宇宙ごみのモデリングとその応用について Orbital Debris Modeling and Applications

花田俊也(九州大学) Toshiya Hanada (Kyushu Univ.)

宇宙ごみのモデリングにより、現在および将来のデブリ分布を予測する推移モデルを構築し、どのようにすれば デブリを低減できるか、あるいは環境を改善できるか、を議論することができる.また、宇宙ごみのモデリングによ り、地上光学望遠鏡を用いてどのように観測すれば効率的に未知のデブリを探索することができるか、並びに、 地上から追跡できない小デブリの計測を軌道上で実施する際の実用性を評価できる.別の応用として、環境改 善のために除去すべき人工物の姿勢運動を推定することもできる.この講演では、九州大学で注力している宇 宙ごみのモデリングとその応用について紹介する.

The orbital debris modeling can build evolutionary models as essential tools to predict the current or future orbital debris populations, and also to discuss what and how to do for orbital debris mitigation and environmental remediation. The orbital debris modeling can also devise an effective search strategy applicable for breakup fragments in the geostationary region using ground-based optical sensors, and to evaluate the effectiveness of space-based measurements of objects not tracked from the ground, both to contribute to space situational awareness. Another application of the orbital debris modeling is to estimate attitude motion of space objects to be removed for environmental remediation. This paper briefly introduces efforts into orbital debris modeling and applications.

The 8th Space Debris Workshop in Japan

Orbital Debris Modeling and Applications

Prof. Dr. Toshiya HANADA Kyushu University, Fukuoka, Japan

2018.12.4

Orbital Debris Modeling

Orbital debris modeling mainly consists of **debris generation** and **orbit propagation**

- Debris generation can characterize and predict physical properties of fragments originating from explosions or collisions.
- Orbit propagation can characterize, track, and predict the behavior of individual or groups of space objects.

With collision flux estimation orbital debris modeling can build **evolutionary models** as essential tools to project the current or future orbital debris populations.

Orbital debris modeling is also useful and effective to improve the efficiency of measurements and to identify the location of breakups.

Orbital Debris Modeling and Applications

A key element of modeling orbital debris environment is the ability to predict the outcome of a typical satellite fragmentation. There are two important factors for long-term orbital debris environment studies: (1) size, and (2) area-to-mass ratio distributions.

- Size distribution defines the number of fragments added to the environment after a breakup,
- Area-to-mass ratio distribution defines the orbital lifetimes of fragments with perigee altitudes < ~1000 km</p>

Shape is important for improving the calculation of the average cross-sectional area of each fragments. **Shape** is also important for conducting a reliable assessment of the probability of non-penetration of spacecraft such as the Int'l Space Station.

2018.12.4

3

Breakup Model

Breakup Model

To characterize and predict physical properties of fragments originating from explosions or collisions

Simulated spacecraft walls

- To investigate low-velocity impacts on spacecraft
- □ The outcome was all non-catastrophic, resulting in craters or holes on simulated spacecraft walls

CANSAT

- To investigate the outcome of a catastrophic impact
- Micro satellites (under contract with NASA Orbital Debris Program Office)
 - To compare low-velocity and hypervelocity catastrophic impacts on identical micro satellites
 - To investigate the effects of impact directions on fragmentation
 - To investigate fragments originating from multi-layer insulation (MLI) and solar array panels (SAP)

2018.12.4

🌺 KYUSHU UNIVERSITY

Orbit Propagation

The other key element of modeling space debris environment is the ability to characterize, track, and predict the behavior of individual or groups of space objects.

Three different numerical orbit integrators

Orbital Debris Modeling and Applications

- One integrates equations of satellite orbit motion in the Cowell's formulation
- The others integrates the rate of change of orbital parameters in the Gaussian or Kwok's forms of the variation of parameter equations

One analytical orbit integrator

- Calculates only the secular and long-term variations of orbital parameters
- □ Is used in evolutionary models (future projections)

2018.12.4

2

KYUSHU UNIVERSITY Orbital Debris Modeling and Applications

Evolutionary Models

With collision flux estimation, orbital debris modeling can build **evolutionary models** as essential tools:

- **D** To predict the current or future space debris environment, and also
- □ To discuss what and how to do for orbital debris mitigation and environmental remediation

GEODEEM

□ To track objects in the geostationary region (or with eccentricity < 0.2, mean motion between 0.9 and 1.1 rev. per day, and inclination < 30 deg.)

LEODEEM

To track objects in the low Earth orbit region (or with perigee altitude < 2000 km)</p>

NEODEEM

□ To track objects orbiting around the Earth

Solar Cycles Assumed after 2005

Orbital Debris Modeling and Applications

🏙 KYUSHU UNIVERSITY

Y Orbital Debris Modeling and Applications

Impact of Solar Cycles

2018.12.4

Impact of PMD Altitude on Large Constellation

Orbital Debris Modeling and Applications

👹 KYUSHU UNIVERSITY	Orbital Debris Modeling and Applications	9
---------------------	--	---

Measurements

Orbital debris modeling is also useful and effective to **improve the** efficiency of measurements.

Orbital debris modeling can characterize, track, and predict the behavior of groups of fragmentation debris to devise a practical method for ground-based optical **measurements**.

- Population prediction of fragments from a single breakup event specifies effectively when and how to conduct ground-based optical measurements
- Motion prediction of fragments in a series of successive images clearly distinguishes between fragments originating from the target breakup event and the others

This practical method has been verified by applying for two confirmed breakups in the geostationary region:

- Russian Ekran 2 (ID: 77092A) exploded on 23rd June 1978, and
- □ US Titan IIIC Transtage (ID: 68081E) exploded on 21st February 1992.

Population Prediction and Observation Planning

2018.12.4

💥 KYUSHU UNIVERSITY	Orbital Debris Modeling and Applications	11
---------------------	--	----

Motion Prediction and Origin Identification

Outcome of contract with JAXA

Motion Prediction

Origin Identification

🏙 KYUSHU UNIVERSITY

346

Constraint Equations

Orbital debris modeling can characterize the nature of orbits on which debris impact with a space object.

Orbital Debris Modeling and Applications

- This characterization provides a constraint on a piece of debris which impacts with the space object
- This constraint can identify the location of on-orbit satellite fragmentations

Orbital debris modeling can also characterize the nature of orbits of fragments from a specific breakup event.

- This characterization can also provides a constraint on fragments from the specific breakup event, similar to the constraint above
- This constraint can identify the time of breakup events

🌺 KYUSHU UNIVERSITY

Towards Long-term Sustainability of Outer Space Activities

14

347

Constraint on Orbital Plane

2018.5.2

15

KYUSHU UNIVERSITY Orbital Debris Modeling and Applications

Orbital Parameters to Estimate

Inclination: i

Right ascension of the ascending node at $t = t_0$: Ω_0

Nodal regression rate: $\dot{\Omega}$

Noted $\Omega(t) = \Omega_0 + \dot{\Omega}(t - t_0)$ and $\dot{\Omega} \propto -\cos i$

虪 KYUSHU UNIVERSITY

Constraints on *i* and Ω_0 Change with $\dot{\Omega}$ (Case A)

Orbital Debris Modeling and Applications

	KYUSHU UNIVERSITY	Orbital Det
2.6	RICONCONTERDITI	

Two or More Measurement Satellites Needed

ris Modeling and Applications

16

Constraints on *i* and Ω_0 Change with $\dot{\Omega}$ (Case B)

Orbital Debris Modeling and Applications

🌺 KYUSHU UNIVERSITY

UNIVERSITY Orbital Debris Modeling and Applications

Constraint on Nodal Pression/Regression Rate

A constraint on the nodal precession/regression rate of the broken-up object may be given by

$$\begin{aligned} \mathbf{r}_{1} \\ \cdot \left[\left(\left[C_{\dot{\Omega}(t_{2}-t_{1})}^{3} \right] \mathbf{r}_{2} \right) \\ \times \left(\left[C_{\dot{\Omega}(t_{3}-t_{1})}^{3} \right] \mathbf{r}_{3} \right) \right] &= 0 \end{aligned}$$

where $[C^3]$ represents a rotation matrix about the Earths' axis of rotation with an angle given by the subscript

2018.12.4

虪 KYUSHU UNIVERSITY

SITY Orbital Debris Modeling and Applications

Finding the Right Nodal Precession/Regression Rate (Case B)

虪 KYUSHU UNIVERSITY

Furumoto Constraint Equation

Orbital Debris Modeling and Applications

Furumoto derived a constraint equation that applies for the orbital parameters of a piece of debris impacted on a measurement satellite:

 $R_{11} \sin i' \sin \Omega' - R_{21} \sin i' \cos \Omega' + R_{31} \cos i' = 0$ where $R_{11} = \frac{x}{r} = \cos \Omega \cos u - \sin \Omega \sin u \cos i = \cos \delta \cos \alpha$

$$R_{21} = \frac{y}{r} = \sin \Omega \cos u + \cos \Omega \sin u \cos i = \cos \delta \sin \alpha$$
$$R_{31} = \frac{z}{r} = \sin u \sin i = \sin \delta$$

2018.12.4

23

KYUSHU UNIVERSITY Orbital Debris Modeling and Applications

Alternative Expressions for Furumoto Constraint Equation

Itaya derived alternative expression for Furumoto constraint equation:

 $(R_{21}^2 + R_{31}^2)p^2 - 2R_{11}R_{21}pq + (R_{11}^2 + R_{31}^2)q^2 - R_{31}^2 = 0$ where

 $p = \sin i' \cos \Omega'$ and $q = \sin i' \sin \Omega'$

Hanada also derived alternative expression different from Itaya's expression:

$$R_{31}p^2 + R_{31}q^2 - 2R_{11}p + 2R_{21}q - R_{31} = 0$$

where

$$p = \tan \frac{i'}{2} \sin \Omega'$$
 and $q = \tan \frac{i'}{2} \cos \Omega'$

2018.12.4

Orbital Debris Modeling and Applications

WW KYUSHU UNIVERSITY	Orbital Debris Modeling and Applications	25
----------------------	--	----

Summary

This paper briefly introduced efforts into orbital debris modeling and applications.

Orbital debris modelling can predict the stability of the current or future orbital debris populations to discuss what and how to do for the long-term sustainability of outer space activities.

Orbital debris modeling is also useful and effective to improve the efficiency of measurements and to identify the location/time of breakups.

Kyushu University is willing to pursue orbital debris modeling.

Microsatellite Impact Scenarios

Orbital Debris Modeling and Applications

🏙 KYUSHU UNIVERSITY

Orbital Debris Modeling and Applications

Microsatellite Impact Fragmentation

353

Fengyun 1C

2018.12.4

Collision Flux of Fragments from Fengyun 1C along the

2018.5.2

29

🏙 KYUSHU UNIVERSITY

Orbit of IDEA-1

354

Chinese Anti-satellite Test in Early 2007

Orbital Debris Modeling and Applications

IDEA-1