1．5．IRFIについて

IRFI ：International Runway Friction Index ${ }^{11)}$ とは，摩擦係数測定機器の違いによる通報値のばらつきを極力小さく するために，機器間の相関関数を求め，いずれの機器に よる測定結果も共通の尺度に換算し通報するというもの である。
JWRFMP で行われた各種摩擦係数測定機器（ 15 種類）に よる 3，000 以上の摩擦係数測定試験結果から，IRFIを一次式で表されるようデータ解析をする。IRFIを一次式で表すためには，全ての測定機器と良好な相関が得られる リファレンスデータが必要である。リファレンスデータ としては，以下の4種類が考えられる。
（1）リファレンスデバイスを開発しその測定値をリファ レンスデータとする。
（2）全ての測定機器における測定データの平均値
（3） 2 種類の測定機器における測定データの平均値
（4）任意の 1 つの測定機器における測定データ
これまで（3）の方法が検討され，様々な 2 種類の組み合 わせ平均値と全ての測定機器によるデータを一次回帰さ せ，最も相関の良い組み合わせをリファレンスデータと するような統計学的な解析が行われた。その結果 SFT79
（Surface Friction Tester：SAAB）とIMAG（フランスで使用されている連続式摩擦係数計測装置）の測定データの平均値が，全ての測定機器と最も相関が良くリファレン スデータとして適していると考えられている。このデー タを基にしたIRFIのプロトタイプデータの設定がなされ た。

しかし，IRFIのプロトタイプデータについては，いく つかの問題が指摘されている。また，IRFIと航空機ブレ一キ性能との相関の確立についても，課題として残され ている。

4．2．JAXA の従来研究

旧 NAL（National Aerospace Laboratory）の時代を含める と，JAXA では雪氷滑走路面に対する摩擦係数測定装置 の開発を行った事例がある。ここでは，過去に行われた研究の概要を示す。

4．2．1．滑走路面の滑り評価法に関する研究 ${ }^{12113)}$

研究期間昭和 52 年度～昭和 54 年度

研究担当者

山根晧三郎，上田哲彦，外崎得雄，小野幸一，
竹内和之（機体第一部）

研究の概要

滑走路面のすべり計測法の一つとして，NASA で開発 された DBV（Diagonal Braked Vehicle）による計測法ある。 これは，乗用車のブレーキ系に改造を加え，4輪のうち対角線上の 2 輪にのみブレーキが作動するようにして， 60 MPH の速度で 2 輪をロックさせてから停止するまでの制動距離 S を計測し，乾燥路面での制動距離 S_{D} との比 SDR（Stopping Distance Ratio）$=\mathrm{S} / \mathrm{S}_{\mathrm{D}}$ を路面のすべりの指標 とする方法である。SDRは，摩擦係数 μ が速度，位置に依存しない一定値と仮定すれば乾燥路面の摩擦係数 μ_{D} との比の逆数（ μ_{D} / μ ）に一致する。

DBV による計測法は，タイヤの摩耗や計測の簡便さの点で他の方法に劣るが，湿潤路面では航空機のSDRと

良い相関を示し，また実験例は少ないが，積雪路面に扮 いても航空機と良い相関を示す。
このような背景のもと，主に雪氷滑走路面のすべり計測法の問題点を解明するために，DBV を製作し基碄実験 を行った。

製作したDBVの概要

トヨタ社製クラウン 2600 （C－MS101－TKG）を改造し， DBV を製作した。当該車両に，対角制動機能付加のため の油圧配管の改造，ならびに，4輪制動と対角制動の制動モード切替機構および安全対策のための機構の付加を行った。

制動装置の油圧配管に関しては，前2輪と後2輪がそ れぞれ一対となった既設の 2 系統配管を撒去し，右前輪 と左後輪および左前輪と右後輪がそれでれ一対となった対角 2 系統の油圧配管を設け，対角 2 系統のうち左前輪 －右後輪の油圧配管系統の途中に油圧カット・バルブを挿入して，スイッチ操作により対角制動モードが得られ るように改造した（Fig．4－1）。油圧カット・バルブはソレ ノイドに通電することによってバルブが閉じて油圧が遮断されるが，通電を止めるとスプリングの力により強制的にバルブが開き 4 輪制動モードへ復帰する。また，対角 2 系統油圧配管の後輪側には，前輪と後輪の制動装置 へ油圧配分を適正化して普通乗用車として用いるときの後輪の早期ロックを防止するためのプロポーショニン グ・バルブと，対角 2 系統の油圧作動状況をモニタする ために油圧検出器を取り付けた。

Fig．4－1 DBV の油圧配管系統図

計測装置およひび計測項目を Table 4－1 に示す。速度およ び距離計測のために，計測用の第5輪を車両後部にバン パーをはずして取り付けた。

計測実験

最初に，DBV の加速性能，走行安定性を把握するため に，日本自動車研究所の総合試験路にて実験を行った。 その後，各種路面条件でのすべり特性に関する基碟資料 を得るために，各空港での計測実験を行った。また， Tapley Meter および ML－MU－Meter での計測も同時に行 い，計測結果の比較を行った。実験の日程，路面状態な どをまとめたものを Table 4－2 およよび Table 4－3に示す。 Tapley Meter とは，自動車にとりつける簡易加速度計 で， $20 \mathrm{~km} / \mathrm{h}$ から制動をかけて生じた最大減速度を計測し，摩擦係数を求めるものである。ML－MU－Meter は，開き角 15° を持って取り付けられた 2 輪車を， $60 \mathrm{~km} / \mathrm{h}$ の一定速

度で牽引し車両に働く横方向の抗力を計測し，摩擦係数 を求めるものである。

実験結果まとめ

1）積雪路面では，DBV のすべり摩擦係数は速度の減少と ともにやや減少する。
2）ML－MU－Meter は積雪路面で極端に低い値を示し，率引速度を低くすると計測値は高くなる傾向があった。
3）Tapley Meter は，DBV のスノー・タイヤを用いた $10 ~$ $20 \mathrm{~km} / \mathrm{h}$ のすべり摩擦係数を良く表す。
4）Tapley Meter は DBV の μ_{1} の 1.8 倍程度を示した。（ μ_{1} とは，DBVで計測された制動距離 S と初期速度 V_{0} を用 いて，ロックしたタイヤと地面とのあいだに速度等によ らず一定の摩擦力が作用するとして求めた摩擦係数 μ_{1} $=\mathrm{V}_{0}{ }^{2} / \mathrm{g} \mathrm{S}$ である。）

Table 4－1 計測装置およよび計測項目

Table 4－2 実験日程その 1

実験 シリーズ名	年 $\boldsymbol{\prime}$	䀛 所	路 面＊	路面状㤠	比較言剖器
J	诏相52年11月8，25日	口桃当動市仾究所	穂合試験路	（散水車）	
N	柖和52年12月566	新本京到祭空泷	A阴歨路 ง．プยン 25 mm がよ 100 mm ドッチン あ㴖切路解	乾棌あよな湿閏 （散水五）	Tapley Meter ML－Mu－Meter
CP		新閏空难	A骨䞗碞		Tapley Meter
C	昭和63年1月22日	＂	A，B 貫走枵	体結	自部制動諒
CA	昰知53年1月29月	＂	A，B胥寺路	煵雰	MT－Mu－Meter
D	昭和 53 年 5 且 14 E	説有空港	滑寺路	故㙅	

Table 4－3 実験日程その 2

类驗名	年月月	埸 所	路面状緐	
E	53.6 .23	調有空漢	桠相	
F	53．7．12	＊	半疑梠	
G	53．7．13	\％	莫踩	
K I	54．2． 7	東千歳場外竒陸場	皘军	Tapley Meter ML－Mu－Meter
K 2	54.28	＂	＂	"
K 3	＂	＂	＂	$"$
K 4	54．2． 9	＂	＂	＂
K 5	＂	＊	\prime＂	"

4．2．2．雪氷滑走路面摩擦係数測定装置の開発 ${ }^{14)}$開発期間

平成11年度～平成12年度

開発担当者

外渏得雄，甲斐高志，上田哲彦（構造材料研究センタ －）

装置開発の背景

我が国では雪氷滑走路面摩擦係数測定にSAAB 社製の SFT（Surface Friction Tester）と Tapley Meters 社の Tapley Meter が公式な装置として用いられている。SFT は，離着陸回数が多く降雪頻度の高い空港に配備されており，測定は迅速な装置であるが高価である。一方 Tapley Meter は，簡便で安価な装置であるが，測定路面および測定車両のタイヤに制限を受ける，測定に多くの時間を要する等の問題がある。

空港およびエアラインの運航管理者の間では，これら 2 つの装置の利点をあわせ持つよらな，迅速に精度良く測定できる簡便な装置の開発が望まれてきた。そこで，航空宇宙技術研究所ではこの要望に沿らべく新たな装置 の開発を行った。前輪駆動式一般車両の後輪に専用のホ イルを取り付け，それに本装置を取り付け連続して迅速 に摩擦係数の測定を行うものである。車両に対して構造的な改造を加えないため，ホイルを元に戻すことにより容易に車両の原状復帰ができる簡便な装置である。

装置の概要

装置の概略を Fig．4－2 に示す。構造の構成は，計測補助輪，走行輪，計測輪，及び計測輪への垂直荷重負荷機構 と滑り率を持たせるための機構から成っている。計測輪 への垂直荷重負荷機構は，走行輪と計測補助輪間のロッ ド部分中間に取り付けたコイルバネを用い，フレーム上端部に力を加える事により走行輪軸を回転中心としフレ ームを回転させて計測輪に下向き荷重を負荷するシンプ ルなものである。荷重負荷量はコイルバネ受けナットの回転でバネを伸縮させ調節し，その時の値はバネと直列 に組み込んだロードセルで測定する。計測輪への荷重負荷のためにデッドウエイトを使用する他の装置に比べて機構重量の軽減となる。レバー操作によりワンタッチで垂直荷重の負荷と解除が可能な機構を組み込んだ。これ により，計測輪への所定量の荷重負荷と解除が容易とな るだけでなく，非測定時のタイヤ摩耗を防ぐことも可能 となる。
計測輪に滑り率を与える機構を Fig．4－3 に示す。走行輪 と計測輪の間に取り付けたフレーム内の二組の傘歯車と

シャフトを用いて走行輪の回転を計測輪に伝達する。こ のとき計測輪に与える滑り率は走行輪と計測輪の径，傘歯車の歯数の選択により決まる。計測輪に滑り率を持た せることによりタイヤと路面の間に発生する摩擦力を， フレーム内のシャフトの医りとして，シャフトに組み込 んだトルクセンサで計測する。以上により，荷重と滑り率の値が変更可能な摩擦係数測定装置の機構を構成し た。

測定試験

1）平成 11 年，日本航空学園の乾燥路面にて，走行時の安定性，操縦性の確認を目的に試験実施。最高速度 $70 \mathrm{~km} / \mathrm{h}$ まで走行安定性を確認。
2）平成 12 年 12 月 25 日，日本自動車研究所において， 3種類の摩擦係数の異なる湿潤路面について，摩擦係数測定試験を実施。
3）平成13年1月22日～25日，新千歳空港エプロン・誘導路において，アイスバーン，グルービング路面上新雪，圧雪，新雪の路面状態について測定試験を実施。SFT， ASFT 及び Grip Testerと測定結果比較を行った。

測定試験結果まとめ

雪氷滑走路面の摩擦俰数を精度良く連続して測定できる簡便な測定計を目指して開発を行い，この装置に対して乾燥路面における走行時の安定性，操縱性の確認試験と雪氷路面における摩擦係数測定試験を実施した。その結果，装置の走行安定性と操縦性に問題のないことを確認 し，また，雪氷路面において現用の装置と同時に測定試験を行い，良好な相関が得られる事を確認した。但し，当該装置の測定結果は全体に低めに出る傾向を示した。 この原因としては，装置の内部摩擦は計測輪に地面反力 が猢からない状態で測定されているのに対し，実際の走行時には地面反力により軸受けや柬車が受ける力が増加 し，内部摩擦も大きくなっているためと考えられる。

Fig．4－2 摩擦係数計測装置の概略

Fig．4－3 滑り率発生機構

4．3．自動車分野における研究

冬期雪氷路面の摩擦係数計測に関しては，航空機同様 に自動車に対しても，その安全確保のための重要な課題 として，国内外で多くの研究がなされている。国内の主 な研究機関について，情報収集•調査を行つた。いくつ かの機関では独自の雪氷路面の摩擦係数計測装置を有 し，冬期路面の維持管理のための基本デー夕取得を行っ ている。また，冬期凍結路面における自動車の挙動解析，加速度•減速度等の運動計測デー夕から凍結路面の摩擦係数推定を行う研究なども行われている。これらの研究 は，我々の行う航空機の雪氷滑走路摩擦係数研究の参考 になるものである。以下，調査を行った機関の研究内容•研究設備等の概要を示す。

4．3．1．北海道大学大学院工学研究科 北方圏環境政策工学専攻交通インテリジェンス研究室

－車両運動データを利用した冬期路面状態の推定 ${ }^{15) 16)}$
車両に GPS と車両運動センサーを取り付け，得られ た車両位置•運動データから，車両と路面の間に作用 する力を考えることで走行地点の路面のすべり摩擦係数・スリップレシオ等を逆推定している。さらに，逆推定した現時点のすべり摩擦係数と気象デー夕から短時間先のすべり摩擦係数の予測するモデルを提案し た。路面は時間とともに大きく変化していくため，従来のオフラインのモデルを発展させ，カルマンフィル夕を用いたオンラインの予測モデルを構築した。

－バス型摩擦係数計測試験車

当該研究室では，独自に製作したバス型の摩擦係数計測試験車を有している。この試験車は，一般的な路線バスを改造したものである。計測方法としては，試験タイヤにかかる抵抗力をトルク計で直接計測し，夕 イヤにかかる荷重との関係からすべり摩擦係数を測定

Fig．4－4 摩擦係数計測機構（北海道大学）

するシステムとなっている。摩擦係数計測機構の模式図を Fig．4－4 に，計測車両の外観写真を Fig4－5 に示す。本計測試験車では，スリップレシオを変化させた摩擦係数計測も可能である（ただし，スリップレシオの値 を一定値にコントロールするのは困難である）。

Fig．4－5 バス型摩擦係数計測試験車（北海道大学）

4．3．2．北見工業大学 工学部 土木開発工学科寒冷地工学講座

－路面評価型ドライビングシミュレータ当該研究室では，路面性状評価の機能を有するドライ ビングシミュレータを有する（Fig．4－6）。路面性状（わ だち掘れ，凹凸，段差など）は車の運動の起因となる ものであり，その性状の良否は，道路利用者の安全性 や乗心地に大きな影響を及ぽすため，その評価方法の確立を目指している。現在，「路面評価型ドライビング シミュレータ」を用いて道路の路面状況，車両運動及 び視界映像を再現する事により，
（1）高齢者や身体障害者に優しい道路の設計•評価法
（2）寒冷地における道路の維持管理システム
などの開発を実施している。
本ドライビングシミュレータの特徴として，実際の交通環境において測定した前方映像及び車両挙動データを

入力することによって，実走行の再現ができるというこ とが挙げられる。シミュレータ本体は6軸の電動サーボ シリンダに支えられており，このシリンダが伸縮／回転 することによって車の挙動をシミュレートする。さらに， ミラースクリーン，振動機能付シート及び路上走行音（ロ ードノイズ）などを採用し，現実感の向上を行っている。

Fig．4－6 路面評価型ドライビングシミュレータ（北見工業大学）

Fig．4－7 摩擦係数計測機構（開発土木研究所）

4．3．3．北海道開発土木研究所 道路部 交通研究室

－バス型摩擦係数計測車両
この車両には，走行用の車輪とは別に，中型バス車両の中央線から左にオフセットした位置に測定用の車輪（試験輪が）取り付けられている。このすべり試験車は，試験輪を垂直に上下させタイヤにかけた荷重と ブレーキによる抵抗力からすべり摩擦係数を測定する機構となっている。測定は，一定速度で走行しながら試験輪だけ制動をかけ（試験輪は完全ロック状態），試験輪にかかる抵抗力を測定する。また，車両の進行方向に対して試験輪にのみ横滑り角（ステア角）をつけ た時に生じる横滑り摩擦係数を計測することも可能で ある。操作は車両に搭載したパソコンによって行うこ とが可能であり，計測データはオンラインで摩擦係数 に変換され，記録される。計測機構の模式図を Fig．4－7 に，試験車両の外観を Fig．4－8 に示す。全長： 8990 mm 全幅： 2300 mm 車体重量： 9.5 t製造：八千代製作所

Fig．4－8 バス型摩擦係数計測試験車（開発土木研究所）
－苫小牧寒地試験道路
開発土木研究所では，苫小牧東部地域に周回可能な テストコース「苫小牧寒地試験道路」を所有している （Fig．4－9，Fig．4－10）。コースの形状は周回延長 2，700m で $1,200 \mathrm{~m}$ の直線部 2 本と 160 m の 2 つのカーブからなつ ている。直線部は高規格幹線道路対応 4 車線区間と一般道路対応 2 車線区間があり，高速での実験が行え る。また，設備として人工降雪機があり，冬期凍結路面を模擬することが可能である。以下の課題について，研究を行っている。

1）冬期における交通事故の減少と交通の円滑化
2）郊外部で多発する重大事故の減少ならびに被害軽減

3）積雪寒冷地により適合した低騒音舗装の開発
4）寒冷地走行支援システムによる冬期走行負担軽減と冬期交通事故の防止
5）新たな道路情報提供システム開発，冬期多重衝突事故の防止対策手法の確立

Fig．4－9 苫小牧寒地試験道路概要

Fig．4－10 苫小牧寒地試験道路全景

5．JAXA 研究の方向性

冬期の運航効率を向上させるために実行できる方法は少ない。たとえば滑走路長を伸ばすことや，航空機の制動性能を大幅に向上させることは，実現が非常に困難か不可能に近い。もつとも現実的かつ効果的な方法は，運航規定における過度の安全性を排除することである。過度の安全性は，航空機と地上計測装置の摩擦係数の相関 デー夕にあると考えられる。これは滑走路雪氷時の離着陸に関する運航規定の策定時に用いられるデータである が，理論解析が困難であることに加え大規模な実験がな かなか実施できないために更新されていないため，実情 に合っていないデータとなっている。実情に合っていな いにも関らず使われ続けているのは安全側のデータにな っているためであるが，結果として過剰に安全な離着陸規定となっている可能性が高い。現状に即した精度の高 い相関データが求められれば，運航規定に反映すること で効率性の高い運航が可能になる。本章では，精度の高 い相関データを求めるために JAXA が検討している手法 について述べる。

5．1．概要

航空機と地上計測装置の摩擦係数の相関を決定するた めには，同じ雪氷滑走路でそれぞれの最大摩擦係数を求 める必要がある。このとき地上計測装置は，JCAB で標準的に使用されているSFT を用いるのが妥当である。 SFT による最大摩擦係数は，実測することによって簡単 に得られる。一方，航空機の最大摩擦係数を計測するた めには，大規模な実験が必要であり実施が困難である。 そこで航空機の最大摩擦係数を日常の運航データ（フラ イトデータ）から求める手法を考える。

フライトデータから航空機の最大摩擦係数を求めるた めには工夫が必要である。日常の運航でブレーキを目一杯使うことは無く，最大摩擦係数を直接的にフライトデ ータから解析することはできないためである。そこでタ イヤの滑り特性を変えることのできる地上計測装置を新 たに開発し，摩擦係数を実測する。地上計測装置で得ら れた摩擦係数データとフライトデータから得られた摩擦係数データを比較することで，航空機の最大摩擦係数を推定することとした。研究スキームをFig．5－1 に示す。

Fig．5－1 JAXA の研究スキーム

5．2．フライトデータの解析

フライトレコーダは航空機に搭載され，運航中のさま ざまなフライトデータが記録されている。また記録され ているデータの種類はエアラインや機種毎に異なるが，航空機の摩擦係数を解析するために重要な減速度のデー夕は必ず記録されている。航空機の着陸時における摩擦係数の解析方法を示す。

5．2．1 摩擦係数の解析

摩擦係数は次式で定義される。

$$
\begin{equation*}
\mu=\frac{F}{W} \tag{1}
\end{equation*}
$$

ここで，F は摩擦による制動力，W は重量を表す。この摩擦係数の定義式は金属面等のクーロン摩擦が成立する場合に意味をなすものである。ゴムと雪氷面の間の摩擦 はクーロン摩擦ではないため定義式としての意味は薄れ るが，一般に広く用いられているため，JAXA 研究でも これを用いることとする。航空機の摩擦係数を $\mu_{\text {aircraft }}$ と すれば，航空機の着陸時の運動方程式は次式で表される。 $\frac{W}{g} \ddot{x}=T-(W \cos \phi-L) \mu_{\text {aircraft }}-W \sin \phi-D-D_{\text {contam }}$（2）
ここで，\ddot{x} は減速度（ただし航空機の進行方向が正）， T は推力，L は揚力，D は空力抵抗，$D_{\text {contam }}$ は雪氷抵抗，ϕ は滑走路面の勾配を表す。
（2）式より，摩擦係数は次式で求められる。
$\mu_{\text {aircraft }}=\frac{-W \ddot{x} / g+T-W \sin \phi-D-D_{\text {contam }}}{W \cos \phi-L}$
この式は，フルブレーキングの実験結果から摩擦係数を求めるために広く一般的に用いられている。フライトデ ータの解析例を Fig．5－2 に示す。この解析例では横軸をブ レーキ圧，縦軸を摩擦係数としている。摩擦係数のデー夕が一部マイナス値になっているのは，あくまでサンプ ルデータであり，逆推力に関するデータが不足しており推定値を使用したためである。

Fig．5－2 フライトデータ解析例

ここで摩擦係数 $\mu_{\text {aircraft }}$ について考える。航空機のブレ ーキは主輪についているため，ブレーキングによる制動力は主輪にのみ働く。一方で地面反力は前脚と主脚に分散されるため，すべての航空機重量が主脚にかかるわけ ではない。この点で摩擦係数 $\mu_{\text {aircraft }}$ はあくまで航空機の平均的な摩擦係数であり，タイヤの純粋な摩擦係数を表現していない。次節で述べる地上計測装置では，あくま でタイヤの摩擦係数を測定するための装置である。航空機と地上計測装置との間で摩擦係数の相関を調べる場合 は，$\mu_{\text {aircraft }}$ を使うよりも，タイヤの摩擦係数 $\mu_{\text {tire }}$ を使う方が適していると考えられる。 $\mu_{\text {tire }}$ を考慮するための航空機モデルを Fig．5－3 に示す。簡単化のために $\phi=0$ とす れば，運動方程式は次式で表される。
$\frac{W}{g} \ddot{x}=T-D-\left(D_{\text {Ncontam }}+D_{\text {Mcoontam }}\right)-\mu_{\text {rotation }} P_{N}-\mu_{\text {tire }} P_{M}$（4）
ここで，$D_{\text {Ncontam }}$ と $D_{\text {Mcontam }}$ はそれぞれ前脚と主脚の雪氷抵抗，P_{N} と P_{M} はそれぞれ前脚と主脚に作用する地面反力を表す。 $\mu_{\text {rotation }}$ はころがり摩擦を表す。このとき垂直方向の力の釣り合いと，前脚まわりのモーメントの釣り合い式は次式で表される。
$W-L-P_{N}-P_{M}=0$

これを（4）式に代入すると
$\frac{W_{\tilde{\alpha}}}{g}=T-D-\left(D_{\text {lotan }}+D_{\text {stotom }}\right)-\mu_{\text {tatom }}(W-L)\left(1 \frac{b-a}{(T-D h}\right)-\mu_{r e} \frac{(W-L)(b-a)}{(T-D) h} P_{M}$（6
さらに $\mu_{\text {rotation }} \ll \mu_{\text {tire }}$ とすれば，タイヤの摩擦係数 $\mu_{\text {tire }}$ は次式となる。
$\mu_{\text {tire }}=\frac{-W \ddot{x} / g+T-D-D_{\text {contam }}}{W-L} \times \frac{(T-D) h}{b-a}$
ただし，

$$
\begin{equation*}
D_{\text {contam }}=D_{\text {Ncontam }}+D_{\text {Mcontam }} \tag{8}
\end{equation*}
$$

なお，$\mu_{\text {aircraft }}$ と $\mu_{\text {tire }}$ の関係は，（3）式と（7）式から次式で表 される。

$$
\begin{equation*}
\mu_{\text {aircraft }}=\mu_{\text {tire }} \frac{b-a}{(T-D) h} \tag{9}
\end{equation*}
$$

Fig．5－3 航空機モデル

5．2．2．摩擦係数と Slip Ratio

一般に，摩擦係数は速度やタイヤと路面間のすべりの状態によって変化する。すべりの状態は Slip Ratio と呼ばれ，次式で定義される ${ }^{8)}$ 。

$$
\begin{equation*}
s=\frac{V-r \omega}{V} \quad(0 \leq s \leq 1) \tag{10}
\end{equation*}
$$

ここで V は前進速度，r はタイヤの半径，ω はタイヤの回転速度を表す。 $s=0$ の場合は，滑りなく回転しているこ とを，$s=1$ の場合はタイヤがロックしていることを示す。乾燥路面などでは Fig．5－4 のような関係がみられる ${ }^{18)}$ 。

通常の航空機の運航では，フルブレーキングの状態に なることは滅多になく，ブレーキによる制動力は最大に なっていない。このため，フライトデータで解析できる のは摩擦係数の部分特性（Slip Ratio でかなり低いところ の摩擦係数）であり，最大摩擦係数を直接解析すること はできない。

Fig．5－4 Slip Ratio と摩擦係数

5．3．地上計測装置の開発

Slip Ratio と摩擦係数の関係を得るために，地上計測装置を新たに開発する。開発する地上計測装置の最大の特徵はSlip Ratio が可変となる機構（可変 SR 機構）である。 JAXA 研究では，Slip Ratio と摩擦係数の関数を求めなけ ればならないため，地上計測装置にはSlip Ratio が可変と なる機構が必要である。世界各国で地上計測装置が開発 されているが，Slip Ratio が固定である場合がほとんどで あり，可変機構を採用している装置はごくわずかである。 SFT も地上計測装置の一種であるが，Slip Ratio は固定で ある。SFT では，自由回転する後軸輪からチェーン・ト ランスミッションを介して計測輪がリンクしており，Slip Ratio が 13% で固定されている。

可変 SR 機構を用いるメリットは大きい。まず正確な最大摩擦係数の計測が可能となることが挙げらすてる。最大摩擦係数を発生するSlip Ratioは路面状況によって異 なるため，Slip Ratio と摩擦係数の関数が求められれば，最大摩擦係数が正確に求められる。さらに雪氷抵抗を計測することが可能になる。これはSlip Ratio を 0 に設定す ることで摩擦抵抗が無くなり，計測輪にかかる抵抗が雪氷抵抗のみとなるからである。

5．4．摩摖係数の推定と相関の決定

フライトデータから航空機の摩擦係数を解析する。次 に同様の路面状態において，開発した地上計測装置を用 いて摩擦係数を実測することで，Slip Ratio と摩擦係数の関数を得る。摩擦係数は路面状態に大きく依存するので， さまざまな路面状態において計測を実施する必要があ る。地上計測装置によって得られた関数を基に，航空機 の最大摩擦係数を推定する。推定された最大摩擦係数と SFT によって得られた摩擦係数を比較することで，航空機と SFT の間の摩擦係数の相関を決定する。

6．おわりに

冬期の航空機の運航効率の向上は，運航側および利用者側ともに大きなメリットがあり，社会的な研究二ーズ が高い。ただし効率性を向上させるための方法は非常に限られており，航空機と地上計測装置 SAAB Friction Tester の摩擦係数の相関を高精度に求めることがもっと も効果的と考えられる。相関を高精度に求めるために， フライトデータの解析／地上計測装置の開発／摩擦係数 の推定と相関の決定という研究項目を設定した。今後， それぞれの研究項目について研究を進めていく。

7．参考文献

1）国土交通省；空港の利用状沉
2）市原薫，小野田光之；路面のすべりとその対策，技術書院
3）Norman S．Currey；Aircraft Landing Gear Design： Principles and Practices，AIAA Education Series
4）竹林幹雄，黒田勝彦；世界の航空市場の動向とわが国の空港政策，会計検査研究，Vo．28，pp．113－126
5）日本航空機開発協会，民間航空機および関連産業に関する調査研究， 2004
6）国土交通省航空局；雪水状沉調書および雪氷に係る航空情報の提供方法等に関する調查報告書，航空輸送技術研究センター，2002
7）AIM－JAPAN 編纂協会；AIM－j，日本航空機操縦士協会
8）運輸省航空局；連続式摩擦係数測定計評価実験報告書
9）Thomas J．Yager；Joint Winter Runway Friction Program Accomplishments，The Virginia Department of Transportation and Virginia Tech Pavement Evaluation 2002 Conference，Virginia， 2002
10）国土交通省航空局；摩擦係数に係る測定機器間等の相関性に関する調查報告書，航空輸送技術研究セン ター， 2003
11）James C．Wambold，J．J．Henry and Arild Andresen； International Runway Friction Index（IRFI）： Development Technique and Methodology，Transport Canada，TP14061E， 2001
12）山根皓三郎，上田哲彦，外崎得雄，小野幸一，竹内和之；滑走路面のすべり評価法に関する研究（第1報） — DBV の製作と基礎実験—，NAL－TR 576， 1979
13）山根皓三郎，上田哲彦，外崎得雄，小野幸一，竹内和之；滑走路面のすべり評価法に関する研究（第2報） —調布空港と東千歳場外着陸場での実験—， NAL－TM 399， 1979
14）外崎得雄，甲斐高志，上田哲彦；雪氷滑走路面摩擦係数測定装置の開発，NAL－TR 1443， 2002
15）Takashi NAKATSUJI；Inverse Estimation of Friction Coefficients of Winter Road Surfaces：New Consideration of Lateral Movements and Angular Movements，Transportation Research Record No．1911， 2005
16）林 郁子；車両運動データに基づいたすべり摩擦係数のオンライン予測に関する研究，北海道大学大学院光学系研究科平成 17 年度修士論文
17）酒井秀男；タイヤエ学，グランプリ出版
18）ICAO；ICAO Airport Service Manual（Doc9137－AN／898）， Part 2 Pavement Surface Conditions

宇宙航空研究開発機構研究開発資料 JAXA－RM－06－001

発 行 日 2006年9月29日
編集•発行 宇宙航空研究開発機構
〒182－8522 東京都調布市深大寺東町 7－44－1
URL：http：／／www．jaxa．jp／
印刷•製本 ケーティエス情報株式会社

本書及び内容についてのお問い合わせは，下記にお願いいたします。
宇宙航空研究開発機構 情報システム部 研究開発情報センター
〒305－8505 茨城県つくば市千現 2－1－1
TEL：029－868－2079 FAX：029－868－2956

C 2006 宇宙航空研究開発機構
※本書の一部または全部を無断複写•転載•電子媒体等に加工することを禁じます。
－

HXA

[^0]: ＊1 H18年9月1日受付（received 1 September 2006）
 ＊2 航空プログラムグループ 運航•安全技術チーム（Operation and Safety Technology Team，Aviation Program Group）

[^1]:

