A08

Orbital Debris Activities at CNES with a Focus on Space Debris Environment Impact Evaluation

Juan-Carlos Dolado-Perez and V. Ruch (CNES)

On this presentation an overview of orbital debris activities at CNES will be given. These activities cover Optical observation, Space surveillance and tracking activities, space environment modelling, re-entry predictions and collision prediction in orbit and at launch.

A focus will be given on studies done concerning the evaluation of the long term evolution of the orbital environment. The focus on this subject has been chosen as many exogenous and endogenous uncertainties sources may be still understood in order to define the mitigation and remediation measures to put in place to guarantee the long term sustainability of space activities.

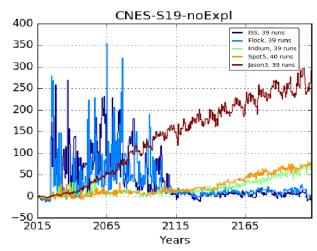
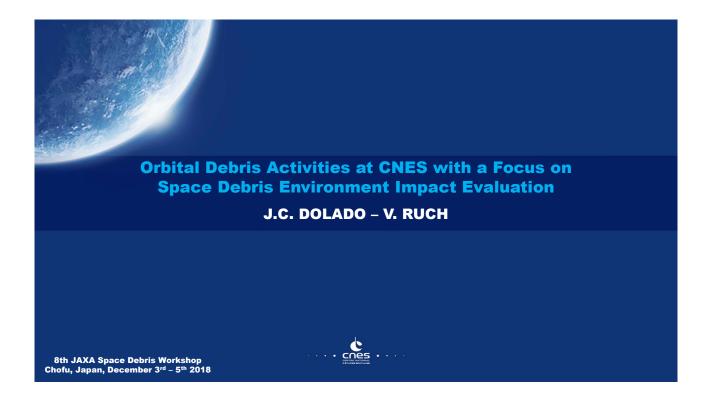


Fig. 1.- Collision risk increase for different missions depending an scenario with two mega-constellations at 1100 and 1200 km.


Biography

Juan-Carlos Dolado-Perez

Juan-Carlos Dolado-Perez is the head of the space debris modelling and risk assessment office at the "Centre National d'Etudes Spatiales" (French Space Agency). Since 2008 he has worked at the system engineering and orbital dynamics sub directorate, where his main research topics concerns the long and middle term re-entry prediction, the long term evolution of the space debris population, the on orbit collision risk assessment, the orbit determination from radar and optical measurements and the uncertainty characterization and propagation.

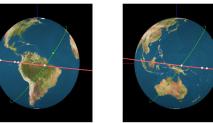
He is a member of the Inter Agencies Space Debris Committee (IADC)'s French Delegation and of the International Academic of Astronautics (IAA)'s Space Debris Committee

Outline

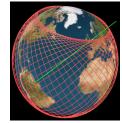
- Collision Avoidance at Launch
- Optical Space Surveillance
- > Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- **Re-Entry Predictions**
- Re-Entry Modelling
- Space Debris Environment Modelling Env. Index

2 © cnes

cnes · ·



- Collision Avoidance at Launch
- Optical Space Surveillance
- Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- Re-Entry Predictions
- Re-Entry Modelling
- Space Debris Environment Modelling Env. Index


8th JAXA Space Debris Workshop – Chofu, Japan – December 3rd – 5th 2018

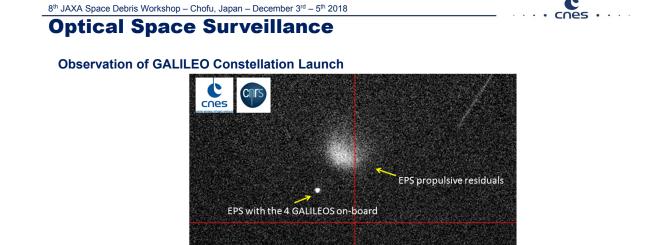
Collision Avoidance at Launch

- > Operational Collision Avoidance at Launch since 2010
 - Requirement from FSOA (French Law)
 - > Collision Risk analysis with ISS, Soyuz, ...
 - > Every launch from Guyana Space Center
- Preliminary joint work in the past between JAXA and CNES

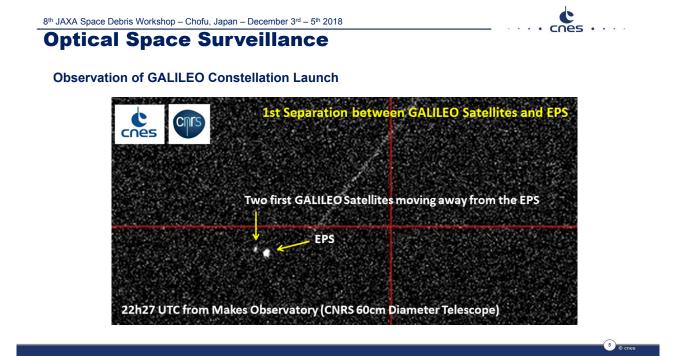
Example Ariane 5: risks at 5th and 6th orbit

Example Soyuz flight: no risk

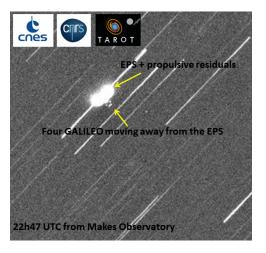
- Collision Avoidance at Launch
- Optical Space Surveillance
- Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- Re-Entry Predictions
- Re-Entry Modelling
- Space Debris Environment Modelling Env. Index


 8^{th} JAXA Space Debris Workshop – Chofu, Japan – December 3^{rd} – 5^{th} 2018

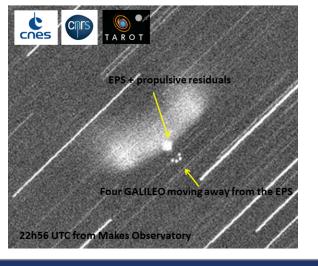
Optical Space Surveillance


Operations of TAROT network:

- > TAROT network covers 70% of GEO belt
 - > An additional on-demand site in Australia allows to cover almost 100%
- Catalogue build-up and maintenance of ~500 objects



22h04 UTC from Makes Observatory (CNRS 60cm Diameter Telescope)


Observation of GALILEO Constellation launch

 8^{th} JAXA Space Debris Workshop – Chofu, Japan – December 3^{rd} – 5^{th} 2018

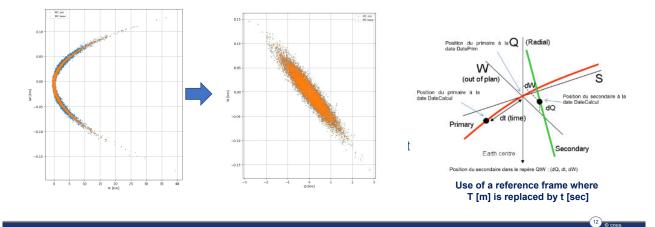
Optical Space Surveillance

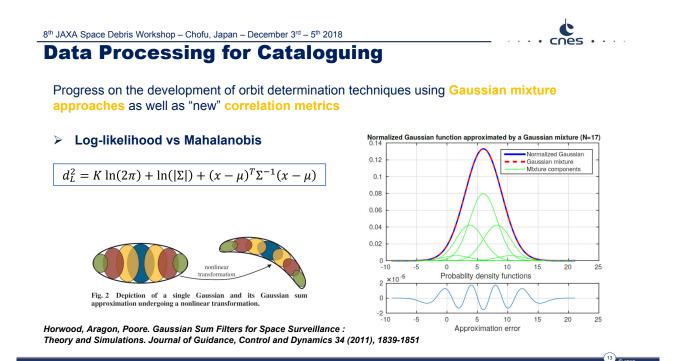
Observation of GALILEO Constellation launch

10 © cnes

cnes · · ·

Collision Avoidance at Launch

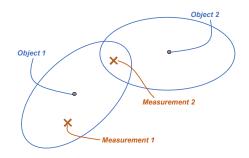

- Optical Space Surveillance
- > Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- Re-Entry Predictions
- Re-Entry Modelling
- Space Debris Environment Modelling Env. Index



Data Processing for Cataloguing

Progress on the development of techniques for the enhancement of the covariance realism:

> Maintaining the Gaussianity of Covariances matrices

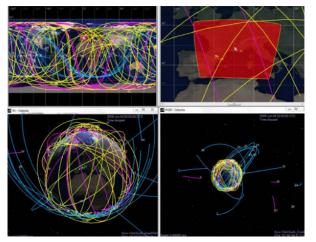

Data Processing for Cataloguing

Progress on the development of advanced techniques for correlation and cataloguing:

- Bayesian data association techniques
 - Joint Probabilistic Data Association
 - Multi Hypothesis Tracking
 - Multi-Bernouilli Finite Sets Statistics

Joint Event

- 1 Meas. 1 and 2 from clutter
- 2 Meas. 1 from Obj. 1, Meas. 2 from clutter
- 3 Meas. 1 from clutter, Meas. 2 from Obj. 1
- 4 Meas. 1 from clutter, Meas. 2 from Obj. 2
- 5 Meas. 1 from Obj. 1, Meas. 2 from Obj. 2



cnes

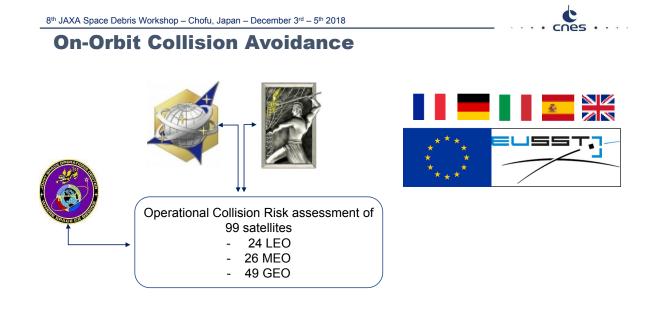
14 0 0000

Supporting the **European Space Surveillance and Tracking Program** through the analysis of the **performance** of the **actual and future architectures**

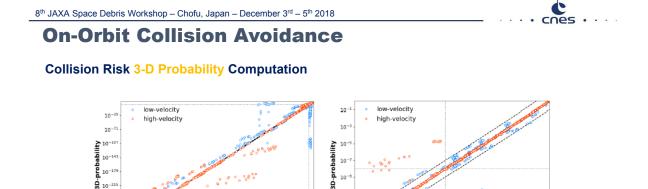
cnes · ·

8th JAXA Space Debris Workshop – Chofu, Japan – December 3rd – 5th 2018

Space Surveillance System Analysis


Additional studies to improve our capability to

- > Task and Schedule sensors
- > Evaluate information gain coming from observations and optimize observation strategies
- > Analysis of ionosphere correction models
- Development of IOD methods
- ≻ ...


16 0 0000

- Collision Avoidance at Launch
- Optical Space Surveillance
- Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- Re-Entry Predictions
- Re-Entry Modelling
- Space Debris Environment Modelling Env. Index

18 0 0000

10

10-

10 10

Fig. 2 Comparison of the 2D and 3D-probability of collision for the generated cases. High-velocity encounters

 $(> 50 \text{ m s}^{-1})$ are plotted in orange and low-velocity encounters ($\leq 50 \text{ m s}^{-1}$) in blue.

10⁻⁹ 10⁻⁷ 2D-probability

(b) Both 2D and 3D probabilities above 10^{-15}

Outline

ģ 10-

10 10

Collision Avoidance at Launch

bility

(a) All cases

- Optical Space Surveillance
- Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- **Re-Entry Predictions**
- Re-Entry Modelling
- Space Debris Environment Modelling Env. Index

19

	CNES	IMCCE	pagat GRUCACI	OCA	UPM	GME	KIAM
	COWELL						
	DOPRI						
	GBS						
					DROMO		
			7DEPRIF				
	CODIOR			CODIOR			
	SATLIGHT IV	SATLIGHT IV					
	STELA	STELA					
	THEONA						THEONA
			DSST				
	HEOSAT		HEOSAT				
	NADIA						
ANALYTICAL	SGP4						
	FAST	FAST					
	ATESAT					ATESAT	
	DRI		DRI				

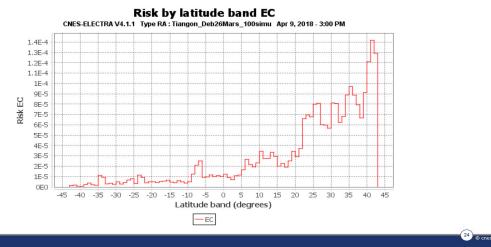
Orbital Debris Propagation

Improvement of STELA semi-analytic propagator

- Use of recurrence formulation for zonal perturbation: maximum degree of development is no more limited to 15
- > Development of third body perturbation up to order 8
 - Ability to propagate INTEGRAL orbits (sma = 87941 km, ecc=0.856)
 - > Ability to propagate for a decade SIMBOL-X orbit (sma = 106247 km, ecc = 0.75)
- > Work ongoing on the inclusion of short periods of non-conservative forces
 - PRS
 - Drag

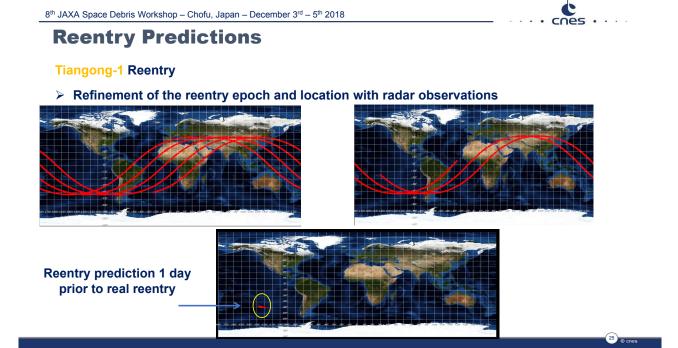
Work initiated on the propagation of space debris using density model approaches

22 © cnes


- Collision Avoidance at Launch
- Optical Space Surveillance
- Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- Re-Entry Predictions
- Re-Entry Modelling
- Space Debris Environment Modelling Env. Index

 8^{th} JAXA Space Debris Workshop – Chofu, Japan – December 3^{rd} – 5^{th} 2018

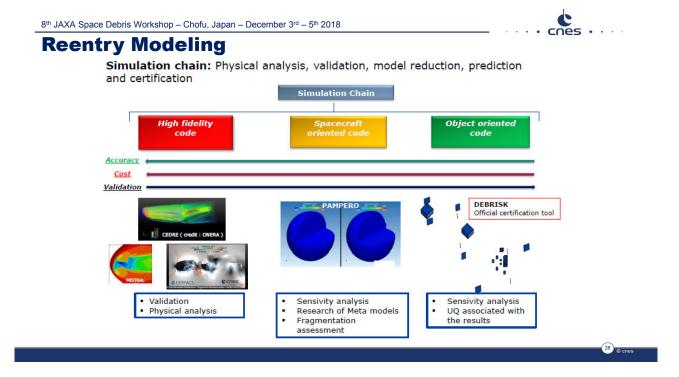
Reentry Predictions


Tiangong-1 Reentry

> On-ground risk evaluation > a week prior to reentry

23 © cne

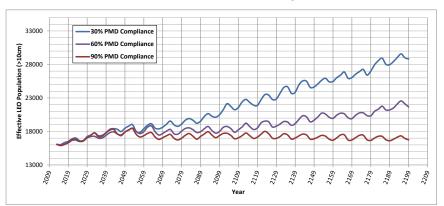
cnes · ·


Outline

- Collision Avoidance at Launch
- Optical Space Surveillance
- > Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- **Re-Entry Predictions**
- **Re-Entry Modelling**
- Space Debris Environment Modelling Env. Index

26 © cnes

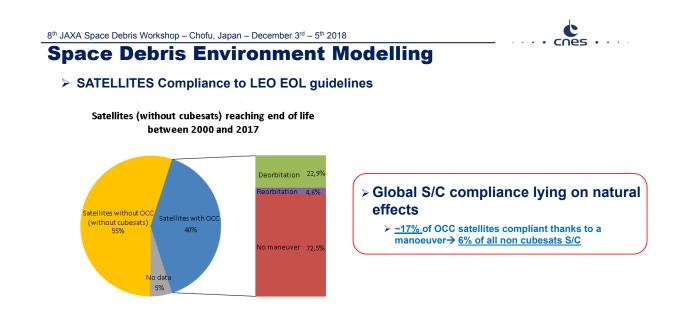
coes



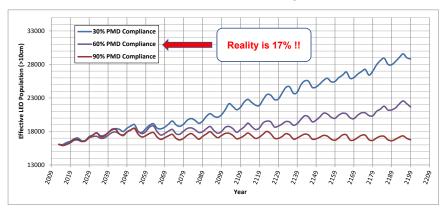
- Collision Avoidance at Launch
- Optical Space Surveillance
- Data Processing for Cataloguing Space Surveillance
- Collision Avoidance in orbit
- Orbital propagation
- Re-Entry Predictions
- Re-Entry Modelling
- Space Debris Environment Modelling Env. Index

8th JAXA Space Debris Workshop – Chofu, Japan – December 3rd – 5th 2018

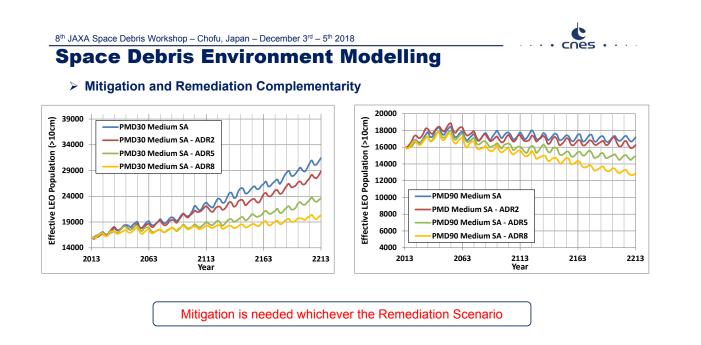
Space Debris Environment Modelling

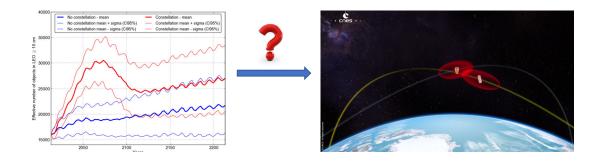

Long term evolution of space debris environment, shows a unstable behavior in the LEO regime, if efforts are not made to reduce the number of objects on the environment.

N.B.: PMD Compliance refers to objects non compliant with the 25-Years rule that we have voluntarily de-orbited


30 0 000

29) © cr




Long term evolution of space debris environment, shows a unstable behavior in the LEO regime, if efforts are not made to reduce the number of objects on the environment.

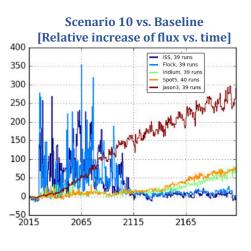
N.B.: PMD Compliance refers to objects non compliant with the 25-Years rule that we have voluntarily de-orbited

34 20 000

cnes · · ·

Space Debris Environment Modelling

> Large Constellation / small sats Effect and Environmental Index



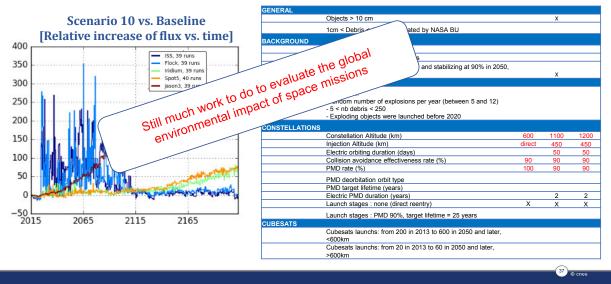
GENERAL		
	Objects > 10 cm	Х
	1cm < Debris < 10cm, generated by NASA BU	
BACKGROUND		
	PMD 90%	Х
	PMD 20%, max lifetime 25 years	
	PMD 20% in 2013, rising linearly and stabilizing at 90% in 2050, max lifetime 25 years	
EXPLOSIONS		
	Explosions: - random number of explosions per year (between 5 and 12) - 5 < nb debris < 250 - Exploding objects were launched before 2020	
CONSTELLATIONS		
	Constellation Altitude (km)	1100
	Injection Altitude (km)	direct
	Electric orbiting duration (days)	
	Collision avoidance effectiveness rate (%)	100
	PMD rate (%)	90
	PMD deorbitation orbit type	eccentr
	PMD target lifetime (years)	25
	Electric PMD duration (years)	
	Launch stages : none (direct reentry)	Х
	Launch stages : PMD 90%, target lifetime = 25 years	
CUBESATS		
	Cubesats launchs: from 200 in 2013 to 600 in 2050 and later, <600km	
	Cubesats launchs: from 20 in 2013 to 60 in 2050 and later, >600km	
	>600km	

8th JAXA Space Debris Workshop – Chofu, Japan – December 3rd – 5th 2018

Space Debris Environment Modelling

> Large Constellation / small sats Effect and Environmental Index

SENERAL				
	Objects > 10 cm		Х	
	1cm < Debris < 10cm, generated by NASA BU			
ACKGROUND				
	PMD 90%			
	PMD 20%, max lifetime 25 years			
	PMD 20% in 2013, rising linearly and stabilizing at 90% in 2050, max lifetime 25 years		x	
XPLOSIONS				
	Explosions: - random number of explosions per year (between 5 and 12) - 5 < nb debris < 250 - Exploding objects were launched before 2020			
ONSTELLATIONS				
	Constellation Altitude (km)	600	1100	1200
	Injection Altitude (km)	direct	450	450
	Electric orbiting duration (days)		50	50
	Collision avoidance effectiveness rate (%)	90	90	90
	PMD rate (%)	100	90	90
	PMD deorbitation orbit type			
	PMD target lifetime (years)			
	Electric PMD duration (years)		2	2
	Launch stages : none (direct reentry)	Х	Х	Х
	Launch stages : PMD 90%, target lifetime = 25 years			
UBESATS				
	Cubesats launchs: from 200 in 2013 to 600 in 2050 and later, <600km			
	Cubesats launchs: from 20 in 2013 to 60 in 2050 and later.			


8th JAXA Space Debris Workshop – Chofu, Japan – December 3rd – 5th 2018

cnes · · ·

Space Debris Environment Modelling

Large Constellation / small sats Effect and Environmental Index

8th JAXA Space Debris Workshop – Chofu, Japan – December 3rd – 5th 2018

Thank You for your Attention

This document is provided by JAXA.

38 © cnes